strains

44
NonModel Developing a Framework for the Genetic Manipulation of Non-Model and Environmentally Significant Microbes Yale University iGEM Colin Hemez, Lionel Jin, Danny Keller, Dan Shapiro, Jessica Tantivit, Erin Wang, Holly Zhou 2015 iGEM Giant Jamboree Sunday, September 27

Upload: vankhanh

Post on 01-Jan-2017

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Strains

NonModel Developing a Framework for the

Genetic Manipulation of Non-Model and Environmentally Significant Microbes

Yale University iGEM Colin Hemez, Lionel Jin, Danny Keller,

Dan Shapiro, Jessica Tantivit, Erin Wang, Holly Zhou

2015 iGEM Giant Jamboree Sunday, September 27

Page 2: Strains

Why Engineer Non-Models?

“.  .  .  the  applica,on  of  synthe,c  biology  methods  and  techniques  needs  to  be  broadened  to  a  larger  group  of  

organisms  to  fully  reach  its  poten,al.”  

–  Ramey  et  al.  Acs.  Synth.  Bio.  2015  

NonModel

Yale iGEM 2015

Page 3: Strains

NonModel

Yale iGEM 2015

Problems we chose to address:

Lipid bioduel-producing cyanobacteria and

super-rhizobia

Page 4: Strains

What We Developed: A framework for building expertise in non-model prokaryotes

NonModel

Yale iGEM 2015

Choose  Strain  

Grow  

Select  

Transform  

Modify  Genomes  

Repor?ng  Assays  

Page 5: Strains

Multiplex Automated Genome Engineering (MAGE) in E. coli

NonModel

Yale iGEM 2015

Grow  Cells  

Transform  Oligos  

Recover  Cells  

Induce  λ-­‐Red  

Screen  for  Phenotypes  

Wang,  H.  et  al.  Nature  2009.    

Page 6: Strains

CRISPR-Cas9 Systems (Syn bio’s favorite new search-and-destroy tool)

NonModel

Yale iGEM 2015

5’  

3’  

3’  

5’  

5’  

3’  gRNA  

Target  DNA  

Cas9  

Hsu,  P.,  Lander,  E.  &  Zhang,  F.  Cell  2014.  

Page 7: Strains

Let’s Run Through the NonModel Framework

NonModel

Yale iGEM 2015

Choose  Strain  

Grow  

Select  

Transform  

Modify  Genomes  

Repor?ng  Assays  

Page 8: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Page 9: Strains

Meet Our Strains Synechococcus  sp.  PCC  7002  

NonModel

Yale iGEM 2015

Sinorhizobium  melilo1  1021  

Rhizobium  tropici  CIAT  899  

Mar?nez-­‐Romero  E,  Segovia  L  et  al.  Int.  J.  of  System.  Biotech.1991.  Ruffing  A.  Front.  Bioeng.  Biotechnol.  2014.  

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

Page 10: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

•  Strains:  –  Cyanobacteria:  Synechococcus  7002  –  Rhizobia:  Sinorhizobium  melilo=  1021,  

Rhizobium  tropici    •  Growing  media:  

–  Cyanobacteria:    A+  Media  –  Rhizobia:  Tryp?c  Soy  Broth  &  LB    

Growth  of  PCC7002  with  Glycerol  Supplemented  (OD  730nm  vs.  Time)  

•  Doubling  ,mes:  –  PCC7002:  4  hours  –  Rhizobia:  5-­‐7  hours  

Page 11: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Page 12: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Growth  of  PCC7002  in  A+/Kanamycin  Media  (OD  730nm  vs.  Time)  

Page 13: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

INNATE ANTIBIOTIC RESISTANCES IN RHIZOBIUM STRAINS

An,bio,c   R.  tropici  CIAT   S.  melilo,  356   S.  melilo,  370   S.  melilo,  371  

Culture   Solid   Liquid   Solid   Liquid   Solid   Liquid   Solid   Liquid  

Streptomycin   NO   NO   NO   YES   NO   YES   NO   YES  

Carbenicillin   YES   NO   NO   NO   NO   NO   NO   YES  

Kanamycin   NO   NO   NO   NO   NO   NO   NO   NO  

Rifampicin   NO   NO   NO   NO   NO   NO   NO   NO  

Spec?nomycin   NO   NO   NO   NO   NO   NO   YES   YES  

Page 14: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Page 15: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Transformation of PCC7002 by

Natural Competency

Page 16: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Transformation of Rhizobium Strains by Conjugation and Electroporation

Page 17: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Quan?fy  expression  of  promoters  using  reporter  gene  

Assemble  to  gene  of  interest  

Transform  construct  and  induce  expression  

Page 18: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Promoters drive expression in E. coli

Citrine TerminatorPromoter

•  Improved  characteriza?on  of  Anderson  promoters  •  Submibed  7  new  biobricks  

Page 19: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Tested promoters S. meliloti – 3 usable promoters

•  Anderson  Strong,  Anderson  Medium  and  tac  drive  expression   Citrine TerminatorPromoter

Page 20: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Recombinases •  Iden?fied  16  recombinases  using  BLAST  –  submibed  3  as  biobricks  

 -­‐  lambda  beta    -­‐  9  rhizophage  recombinases    -­‐  6  cyanophage  recombinases    

•  Successfully  assembled  Anderson  Medium  to  6  different  recombinases  and  transformed  into  S.  melilo=  

•  Next  step:  MAGE    

Page 21: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

DNA repair machinery knockout ! Increase MAGE efficiency •  Successful  mutS  KO  by  natural  transforma?on  with  linear  DNA  

mutS

kanRFRT FRT

Upstream Homology

Downstream Homology

∆mutSWT

Page 22: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Page 23: Strains

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

Iden?fy  selectable  marker  

Iden?fy  screenable  marker  

Quan?fy  protocol  efficiency  

Generalize  to  desired  func?on  

Page 24: Strains

MAGE •  Selectable  marker  –  an?bio?c  resistance  •  Screenable  marker  –  fluorescence/morphology  change  

CRISPR •  Knockout  gene  !  Confer  resistance  

Choose  Strain   Grow   Select   Transform   Modify  

Genomes  Repor?ng  Assays  

NonModel

Yale iGEM 2015

5’ 3’

FRT Sites

kanR mCit ampR

TAG TAA

1 kb Upstream 1 kb Downstream

Page 25: Strains

NonModel

Yale iGEM 2015

Modeling A PCR mutation predictor for higher fidelity BioBrick amplification

Sharifian,  Hoda.  Errors  induced  during  PCR  amplifica?on.  Swiss  Federal  Ins?tute  of  Technology,  Department  of  Computer  Science  (2010).  hbp://dx.doi.org/10.3929/ethz-­‐a-­‐006088024  

0.5  

0.6  

0.7  

0.8  

0.9  

1  

0   10   20   30   40  

Fide

lity  

n  

Fidelity  vs  number  of  PCR  cycles  

Page 26: Strains

NonModel

Yale iGEM 2015

Human Practices and Outreach iGEM and LGBTQ+

Summer Science Research Institute and Science Café

Page 27: Strains

NonModel

Yale iGEM 2015

Collaborations Validating the common themes in non-model organism research

Cornell

Northeastern

La Verne

Utah State

Concordia

British Columbia

Page 28: Strains

NonModel

Yale iGEM 2015

Recap Many  problems  could  be  

solved  with  synthe?c  biology  applica?ons  in  non-­‐model  organisms  

Let’s  make  those  organisms  easier  to  

gene?cally  engineer!  

Page 29: Strains

Many thanks to our sponsors

Page 30: Strains

NonModel

Yale iGEM 2015

Thank You! iGEM  Lab  Researchers  

Colin  Hemez  

Lionel  Jin  

Danny  Keller  Dan  Shapiro  

Jessica  Tan?vit  

Erin  Wang  

Holly  Zhou  

Special  Thanks  

Maria  Moreno  

Modeling  Team  

Joe  Lanzone  

Andrew  Saydjari  

Research  Coordinator  

Ariel  Hernandez-­‐Leyva  

Board  

Ed  Kong  Alex  Buhimschi  

Stephanie  Mao  

Yamini  Naidu  

Graduate  Mentors  

Natalie  Ma  

Jaymin  Patel  

Corey  Perez  Paul  Muir  

Faculty  Sponsors  

Steve  Dellaporta  

Farren  Isaacs  

Questions?

Page 31: Strains

NonModel

Yale iGEM 2015

Supplements

Page 32: Strains

Anderson  Promoters  -­‐  Picked  3  promoters  from  previously  exis?ng  biobricks  -­‐  Strong,  Medium,  Weak  

-­‐  J23100,  J23111,  J23114  -­‐  Assembled  to  citrine  and  T7  terminator  to  generate  new  biobricks  

-­‐  K185002,  K185003,  K185004  -­‐  Characterized  in  E.  coli  and  S.  melilo=  

BioBricks - Improved Characterization + New Constructs

NonModel

Yale iGEM 2015

Page 33: Strains

New  Inducible  Promoter  Constructs  -­‐  bacA,  melA,  tac,  lac  →  Assemble  to  citrine  and  T7  terminator  

-­‐  K185000,  K185001,  K185005,  K185006  

-­‐  Characterized  in  E.  coli  and  S.  melilo=  New  Recombinases  -­‐  Rhizobium  phage  recombinases  gp32-­‐based  cyanophage  recombinase  

BioBricks - New Constructs

NonModel

Yale iGEM 2015

Page 34: Strains

NonModel

Yale iGEM 2015

Page 35: Strains

NonModel

Yale iGEM 2015

Page 36: Strains

NonModel

Yale iGEM 2015

Page 37: Strains

•  mutS  func?ons  in  the  DNA  mismatch  repair  pathway  –  Highly  conserved  system  from  prokaryotes  to  higher  eukaryotes  

•  MutS  protein  recognizes  a  DNA  mismatch  •  Since  DNA  mismatch  is  necessary  for  the  MAGE  mechanism,  a  

mutS  KO  is  essen?al  for  high  mutagenesis  efficency  

Why  Knock  Out  mutS?  

Acharya.  Molecular  Cell.  2003  

Page 38: Strains

Flp-­‐FRT  Recombina,on:  A  Knockout  Technique  Adapted  from  the  Saccharomyces  cerevisiae  2µm  Plasmid  

•  2µm  plasmid  confers  no  known  evolu?onary  advantage  to  yeast  cells  –  Plasmid  “flips”  between  two  inverted  

isoforms  

•  “Flipping”  ac?on  is  catalyzed  by  Flp  recombinase  recognizing  48  bp  flippase  recogni?on  target  (FRT)  sites  

•  Flp  either  deletes  or  inverts  sequence  between  FRT  sites,  depending  on  FRT  site  orienta?on  

Ava  I  

Ava  I  

Pst  I  

Pst  I  Ava  I  

Ava  I  

B  

A  

2µm  Plasmid  Isoforms  

599  bp  inverted  repeats  Cox.  Proc.  Natl.  Acad.  Sci.  1983.  Schweizer.  J.  Mol.  Microbio.  and  Biotech.  2003.  

Page 39: Strains

•  Conserved  48  bp  sequence  –  3x  13bp  symmetry  sequences  

–  8bp  asymmetry  element  containing  Xba  I  restric?on  site  –  1bp  spacer  

The  FRT  Site  

5’-GAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC-3’

3’-CTTCAAGGATTAGGCTTCAAGGATTAGAGATCTTTCATATCCTTGAAG-5’

Schweizer.  J.  Mol.  Microbio.  and  Biotech.  2003.  

Xba  I  

Page 40: Strains

Effect  of  Asymmetric  FRT  Site  Element  on  Flp  Ac,on  

Schweizer.  J.  Mol.  Microbio.  and  Biotech.  2003.  

leads  to…  

FRT   FRT  Sequence  

leads  to…  

•  DNA  between  FRT  sequences  poin?ng  in  the  same  direc?on  is  deleted  

•  DNA  between  FRT  sequences  poin?ng  in  opposite  direc?ons  is  inverted  

Surrounding  DNA   Surrounding  DNA  

FRT   FRT  Surrounding  DNA   Surrounding  DNA  

Page 41: Strains

•  Two  components  are  needed,  regardless  of  species:  –  A  selectable  marker  gene  flanked  by  same-­‐direc?on  FRT  sites  

–  Source  of  Flp  recombinase  

Implementa,on  of  Flp-­‐FRT  for  Gene  Knockouts  in  Bacteria  

In  E.  coli  •  λ-­‐Red  recombinase  replaces  KO  

target  with  marker/FRT  sequence  (35-­‐50  bp  homology  sequences)  

•  Flp  gene  (under  heat-­‐inducible  promoter)  is  transformed  on  a  heat-­‐curable  plasmid  

In  Cyanobacterium  •  Na?ve  recombina?on  

mechanisms  replace  KO  target  with  marker/FRT  sequence  (1  kb  homologies)  

•  Flp  gene  (under  Cu-­‐limi?ng  or  IPTG-­‐induced  promoter)  is  transformed  on  a  heat-­‐curable  plasmid  

Datsenko  and  Wanner.  PNAS.  2000.  Schweizer.  J.  Mol.  Microbio.  and  Biotech.  2003.  Tan  et  al.  Appl.  Microbiol.  Biotechnol.  2013.  

Page 42: Strains

•  Necessary  Components:  –  A  selectable  marker  gene  flanked  by  same-­‐direc?on  FRT  sites  

–  Source  of  Flp  recombinase  

Strategy  for  mutS  Knockout  in  Sinorhizobium  melilo1  1021  

In  Cyanobacterium  •  Na?ve  recombina?on  

mechanisms  replace  KO  target  with  marker/FRT  sequence  (1  kb  homologies)  

•  Flp  gene  (under  Cu-­‐limi?ng  or  IPTG-­‐induced  promoter)  is  transformed  on  a  heat-­‐curable  plasmid  

In  Rhizobium  •  Homologous  recombina?on  

mechanisms  integrate  plasmids  containing  marker/FRT  sequences  between  KO  target  

•  Flp  gene  (cons?tu?ve  expression)  is  transformed  on  a  plasmid  with  sucrose  sensi?vity  cassebe  

House  et  al.  App.  Env.  Microbiol.  2004.  Tan  et  al.  Appl.  Microbiol.  Biotechnol.  2013.  

Page 43: Strains

NonModel

Yale iGEM 2015

Page 44: Strains

NonModel

Yale iGEM 2015