stera fem - 豊橋技術科学大学€¦ · unit weight (kn/m3) normal concrete fc≦36 24...

78
STERA_FEM Technical Manual Basic Theory of Finite Element Method Version 2.0 Taiki SAITO Toyohashi University of Technology, Japan 1

Upload: others

Post on 10-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

STERA_FEM

Technical Manual

Basic Theory of Finite Element Method

Version 2.0

Taiki SAITO

Toyohashi University of Technology, Japan

1

Page 2: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

UPDATE HISTORY

2013/11/11 STERA_FEM Technical Manual Ver.1.1 is uploaded.

2013/12/11 STERA_FEM Technical Manual Ver.1.2 is uploaded.

2014/11/16 STERA_FEM Technical Manual Ver.1.3 is uploaded.

2015/06/11 STERA_FEM Technical Manual Ver.2.0 is uploaded.

2

Page 3: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

CHAPTER 1

ELASTIC THEORY

3

Page 4: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Index of Chapter 1 1. Introduction

1-1. Section

1-2. Stress and Strain

1-3. Beam Theory

1-4. Properties of Reinforced Concrete Structure

2. Simple Example for FEM Formulation

3. Triangular Element for Plane Analysis

4. Stiffness Matrix for Triangular Element

5. From Element Stiffness Matrix to Global Stiffness Matrix

6. Higher Order Element

7. Interpolation Function

8. Natural Coordinate

9. Isoparametric Element

10. Systematic Formulation of Interpolation Function

11. Stiffness Matrix for Isoparametric Element

12. Stress and Strain at Gaussian Points

13. Independent Freedom

14. Skyline Method

15. Incompatible Element

16. Hexahedron Element

17. Plain Stress and Plain Strain

4

Page 5: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

1. INTRODUCTION

1-1. Section

1-2. Stress and Strain

1) One-Dimensional Problem

bDA D

b b

Area Moment of Inertia

12

3bDI x

12

3DbI y

L δ

bD N N

A

N

L

E

E

Stress Strain Hooke’s Law

E: Young’s Modulus

L

EAN

Force – Deformation Relationship

5

Page 6: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Two-Dimensional Problem

xy

y

x

xy

y

x

G

EE

EE

100

011

011

or

xy

y

x

xy

y

xE

2

100

01

01

1 2

E

E

xy

xx

: Poisson Ratio

xx x x

y

y

EE

EE

xyy

yxx

xy

xyxy

xy

xy

Normal Stress and Strain

Shear Stress and Strain

xyxy G

EG)1(2

1

: Shear Modulus

6

Page 7: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

1-3. Beam Theory

P

P

Q

Q M

M

Q : Shear Force

M : Moment

P

M(x)

x

P

y

)(1

2

2

xMEIdx

yd

)()(

xQdx

xdM

Example )

213

12

2

2

2

2

6

12

1

)(),(1

cxcxEI

Py

cxEI

P

dx

dy

xEI

P

dx

yd

PxxMxMEIdx

yd

EI

PLc

EI

PLc

Therefore

yanddx

dyLxat

3

2

2

1 3

1,

2

,

:00,

L

EI

PLx

EI

PLx

EI

Py

323

3

1

2

1

6

1

7

Page 8: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

1.4 Properties of Reinforced Concrete Structure

Unit Weight

Concrete Type Nominal Strength

(N/mm2 = MPa) Unit Weight (kN/m3)

Normal Concrete Fc≦36 24

Material Parameters

Young’s Modulus

(N/mm2 = MPa) Poisson’s Ratio

Thermal

Expansion

Coefficient(1/℃)

Steel Bar 200 000 1/4 1 x 10-5

Concrete

22 000 ( Fc = 18 )

25 000 ( Fc = 24 )

28 000 ( Fc = 30 )

1/6 1 x 10-5

8

Page 9: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2. SIMPLE EXAMPLE FOR FEM FORMULATION

Step.1: Description of the Problem

The problem is to obtain the deformation of a simple supported beam under various load

conditions.

If you change the load condition, you will get the different deformation pattern. Actually,

there are infinite variations for the deformation pattern.

Step.2: Assumption of deformation function

We assume a particular function for the deformation pattern to fix the variation, such

as the following function:

)sin()( xL

axv

(2-1)

Step.3: Relation between nodal displacement and element deformation

From Equation (2-1), The displacement δ at the center node A is calculated as

aLv )5.0( (2-2)

The relation between nodal displacement and element deformation is then expressed as,

)sin()( xL

xv (2-3)

A

δ

x = 0 x = L x

v

etc.

9

Page 10: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Step.4: Constitutive equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,

by using the “Principle of Virtual Work Method.”

KP (2-4)

The process is summarized as follows:

Translate external forces into

equivalent nodal force, P.

Calculate nodal displacement,δ ,

from the constitutive equation,

PK 1

Obtain the element deformation

from the nodal displacement.

)sin()( xL

xv

The above example tells the essence of the finite element analysis, which is:

“Assume the deformation pattern to reduce the degree of freedom of the element, then,

obtain the deformation from the limited number of nodal displacements.”

v

δ

P

P

A

δ

P

10

Page 11: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

3. TRIANGULAR ELEMENT FOR PLANE ANALYSIS

Step.1: Description of the Problem

The problem is to obtain the deformation of a simple triangular element.

There are infinite variations for the deformation patterns.

Step.2: Assumption of deformation function

To fix the variation for the deformation patterns, we assume a linear function for the

deformation pattern.

yxyxv

yxyxu

654

321

),(

),(

(3-1)

In a matrix form,

6

5

4

3

2

1

1000

0001

yx

yx

v

u (3-2)

Step.3: Relation between nodal displacement and element deformation

The displacements of the element nodes are expressed as,

etc.

x

y

11

Page 12: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Node 1:

6

5

4

3

2

1

11

11

1

1

1000

0001

yx

yx

v

u (3-3)

Node 2:

6

5

4

3

2

1

22

22

2

2

1000

0001

yx

yx

v

u (3-4)

Node 3:

6

5

4

3

2

1

33

33

3

3

1000

0001

yx

yx

v

u (3-5)

It is summarized as,

6

5

4

3

2

1

33

22

11

33

22

11

3

2

1

3

2

1

1000

1000

1000

0001

0001

0001

yx

yx

yx

yx

yx

yx

v

v

v

u

u

u

(3-6)

U = A α

xx1 x3 x2

y3

u1

v1 u2

v2 u3

v3

1

2

3

y

y2

y1

12

Page 13: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

We can obtain the coefficients 61 , from the nodal displacements as,

α = A-1 U (3-7)

Substituting Equation (3-7) into Equation (3-2), the relation between nodal

displacement and element deformation is,

3

2

1

3

2

1

1

1000

0001

v

v

v

u

u

u

Ayx

yx

v

u (3-8)

u(x,y) = H(x,y) U

Step.4: Constitutive equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,

by using the “Principle of Virtual Work Method.”

3

2

1

3

2

1

3

2

1

3

2

1

v

v

v

u

u

u

K

Q

Q

Q

P

P

P

(3-9)

F = K U

The process is summarized as follows:

(1) Translate external forces into equivalent nodal force,

F = {P1, P2, P3, Q1, Q2, Q3}T

(2) Calculate the nodal displacements from the constitutive equation,

U = K-1 F

(3) Obtain the element deformation from the nodal displacement.

u(x,y) = H(x,y)U

P1

Q1 P2

Q2 P3

Q3

1

2

3

13

Page 14: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

4. STIFFNESS MATRIX FOR TRIANGULAR ELEMENT

Stiffness matrix in Equation (3-9) can be obtained from the “Principle of Virtual Work

Method,” which is expressed in the following form:

V

TT FUdv (4-1)

where, is a virtual strain vector, is a stress vector, U is a virtual displacement

vector and F is a load vector, respectively.

In case of the plane problem, the strain vector is defined as,

x

v

y

uy

vx

u

xy

y

x

(4-2)

Substituting Equation (3-8) into Equation (4-2), the strain vector is calculated from the

nodal displacement vector as,

3

2

1

3

2

1

1

010100

100000

000010

v

v

v

u

u

u

A

x

v

y

uy

vx

u

xy

y

x

(4-3)

ε = B U

In the plane stress problem, the stress-strain relationship is expressed as,

xy

y

x

xy

y

xE

2

100

01

01

1 2 (4-4)

σ = D ε

14

Page 15: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Substituting Equation (4-3) into Equation (4-4),

σ= D B U (4-5)

From the Principle of Virtual Work Method,

FUUDBdvBUdvDBUUB T

V

TTT

V

(4-6)

Therefore, the constitutive equation is obtained as,

V

T DBdvBKKUF , (4-7)

15

Page 16: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

5. FROM ELEMENT STIFFNESS MATRIX TO GLOBAL STIFFNESS MATRIX

1) Force control

Element Stiffness Matrix:

Element (1) …

4

2

1

4

2

1

)1(66

)1(65

)1(64

)1(63

)1(62

)1(61

)1(56

)1(55

)1(54

)1(53

)1(52

)1(51

)1(46

)1(45

)1(44

)1(43

)1(42

)1(41

)1(36

)1(35

)1(34

)1(33

)1(32

)1(31

)1(26

)1(25

)1(24

)1(23

)1(22

)1(21

)1(16

)1(15

)1(14

)1(13

)1(12

)1(11

4

2

1

4

2

1

v

v

v

u

u

u

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

Q

Q

Q

P

P

P

(5-1)

Element (2) …

4

3

1

4

3

1

)2(66

)2(65

)2(64

)2(63

)2(62

)2(61

)2(56

)2(55

)2(54

)2(53

)2(52

)2(51

)2(46

)2(45

)2(44

)2(43

)2(42

)2(41

)2(36

)2(35

)2(34

)2(33

)2(32

)2(31

)2(26

)2(25

)2(24

)2(23

)2(22

)2(21

)2(16

)2(15

)2(14

)2(13

)2(12

)2(11

4

3

1

4

3

1

v

v

v

u

u

u

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

Q

Q

Q

P

P

P

(5-2)

Global Stiffness Matrix:

4

3

4

3

)2(66

)1(66

)2(65

)2(63

)1(63

)2(62

)2(56

)2(55

)2(53

)2(52

)2(36

)2(36

)2(35

)2(33

)1(33

)2(32

)2(26

)2(25

)2(23

)2(22

4

3

4

3

v

v

u

u

kkkkkk

kkkk

kkkkkk

kkkk

Q

Q

P

P

(5-3)

F = K U

① ③

② ④

P

(2)

(1)

4

3

4

3

4

3

2

1

4

3

2

1

v

v

u

u

ConditionBoundary

v

v

v

v

u

u

u

u

① fixed … u1=v1=0

② fixed … u2=v2=0

16

Page 17: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

In case of force control, set the load condition,

0

0

0

4

3

4

3

P

Q

Q

P

P

(5-4)

The displacement vector is then obtained by solving the constitutive equation,

0

0

0

1

4

3

4

3

PK

v

v

u

u

(5-5)

17

Page 18: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Displacement Control

Imposing the control displacement Dv 3 to the Global Stiffness Matrix:

4

4

3

)2(66

)1(66

)2(65

)2(63

)1(63

)2(62

)2(56

)2(55

)2(53

)2(52

)2(36

)2(36

)2(35

)2(33

)1(33

)2(32

)2(26

)2(25

)2(23

)2(22

4

3

4

3

v

D

u

u

kkkkkk

kkkk

kkkkkk

kkkk

Q

Q

P

P

(5-6)

Subtracting the force related to the control displacement from force vector, and other

external loads to be zero,

4

4

3

)2(66

)1(66

)2(63

)1(63

)2(62

)2(36

)2(36

)2(33

)1(33

)2(32

)2(26

)2(23

)2(22

)2(65

)2(35

)2(25

v

u

u

kkkkk

kkkkk

kkk

Dk

Dk

Dk

(5-7)

This process can be done before making the Global Stiffness Matrix. Imposing the

control displacement Dv 3 to the element stiffness matrix of Element (2),

4

1

4

3

1

)2(66

)2(65

)2(64

)2(63

)2(62

)2(61

)2(56

)2(55

)2(54

)2(53

)2(52

)2(51

)2(46

)2(45

)2(44

)2(43

)2(42

)2(41

)2(36

)2(35

)2(34

)2(33

)2(32

)2(31

)2(26

)2(25

)2(24

)2(23

)2(22

)2(21

)2(16

)2(15

)2(14

)2(13

)2(12

)2(11

4

3

1

4

3

1

v

D

v

u

u

u

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

Q

Q

Q

P

P

P

D

k

k

k

k

k

k

f

)2(65

)2(55

)2(45

)2(35

)2(25

)2(15

)2( (5-8)

The force vector )2(f will be summed together in the same manner of the element

stiffness matrix.

① ③

② ④

D

(2)

(1)

4

3

4

3

4

3

2

1

4

3

2

1

v

v

u

u

ConditionBoundary

v

v

v

v

u

u

u

u

③ fixed … u1=v1=0

④ fixed … u2=v2=0

18

Page 19: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

6. HIGHER ORDER ELEMENT

The linear triangular element assumes the

deformation pattern to be a linear function

between two nodes.

It requires a large number of elements at the

place where deformation changes largely.

To reduce the number of elements, we

introduce the higher order elements, such as

the following second order elements where

the deformation pattern is assumed to be the

second order function of coordinate.

21211

210987

265

24321

yxyxyxv

yxyxyxu

(6-1)

In a matrix form,

12

2

1

22

22

1000000

0000001

yxyxyx

yxyxyx

v

u (6-2)

In order to define the second order function, we need

an additional node in the middle of each side of the

triangle. At the result, the total number of nodes in

one element is 6.

Before deformation

After deformation

Before

After

Before

After

v3

2

6

3

4

5

1

u3 v2

u2

19

Page 20: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

The displacement of the element nodes are then expressed as,

12

8

7

6

2

1

2666

2666

2222

2222

2111

2111

2666

2666

2222

2222

2111

2111

6

2

1

6

2

1

1|

|0

1|

1|

|

|1

|

0|1

|1

yyxxyx

yyxxyx

yyxxyx

yyxxyx

yyxxyx

yyxxyx

v

v

v

u

u

u

(6-3)

u = A α

From Equations (6-1) and (6-2), we obtain

6

2

1

6

2

1

1

22

22

1000000

0000001

v

v

v

u

u

u

Ayxyxyx

yxyxyx

v

u

(6-4)

u(x,y) = H(x,y) U

As the same as the linear triangular element, the constitutive equation is obtained as

6

2

1

6

2

1

6

2

1

6

2

1

v

v

v

u

u

u

K

Q

Q

Q

P

P

P

(6-5)

20

Page 21: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

F = K U

The process is summarized as follows:

(1) Translate external forces into equivalent nodal force,

F = {P1, …, P6, Q1, …, Q6}T

(2) Calculate the nodal displacements from the constitutive equation,

U = K-1 F

(3) Obtain the element deformation from the nodal displacement.

u(x,y) = H(x,y)U

21

Page 22: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

7. INTERPOLATION FUNCTION

Suppose we have one dimensional element under loading. As discussed before, we

assume a linear function for the deformation pattern after loading,

xaaxu 10)(

or

1

01)(a

axxu (7-1)

The next step is to obtain the coefficients, a0, a1, from the nodal displacements. From

the relations:

1101 xaau

2102 xaau

or

1

0

2

1

2

1

1

1

a

a

x

x

u

u (7-2)

U = A α

The coefficients are obtained as, α = A-1 U. Then, the relation between the deformation

and the nodal displacements is,

2

111)(u

uAxxu (7-3)

Instead of the previous procedure, we introduce the interpolation functions to express

the deformation directly from the nodal displacements:

2211 )()()( uxhuxhxu (7-4)

The interpolation functions, h1 and h2, have the following characteristics:

1

11 ,0

,1)(

ux

uxxh ,

2

22 ,0

,1)(

ux

uxxh (7-5)

x1 x2 x

1 2 u1

u2

l

22

Page 23: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

From these characteristics, the functions are easily obtained as,

l

xxxh

2

1 )( , l

xxxh 1

2 )(

(7-6)

One of the advantages of using interpolation functions is to reduce the burden to

calculate the inverse matrix of A in Equation (7-3).

In the same manner, if we assume a second order function for the deformation pattern,

the deformation can be directly expressed using interpolation functions as follows:

332211 )()()()( uxhuxhuxhxu (7-7)

x1 x2 x

1 2 u1

u2

l

x1 x2 x

u1

x1 x2 x

u2

x1 x2 x

1 2 u1

u2

l

x1 x2 x

u1

x1 x2 x

u2

x1 x2 x

u3

h1(x)u1

h2(x)u2

3

h3(x)u3

h1(x)u1

h2(x)u2

Second order interpolation function First order interpolation function

23

Page 24: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

8. NATURAL COORDINATE

1) Natural coordinate

When we measure the coordinate of

the pencil, the result is different

depending on the scale we use. In

this example, the coordinate of the

head of the pencil is 5.0 in x-scale

and 9.5 in t-scale.

As long as we have one-to-one

relationship between two scales,

we can translate the value in one

scale to the value in another scale

anytime.

The total weight of the pencil will be calculated in x-axis as,

5

0

)( dxxwW (8-1)

To translate it into t-axis, we use the following relationships:

Global relationship:

)7(2 tx (8-2)

Local relationship:

dtdx 2 (8-3)

Substituting Equations (8-2) and (8-3) into (8-1), the total weight is expressed as,

5.9

5.7

)(2 dttxwW (8-4)

x

t = 7 + 0.5 x

t

x = 2 ( t – 7 )

1 2 3 4 5 60 x

8 9 107 t

6

w(x) : distribution of weight

x

x

w(x

x x+dx

dx

t 1

2

3

4

5

6 7 8 9 10

dt

2

x

0

24

Page 25: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Next we consider a more complicated scale to measure the total weight of the pencil.

The relationships between x-axis and t-axis are:

Global relationship: )(txx (8-5)

Local relationship: dtdt

tdxdx

)( (8-6)

Where dx(t)/dt represents the first derivative of x(x) by the variable t, which correspond

to the slope of x(t) at t. Substituting Equations (8-5) and (8-6) into (8-1), the total weight

will be expressed in t-axis as,

dtdt

tdxtxwW

)()( (8-7)

Setting α=-1, β=1,

dt

tdxtxwtfdttfW

)()()(,)(

1

1

(8-8)

Such coordinate is called “natural coordinate.”

1 2 3 4 5 60 x

βα t

w(x) : distribution of weight

x

x

w(x

x x+dx

dx

t 1

2

3

4

5

dt

0α β t

x = x(t)

x

25

Page 26: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Gaussian quadrature rule

If the integration range is [-1, 1], the integration can be evaluated approximately by

n-points Gaussian quadrature rule which is generally expressed in the following form:

)()()()(1

1

2211 nn tfwtfwtfwdttf

(8-9)

where, nwww ,,, 21 are the weighting coefficients. This formula requires a limited

number of function values, )(,),(),( 21 ntftftf , at the sampling points, nttt ,,, 21 , to

evaluate the integration.

For example, the 3 points Gaussian quadrature rule is defined as:

)()()(

)7746.0(5556.0)0(8889.0)7746.0(5556.0)(

332211

1

1

tfwtfwtfw

fffdttf

(8-10)

where, 5556.09/5,8889.09/8,5556.09/5 321 www

7746.05/3,0,7746.05/3 321 ttt

-1 -0.7746 0 +0.7746 +1

f(t)

f(-0.7746) f(0)

f(0.7746)

t

26

Page 27: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

9. ISOPARAMETRIC ELEMENT

We now introduce the natural coordinate for the example of one dimensional element.

If we assume the linear transfer function x(t) between x-axis and t-axis, x(t) will be

expressed as

2211 )()()( xthxthtx (9-1)

where

)1(2

1)(),1(

2

1)( 21 tthtth (9-2)

Actually, it satisfies the fact that

21 )1(,)1( xxxx (9-3)

The deformation of the element is also

expressed as,

2211 )()()( uthuthtu (9-4)

Therefore, the functions )(),( 21 thth are the

interpolation functions we introduced before.

The element where both the coordinate

transfer function x(t) and the deformation

function u(t) are expressed using the same

interpolation functions on the natural

coordinate is called “Isoparametric element.”

x1 x2 x

1 2 u1

u2

-1 +1 t -1 +1

t

x

x1

x2 x(t)

t

-1 +1

u1 u2

u1

u2

-1 +1

-1 +1

h1(t)u1

h2(t)u2

t

t

27

Page 28: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Advantages of using isplarametric elements are summarized below:

(1) The relation

n

iii uthtu

1

)()( does not require the calculation of inverse matrix.

(2) The relation

n

iii xthtx

1

)()( enables to use the numerical integration method.

(3) Both functions u(t) and x(t) are expressed using the same interpolation functions.

28

Page 29: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

10. SYSTEMATIC FORMULATION OF INTERPOLATION FUNCTION

(1) One dimensional element

2 Node

rh 12

11

1r 1r

1 rh 12

12

1r 1r

1

)1(2

1

)1(2

1

2

1

rh

rh

3 Node

)1(2

1

)1(2

1

2

1

rh

rh

)1(2

1

)1(2

1

2

2

r

r

23 1 rh

As presented here, if you increase a node to define the second order function for the

deformation, the interpolation function changes in the following manners:

- Modify the existing interpolation functions, h1 and h2,

- Define a new interpolation function, h3.

29

Page 30: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

(2) Two dimensional element

30

Page 31: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

11. STIFFNESS MATRIX FOR ISOPARAMETRIC ELEMENT

A two dimensional isoparametric element is adopted below.

The coordinate transfer function {x, y} is expressed using the interpolation functions as

4321

4

1

4321

4

1

)1)(1(4

1)1)(1(

4

1)1)(1(

4

1)1)(1(

4

1),(),(

)1)(1(4

1)1)(1(

4

1)1)(1(

4

1)1)(1(

4

1),(),(

ysrysrysrysrysrhsry

xsrxsrxsrxsrxsrhsrx

iii

iii

(11-1)

The deformation function {u, v} is also expressed using the same interpolation functions.

4321

4

1

4321

4

1

)1)(1(4

1)1)(1(

4

1)1)(1(

4

1)1)(1(

4

1),(),(

)1)(1(4

1)1)(1(

4

1)1)(1(

4

1)1)(1(

4

1),(),(

vsrvsrvsrvsrvsrhsrv

usrusrusrusrusrhsru

iii

iii

(11-2)

In a matrix form,

4

4

3

3

2

2

1

1

4321

4321

),(0),(0),(0),(0

0),(0),(0),(0),(

),(

),(

v

u

v

u

v

u

v

u

srhsrhsrhsrh

srhsrhsrhsrh

srv

sru

u(r, s) = H(r, s) U (11-3)

x, u

y, v

x4

y4

r

s Node 1

Node 2

Node 3 Node 4

31

Page 32: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

V

TT FUdv (11-4)

where, is a virtual strain vector, is a stress vector, U is a virtual displacement

vector and F is a load vector, respectively. In case of the plane problem, the strain

vector is defined as,

x

v

y

uy

vx

u

xy

y

x

(11-5)

Substituting Equation (11-2), the strain vector is calculated as,

4

4

3

3

2

2

1

1

44332211

4321

4321

4

1

4

1

4

1

4

1

0000

0000

v

u

v

u

v

u

v

u

x

h

y

h

x

h

y

h

x

h

y

h

x

h

y

hy

h

y

h

y

h

y

hx

h

x

h

x

h

x

h

vx

hu

y

h

vy

h

ux

h

x

v

y

uy

vx

u

ii

i

ii

i

ii

i

ii

i

xy

y

x

ε = B U (11-6)

In the plane stress problem, the stress-strain relationship is expressed as,

xy

y

x

xy

y

xE

2

100

01

01

1 (11-7)

σ = D ε

32

Page 33: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Substituting Equation (11-6) into Equation (11-7),

σ= D B U (11-8)

From the Principle of Virtual Work Method,

FUUDBdvBUdvDBUUB T

V

TTT

V

(11-9)

Therefore, the constitutive equation is obtained as,

V

T DBdvBKKUF , (11-10)

If we assume the constant thickness of the plate (= t), using the relation tdxdydv ,

),( yxV

T DBdxdyBtK (11-11)

The following relationship is also derived from Equation (11-9)

FUdvBUdvUB T

V

TTT

V

(11-12)

Therefore, the relationship between stress vector and nodal force is

V

T dvBF (11-13)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into

r-s coordinate to use the numerical integration method. Introducing the Jacobian

matrix,

MatrixJacobian

s

y

s

xr

y

r

x

J ;

(11-14)

the above integration is expressed in r-s coordinate as,

1

1

1

1 ),(

),(,,,,,, drds

sr

yxsrysrxDBsrysrxBtK T (11-15)

where

33

Page 34: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

s

y

s

xr

y

r

x

Jsr

yx

det),(

),( (11-16)

1) Evaluation of Jacobian Matrix

4

1

4

1

4

1

4

1

ii

i

ii

i

ii

i

ii

i

ys

hx

s

h

yr

hx

r

h

s

y

s

xr

y

r

x

J (11-17)

2) Evaluation of the matrix B

From Equation (11-6),

x

h

y

h

x

h

y

h

x

h

y

h

x

h

y

hy

h

y

h

y

h

y

hx

h

x

h

x

h

x

h

B

44332211

4321

4321

0000

0000

(11-18)

The derivatives y

h

y

h

x

h

x

h

4141 ,,,,, are calculated as,

y

s

s

h

y

r

r

h

y

h

y

s

s

h

y

r

r

h

y

hx

s

s

h

x

r

r

h

x

h

x

s

s

h

x

r

r

h

x

h

444111

444111

,,

,,,

In a matrix form,

s

h

s

h

s

h

s

hr

h

r

h

r

h

r

h

y

s

y

rx

s

x

r

y

h

y

h

y

h

y

hx

h

x

h

x

h

x

h

4321

4321

4321

4321

s

h

s

h

s

h

s

hr

h

r

h

r

h

r

h

J4321

4321

1 (11-19)

34

Page 35: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

3) Evaluation of partial derivatives of the interpolation functions

)1(4

1

)1(4

1

)1(4

1

)1(4

1

4

3

2

1

sr

h

sr

h

sr

h

sr

h

,

)1(4

1

)1(4

1

)1(4

1

)1(4

1

4

3

2

1

ss

h

rs

h

rs

h

rs

h

(11-20)

4) Numerical integration

Using the 3 points Gaussian quadrature rule, the stiffness matrix is calculated

numerically as follows:

3

1

3

1

1

1

1

1

1

1

1

1

),(

),(

),(

),(,,,,,,

i jjiji

T

srFwwt

drdssrFt

drdssr

yxsrysrxDBsrysrxBtK

(11-21)

where

),(

),(,,,,,,),(

sr

yxsrysrxDBsrysrxBsrF T

5556.09/5,8889.09/8,5556.09/5 321 www

7746.05/3,0,7746.05/3 332211 srsrsr

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

m

mKK (11-22)

where m denotes the m-th element.

35

Page 36: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

12. STRESS AND STRAIN AT GAUSSIAN POINTS

1) Stress and strain at Gaussian point

If you use the 3-points Gaussian Integration Method, there are nine Gaussian points

3,2,1,3,2,1, jisr ji in an element.

The stress and strain at the Gaussian point, ji sr , , is obtained from Equations (11-5)

and (11-7) as

UDBij

ijxy

y

x

ij

(12-1)

UBij

ijxy

y

x

ij

(12-2)

s = -1

s = +1

s = s2 = 0

r = -1

r = +1

×

×

×

r = r2 = 0

×

×

×

r = r3

×s = s3

s = s1

×

×

× : Gaussian points

x, u

y, v

x4

y4

r

s Node 1

Node 2

Node 3 Node 4 r = r1

36

Page 37: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Principal stress at Gaussian point

2

2

1 22 xyyxyx

(12-3)

2

2

2 22 xyyxyx

(12-4)

yx

xyp

2arctan

2

1 (12-5)

x

y

xy 12

x

y

xy

1

2

Note) Range of arctan is [-π/2, π/2], and 2θp is in this range Note) Range of arctan is [-π/2, π/2], and 2θp is in this range.

Note) Range of arctan is [-π/2, π/2], and 2θp is in this range.

37

Page 38: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2sin2

2cos22

2cos22

21

2121

2121

xy

y

x

(12-6)

x

y

xy

1

2

x

y

xy

1

2

Note) Range of arctan is [-π/2, π/2], and 2θp is not in this range.

So, the angle must be 2θp = π - |arctan|.

Note) Range of arctan is [-π/2, π/2], and 2θp is not in this range.

So, the angle must be 2θp = arctan - π.

2 1

y

x 2

221

xy

38

Page 39: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

3) Displacement at Gaussian point

After obtaining the nodal displacement, the displacement at the Gaussian point

ji sr , , is obtained from Equation (11-2) as

4

1

4

1

),(),(

),(),(

iijiiji

iijiiji

vsrhsrv

usrhsru

(12-7)

39

Page 40: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

13. INDEPENDENT FREEDOM 1) Freedom Vector

Exercise 1) Please obtain the freedom vector of the following structure.

21

3 4

X

Y

200 mm

P = 500 N

1000 mm

P

P

50 mm

E = 22000 N/mm/mm, = 0.1666

Initial Restrained freedom = 1 Numbering

1X 0 1 0

1Y 0 1 0

2X 0 0 1

{ F } = 2Y 0 0 2

3X 0 1 0

3Y 0 1 0

4X 0 0 3

4Y 0 0 4

21 3X

Y

① ②

54 6

40

Page 41: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Location Matrix

21

3 4

X

Y

200 mm

P = 500 N

1000 mm

P

P

50 mm

E = 22000 N/mm/mm, = 0.1666

1’X 1’ Y 2’ X 2’ Y 3’ X 3’ Y 4’ X 4’ Y

P1’ K11 K12 K13 K14 K15 K16 K17 K18 U1’

Q1’ K21 K22 K23 K24 K25 K26 K27 K28 V1’

P2’ K31 K32 K33 K34 K35 K36 K37 K38 U2’

Q2’ = K41 K42 K43 K44 K45 K46 K47 K48 V2’

P3’ K51 K52 K53 K54 K55 K56 K57 K58 U3’

Q3’ K61 K62 K63 K64 K65 K66 K67 K68 V3’

P4’ K71 K72 K73 K74 K75 K76 K77 K78 U4’

Q4’ K81 K82 K83 K84 K85 K86 K87 K88 V4’

①Element stiffness matrix

②Total stiffness matrix

U2 V2 U4 V4

P2 K33 K34 K35 K36 U2

Q2 = K43 K44 K45 K46 V2

P4 K53 K54 K55 K56 U4

Q4 K63 K64 K65 K66 V4

1’ 2’

3’4’

0

0

1

2

3

4

0

0

Location matrix

Element node number should be in anti-clockwise order.

41

Page 42: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Exercise 2) Please obtain the location matrix of the element ② of the following structure.

Freedom vector

1’ 2’

3’ 4’

21

3 4

1X 0

1Y 0

2X 1

{ F } = 2Y 2

3X 0

3Y 0

4X 3

4Y 4

Node number

1 > 1’

2 > 2’

3 > 4’

4 > 3’

1’X 0

1’Y 0

2’X 1

2’Y 2

3’X 3

3’Y 4

4’X 0

4’Y 0

Location matrix

21 3X

Y

① ②

54 6

42

Page 43: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Answers 1) and 2)

1) Freedom vector

2) Location matrix

21 3X

Y

4 6

5

2

1

3

4

Initial Restrained freedom = 1 Numbering

1X 0 1 0

1Y 0 1 0

2X 0 0 1

{ F } = 2Y 0 0 2

3X 0 1 0

3Y 0 1 0

4X 0 1 0

4Y 0 1 0

5X 0 0 3

5Y 0 0 4

6X 0 1 0

6Y 0 1 0

1’ 2’

3’ 4’

1’ 2’

3’ 4’

1’X 0

1’Y 0

2’X 1

2’Y 2

3’X 3

3’Y 4

4’X 0

4’Y 0

1’X 1

1’Y 2

2’X 0

2’Y 0

3’X 0

3’Y 0

4’X 3

4’Y 4

43

Page 44: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Element①

1 3X

Y

4 6

2

5

2 1

3

4

1’X 1’ Y 2’ X 2’ Y 3’ X 3’ Y 4’ X 4’ Y

P1’ K11 K12 K13 K14 K15 K16 K17 K18 U1’

Q1’ K21 K22 K23 K24 K25 K26 K27 K28 V1’

P2’ K31 K32 K33 K34 K35 K36 K37 K38 U2’

Q2’ = K41 K42 K43 K44 K45 K46 K47 K48 V2’

P3’ K51 K52 K53 K54 K55 K56 K57 K58 U3’

Q3’ K61 K62 K63 K64 K65 K66 K67 K68 V3’

P4’ K71 K72 K73 K74 K75 K76 K77 K78 U4’

Q4’ K81 K82 K83 K84 K85 K86 K87 K88 V4’

U2 V2 U5 V5

P2 K33 K34 K35 K36 U2

Q2 = K43 K44 K45 K46 V2

P5 K53 K54 K55 K56 U5

Q5 K63 K64 K65 K66 V5

0

0

1

2

3

4

0

0

Location matrix

44

Page 45: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Element②

Total stiffness matrix

1’X 1’ Y 2’ X 2’ Y 3’ X 3’ Y 4’ X 4’ Y

P1’ K11 K12 K13 K14 K15 K16 K17 K18 U1’

Q1’ K21 K22 K23 K24 K25 K26 K27 K28 V1’

P2’ K31 K32 K33 K34 K35 K36 K37 K38 U2’

Q2’ = K41 K42 K43 K44 K45 K46 K47 K48 V2’

P3’ K51 K52 K53 K54 K55 K56 K57 K58 U3’

Q3’ K61 K62 K63 K64 K65 K66 K67 K68 V3’

P4’ K71 K72 K73 K74 K75 K76 K77 K78 U4’

Q4’ K81 K82 K83 K84 K85 K86 K87 K88 V4’

U2 V2 U5 V5

P2 K11 K12 K17 K18 U2

Q2 = K21 K22 K27 K28 V2

P5 K71 K72 K77 K78 U5

Q5 K81 K82 K87 K88 V5

1

2

0

0

0

0

3

4

Location matrix

U2 V2 U5 V5

P2 K331+K112 K341+K122 K351+K172 K361+K182 U2

Q2 = K431+K212 K441+K222 K451+K272 K461+K282 V2

P5 K531+K712 K541+K721 K551+K771 K561+K781 U5

Q5 K631+K812 K641+K822 K651+K871 K661+K882 V5

45

Page 46: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

In case of displacement control Treating the control direction 3Y and 6Y as restrained freedom, the freedom vector will

be the same as the previous example.

2

0

0

0

0

0

1

0

0

0

0

0

6

6

5

5

4

4

3

3

2

2

1

1

,

0

0

4

3

0

0

0

0

2

1

0

0

1

1

0

0

1

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

6

6

5

5

4

4

3

3

2

2

1

1

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

P

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

FF

Element②

0

0

2

0

1

0

0

0

'4

'4

'3

'3

'2

'2

'1

'1

,

4

3

0

0

0

0

2

1

'4

'4

'3

'3

'2

'2

'1

'1

Y

X

Y

X

Y

X

Y

X

P

Y

X

Y

X

Y

X

Y

X

FF

21 3X

Y

① ②

54 6 D

D

Freedom vector Control vector

Location matrix Location of control

2(1’) 3(2’)

6(3’) 5(4’)

46

Page 47: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Element②

Total equilibrium equation is

1’X 1’ Y 2’ X 2’ Y 3’ X 3’ Y 4’ X 4’ Y

P1’ K11 K12 K13 K14 K15 K16 K17 K18 U1’

Q1’ K21 K22 K23 K24 K25 K26 K27 K28 V1’

P2’ K31 K32 K33 K34 K35 K36 K37 K38 U2’

Q2’ = K41 K42 K43 K44 K45 K46 K47 K48 V2’

P3’ K51 K52 K53 K54 K55 K56 K57 K58 U3’

Q3’ K61 K62 K63 K64 K65 K66 K67 K68 V3’

P4’ K71 K72 K73 K74 K75 K76 K77 K78 U4’

Q4’ K81 K82 K83 K84 K85 K86 K87 K88 V4’

U2 V2 U5 V5

P2 K11 K12 K17 K18 U2

Q2 = K21 K22 K27 K28 V2

P5 K71 K72 K77 K78 U5

Q5 K81 K82 K87 K88 V5

1 0

2 0

0 0

0 1

0 0

0 2

3 0

4 0

Location matrix

Location of control

2(1’) 3(2’)

5(4’) 6(3’) D

D

V3 V6

P2 K14 K16

Q2 = K24 K26 -1 D

P5 K74 K76 -1

Q5 K84 K86

U2 V2 U5 V5

-K14-K16 K331+K112 K341+K122 K351+K172 K361+K182 U2

-K24-K26 D = K431+K212 K441+K222 K451+K272 K461+K282 V2

-K74-K76 K531+K712 K541+K721 K551+K771 K561+K781 U5

-K84-K86 K631+K812 K641+K822 K651+K871 K661+K882 V5

47

Page 48: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

14. SKYLINE METHOD

Usually, the total stiffness matrix [ K ] is symmetric and sparse as shown below.

Therefore, to save memory size and to reduce calculation time for linear equation solver,

the elements in the upper triangular part of the matrix under the Skyline (thick line)

are stored in an one-dimension vector.

1 K11

2 K22

3 K21

4 K33

5 K23

6 K44

7 K43

8 0

9 K14

10 K55

11 K45

12 K35

13 K25

14 K66

15 K56

16 K77

17 K67

18 K57

19 K47

20 K37

21 K27

22 K17

23 K88

24 K78

25 K68

26 K58

27

0 1 1 3 3 1 6 3

Skyline height

1 2 4 6 10 14 16 23 27

Diagonal element order

Total stiffness matrix [ K ] Stiffness vector Skyline

6

Band width ( = the maximum skyline height)

48

Page 49: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Exercise 3) Using the same structure in Exercise 1), please compare

1) skyline height, 2) diagonal element order and 3) band width

between the following two cases with different node order.

Case 1

Case 2

2 1 4X

Y

① ② ③ ④

3 5

7 6 98 10

3 1 7X

Y

① ② ③ ④

5 9

4 2 86 10

49

Page 50: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

15. INCOMPATIBLE ELEMENT

In an ideal situation, a beam under a pure bending moment experiences a curved shape

change. The angle between the curved horizontal dotted line and the straight vertical

line remains at 90 degree after bending. Therefore, no shear strain occurs inside a

material.

To model the ideal shape change, an element should have the ability to assume the

curved shape. The second order element with eight nodes enables to represent the

curved shape. On the contrary, the first order element is not able to bend to curves and

all dotted lines remain straight and the angle is no longer at 90 degree. To cause the

angle to change under pure moment, an incorrect artificial shear strain and stress have

been introduced. Therefore, the strain energy of the element is larger than ideal

situation. As we demonstrated in the principle of virtual work method, overestimate of

strain energy causes overestimate of stiffness matrix. This is the reason that the first

order element with four nodes becomes overly stiff under the bending moment. This

problem is called shear locking.

no shear strain

no shear strain

shear strain

(a) Second order element (b) First order element

50

Page 51: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

To solve the problem in the first order element, we introduce the new displacement

shape functions to add curved displacement modes.

42

32

4

1

22

12

4

1

11),(),(

11),(),(

srvsrhsrv

srusrhsru

iii

iii

(15-1)

It can avoid over stiff in bending; however there might be incompatibility of deformation

at the boundary. Therefore, this element is called incompatible element.

Equation (15-1) can be written in a matrix form as,

u(r, s) = H(r, s) U + G(r, s) A (15-2)

where,

4321

4321

0000

0000

hhhh

hhhhH ,

21

21

00

00

gg

ggG ,

22

21 1,1 sgrg

44332211 vuvuvuvuU T , 4321 TA

21 sr

s

21 r

incompatible

51

Page 52: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

V

TT FUdv (15-3)

where, is a virtual strain vector, is a stress vector, U is a virtual displacement

vector and F is a load vector, respectively.

The strain vector is calculated from the nodal displacement vector as,

4

3

2

1

2121

21

21

4

4

3

3

2

2

1

1

44332211

4321

4321

4

14

23

12

21

14

1

4

14

23

1

4

12

21

1

00

00

0000

0000

x

g

x

g

y

g

y

gy

g

y

gx

g

x

g

v

u

v

u

v

u

v

u

x

h

y

h

x

h

y

h

x

h

y

h

x

h

y

hy

h

y

h

y

h

y

hx

h

x

h

x

h

x

h

x

g

x

gv

x

h

y

g

y

gu

y

hy

g

y

gv

y

hx

g

x

gu

x

h

x

v

y

uy

vx

u

ii

i

ii

i

ii

i

ii

i

xy

y

x

ε = B U + G A (15-4)

In the plane stress problem, the stress-strain relationship is expressed as,

xy

y

x

xy

y

xE

2

100

01

01

1 (15-5)

σ = D ε

Substituting Equation (15-4) into Equation (15-5),

σ= D ( B U + G A ) (15-6)

52

Page 53: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

From the Principle of Virtual Work Method,

FU

ADGdvGAUDBdvGAADGdvBUUDBdvBU

dvGABUDAGUB

T

V

TT

V

TT

V

TT

V

TT

T

V

(15-7)

It can be written in a Matrix form as;

0

FAU

A

U

DGdvGDBdvG

DGdvBDBdvB

AU TT

V

T

V

TV

T

V

T

TT

Therefore, the equilibrium equation is obtained as,

0

F

A

U

KK

KK

AAAU

UAUU (15-8)

where

V

TAA

V

TAU

V

TUA

V

TUU

DGdvGKDBdvGK

DGdvBKDBdvBK

,

,

From the second equation in (15-8), we can eliminate the incompatible displacement

modes as;

UKKA

AKUK

AUAA

AAAU

1

0

(15-9)

Then, the element stiffness matrix is given by:

AUAAUAUU KKKKK

KUF1

(15-10)

53

Page 54: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

1) Evaluation of Jacobian Matrix

4

1

4

1

4

1

4

1

ii

i

ii

i

ii

i

ii

i

ys

hx

s

h

yr

hx

r

h

s

y

s

xr

y

r

x

J (15-11)

2) Evaluation of the matrix G

From Equation (15-4),

x

g

x

g

y

g

y

gy

g

y

gx

g

x

g

G

2121

21

21

00

00

(15-12)

The derivatives y

g

y

g

x

g

x

g

2121 ,,, are calculated as,

y

s

s

g

y

r

r

g

y

g

y

s

s

g

y

r

r

g

y

gx

s

s

g

x

r

r

g

x

g

x

s

s

g

x

r

r

g

x

g

222111

222111

,

,,

In a matrix form,

s

g

s

gr

g

r

g

J

s

g

s

gr

g

r

g

y

s

y

rx

s

x

r

y

g

y

gx

g

x

g

21

21

1

21

21

21

21

(15-13)

3) Evaluation of partial derivatives of the interpolation functions

0

2

2

1

r

g

rr

g

,

ss

gs

g

2

0

2

1

(15-14)

54

Page 55: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

4) Numerical integration

Using the 3 points Gaussian quadrature rule, the stiffness matrices are calculated

numerically as follows:

3

1

3

1

),(i j

jiUUjiUU srFwwtK

3

1

3

1

),(i j

jiUAjiUA srFwwtK

3

1

3

1

),(i j

jiAUjiAU srFwwtK

3

1

3

1

),(i j

jiUAjiAA srFwwtK (15-15)

where

),(

),(,,,,,,),(

sr

yxsrysrxDBsrysrxBsrF T

UU

),(

),(,,,,,,),(

sr

yxsrysrxDGsrysrxBsrF T

UA

),(

),(,,,,,,),(

sr

yxsrysrxDBsrysrxGsrF T

AU

),(

),(,,,,,,),(

sr

yxsrysrxDGsrysrxGsrF T

AA

5556.09/5,8889.09/8,5556.09/5 321 www

7746.05/3,0,7746.05/3 332211 srsrsr

Then, the element stiffness matrix is calculated as,

AUAAUAUU KKKKK

KUF1

(15-16)

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

m

mKK (15-17)

where m denotes the m-th element.

55

Page 56: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

6) Strain and Stress at Gaussian point

Strain at Gaussian point is obtained from Equations (15-4) and (15-9) as:

UKGKBGABU AUAA )( 1 (15-8)

Stress at Gaussian point is obtained as:

UKDGKDBD AUAA )( 1 (15-9)

56

Page 57: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

16. HEXAHEDRON ELEMENT

A hexahedron element is extensively used in modeling three-dimensional solids. It has

eight corners, twelve edges, and six faces. By introducing natural coordinates tsr ,, ,

which vary from -1 to +1, it is possible to use the Gauss integration formulas.

1 (1,1,1)

t

r

18 (-1,1,0)

3 (-1,-1,1)

s

4 (1,-1,1)

6 (-1,1,-1)

5 (1,1,-1)

7 (-1,-1,-1)

8 (1,-1,-1)

t

r

s

9 (0,1,1)

10 (-1,0,1)

11 (0,-1,1)

12 (1,0,1)

13 (0,1,-1)14 (-1,0,-1)

16 (1,0,-1)

15 (0,-1,-1)

t

r

s

(b) Natural coordinates

17 (1,1,0)

2 (-1,1,1)

19 (-1,-1,0)

20 (1,-1,0)

57

Page 58: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

The corner numbering rule is described as follows to guarantee a positive Jacobian

determinant.

1) Chose starting corner (number 1) and select one face pertaining to that corner.

2) Number the other corners on the face in counterclockwise order (number 2, 3, 4).

3) Number the corners of the opposite face to be opposite 1,2,3,4 as 5,6,7,8.

4) Number the middle point on the edge following the number of corner.

The interpolation function is given by

22

22

22

222

11114

1

11114

1

11114

1

21118

1,,

tssrrt

srrtts

rttssr

ttssrrttssrrtsrtsrh

iii

iii

iii

iiiiiiiiii

(16-1)

where

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ri 1 -1 -1 1 1 -1 -1 1 0 -1 0 1 0 -1 0 1 1 -1 -1 1

si 1 1 -1 -1 1 1 -1 -1 1 0 -1 0 1 0 -1 0 1 1 -1 -1

ti 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 0 0 0 0

(16-2)

The partial derivative of the interpolation function is

tssrrttsrrstrssrt

ssrrttssrrrtsrt

tsrh

trrtssrrttsrttrs

ttrrttssrrstsrs

tsrh

tsstrsttsrrttssr

ttssttssrrrtsrr

tsrh

iiiiiiiiii

iiiiiiiiii

iiiiiiiii

iiiiiiiiii

iiiiiiiii

iiiiiiiiii

1112

1111

4

1111

4

1

11128

1,,

1114

1111

2

1111

4

1

11128

1,,

1114

1111

4

1111

2

1

11128

1,,

22222

222

22222

222

22222

222

(16-3)

58

Page 59: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

The coordinate transfer function {x, y, z} is expressed using the interpolation functions

20

1

20

1

20

1

),,(),,(

),,(),,(

),,(),,(

iii

iii

iii

ztsrhtsrz

ytsrhtsry

xtsrhtsrx

(16-4)

The deformation function {u, v, w} is expressed using the same interpolation functions.

20

1

20

1

20

1

),,(),,(

),,(),,(

),,(),,(

iii

iii

iii

wtsrhtsrw

vtsrhtsrv

utsrhtsru

(16-5)

In a matrix form,

20

20

20

1

1

1

201

201

201

0000

0000

0000

w

v

u

w

v

u

hh

hh

hh

w

v

u

u(r, s,t) = H(r, s,t) U (16-6)

In case of the plane problem, the strain vector is defined as,

20

20

20

1

1

1

202011

202011

202011

201

201

201

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

00

00

00

0000

0000

0000

w

v

u

w

v

u

x

h

z

h

x

h

z

hy

h

z

h

y

h

z

hx

h

y

h

x

h

y

hz

h

z

hy

h

y

hx

h

x

h

uz

hw

x

h

wy

hv

z

h

vx

hu

y

h

wz

h

vy

h

ux

h

z

u

x

wy

w

z

vx

v

y

uz

wy

vx

u

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

zx

yz

xy

z

y

x

ε = B U (16-7)

59

Page 60: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

The stress-strain relationship is expressed as,

EGGGG

EEEEEEEEE

zxzx

yzyz

xyxy

yxzz

zxyy

zyxx

)1(2

1,,,

,,,

(16-8)

In a matrix form,

zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

G

G

G

EEE

EEE

EEE

100000

010000

001000

0001

0001

0001

(16-9)

From the inverse matrix, the constitutive matrix is obtained as,

zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

G

2/2100000

02/210000

002/21000

0001

0001

0001

21

2

σ = D ε (16-10)

Substituting Equation (16-7) into Equation (16-10),

σ= D B U (16-11)

From the Principle of Virtual Work Method, the stiffness matrix is obtained as,

V

T DBdvBKKUF , (16-12)

Since this integration is defined in x-y-z coordinate, we must transfer the coordinate

into r-s-t coordinate to use the numerical integration method. Introducing the Jacobian

matrix,

60

Page 61: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

MatrixJacobian

t

z

t

y

t

xs

z

s

y

s

xr

z

r

y

r

x

J ;

(16-13)

The above integration is expressed in r-s coordinate as,

1

1

1

1

1

1 ),,(

),,(,,,, drdsdt

tsr

zyxtsrDBtsrBK T (16-14)

where

t

z

t

y

t

xs

z

s

y

s

xr

z

r

y

r

x

Jtsr

zyx

det),,(

),,( (16-15)

1) Evaluation of Jacobian Matrix

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

zt

hy

t

hx

t

h

zs

hy

s

hx

s

h

zr

hy

r

hx

r

h

t

z

t

y

t

xs

z

s

y

s

xr

z

r

y

r

x

J (16-16)

2) Evaluation of the matrix B

From Equation (16-7),

x

h

z

h

x

h

z

hy

h

z

h

y

h

z

hx

h

y

h

x

h

y

hz

h

z

hy

h

y

hx

h

x

h

B

202011

2012011

202011

201

201

201

00

00

00

0000

0000

0000

(16-17)

61

Page 62: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

The derivatives z

h

z

h

y

h

y

h

x

h

x

h

201201201 ,,,,,,,, are calculated as,

z

t

t

h

z

s

s

h

z

r

r

h

z

h

z

t

t

h

z

s

s

h

z

r

r

h

z

h

y

t

t

h

y

s

s

h

y

r

r

h

y

h

y

t

t

h

y

s

s

h

y

r

r

h

y

hx

t

t

h

x

s

s

h

x

r

r

h

x

h

x

t

t

h

x

s

s

h

x

r

r

h

x

h

202020201111

202020201111

202020201111

,,

,,,

,,,

(16-18)

In a matrix form,

t

h

t

hs

h

s

hr

h

r

h

J

t

h

t

hs

h

s

hr

h

r

h

z

t

z

s

z

ry

t

y

s

y

rx

t

x

s

x

r

z

h

z

hy

h

y

hx

h

x

h

201

201

201

1

201

201

201

201

201

201

(16-19)

3) Stress and strain at Gaussian point

If you use the 3-points Gaussian Integration Method, there are 27 Gaussian points

3,2,1,3,2,1,3,2,1,, kjitsr kji in an element. The stress and strain at the

Gaussian point kji tsr ,, is obtained from

UDBij

ijzx

yz

xy

z

y

x

ij

, UBij

ijzx

yz

xy

z

y

x

ij

(16-20)

4) Numerical integration

To reduce calculation time, the 2 points Gaussian quadrature rule is adopted to

calculate the stiffness matrix as follows:

62

Page 63: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

),,(

),,(

),,(

),,(,,,,

i j kkjikji

T

tsrFwww

drdsdttsrF

drdsdttsr

zyxtsrDBtsrBK

(16-21)

where

),,(

),,(,,,,),,(

tsr

zyxtsrDBtsrBtsrF T

0.121 ww

0.577353/1,0.577353/1 222111 tsrtsr

5) Assemble of finite element

To total stiffness matrix can be obtained to assemble the element stiffness matrix over

the areas of all finite elements.

m

mKK (16-22)

where m denotes the m-th element.

63

Page 64: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

17. PLAIN STRESS AND PLAIN STRAIN

1) Plain stress assumption

If a thin plate in the x-y coordinate is loaded by forces at the boundary and distributed

uniformly over the thickness, the stress components along z-axis, yzxzz ,, , are zero

on both faces of the plate. It can be assumed that they are also zero within the plate.

Then, from Equation (16-9), the stress-strain relationship is expressed as,

0

0

0

100000

010000

001000

0001

0001

0001

zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

G

G

G

EEE

EEE

EEE

(17-1)

Thus,

xy

y

x

xy

y

x

G

EE

EE

100

011

011

(17-2)

or

xy

y

x

xy

y

xE

2

100

01

01

1 2 (17-3)

x

z

y

Plain stress condition

64

Page 65: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Plain strain assumption

When the dimension of the body in z-direction is very large such as a retaining wall

with lateral pressure, it may be assumed that the displacement in the z-direction is

prevented.

Since the longitudinal displacement is zero, from Equation (16-10),

0

0

0

2100000

0210000

0021000

0001

0001

0001

21

2

zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

G

(17-4)

Thus,

xy

y

x

xy

y

xG

2/2100

01

01

21

2 (17-5)

or

xy

y

x

xy

y

x

G

200

01

01

2

1 (17-6)

Note that, from Equation (17-4), the normal stress along z-axis is not zero.

0z

which will be considered in case of nonlinear problem.

Plain strain condition

xz

y

65

Page 66: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

CHAPTER 2

DYNAMIC ANALYSIS

66

Page 67: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

Index of Chapter 2 1. Mass Matrix for Isoparametric Element

2. Eigen Value Problem

3. Classical Damping

4. Equation of Motion under Earthquake Ground Motion

67

Page 68: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

1. MASS MATRIX FOR ISOPARAMETRIC ELEMENT

1) Formulation

Under dynamic loading, the “Principle of Virtual Work Method in dynamic problem =

D’Alembert’s principle” is expressed in the following form:

0 WQ (1-1)

V

T dvQ (1-2)

V

T dvt

u

t

uFuW

2

2

(1-3)

where F: body force, ρ: density, μ: damping coefficient

Substitute following relationships into above equations:

u(r, s) = H(r, s) U

ε= B U

σ= D B U

UDBdvBUdvDBUUBQV

TTT

V

(1-4)

UHdvHUUHdvHUdvFHU

dvt

u

t

uFuW

V

TT

V

TT

V

TT

V

T

2

2

(1-5)

Therefore, from Equation (1-1),

V

TT

V

T

V

T

V

T dvFHUUCBdvBUHdvHUHdvH (1-5)

That is, the equilibrium equation is expressed as,

V

T

V

T

V

T

V

T dvFHRDBdvBKHdvHCHdvHM

RKUUCUM

,,,

(1-6)

68

Page 69: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Evaluation of the matrix H and HTH

For a two dimensional isoparametric element,

4321

4321

0000

0000

hhhh

hhhhH (1-7)

24

24

4323

4323

423222

423222

4131212

1

4131212

1

4321

4321

4

4

3

3

2

2

1

1

0.

0

00

00

000

000

0000

0000

0000

0

0

0

0

0

0

0

0

h

hsym

hhh

hhh

hhhhh

hhhhh

hhhhhhh

hhhhhhh

hhhh

hhhh

h

h

h

h

h

h

h

h

HH T

(1-8)

For a three-dimensional hexahedron element,

201

201

201

0000

0000

0000

hh

hh

hh

H

(1-9)

69

Page 70: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

220

220

220

20222

20222

20222

201212

1

201212

1

201212

1

201

201

201

20

20

20

1

1

1

0

00.

00

000

0000

0000

00000

000000

0000

0000

0000

00

00

00

00

00

00

h

h

hsym

hhh

hhh

hhh

hhhhh

hhhhh

hhhhh

hh

hh

hh

h

h

h

h

h

h

HH T

(1-10)

3) Numerical integration

The integration for mass matrix can be expressed in r-s coordinate as,

1

1

1

1

),(

det drdsJHHt

HdxdyHt

HdvHM

T

yxV

T

V

T

(1-11)

The integration can be evaluated by the Gaussian Integration Formula as,

ijjijiT

ji

i jjiji

JsrHsrHsrG

srGwwtM

det,,,

,3

1

3

1

(1-12)

70

Page 71: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

4) Lumped mass model

The mass matrix obtained from the density of material is called the consistent mass

matrix using the same interpolation functions for stiffness matrix, mass matrix and

load vectors. Instead of performing the integrations, we may evaluate an approximate

mass matrix by lumping equal parts of the total element mass to the nodal points which

is called the lumped mass matrix. An important advantage of using a lumped mass

matrix is that the matrix is diagonal and the numerical operations for the solution of

the dynamic equations are reduced significantly.

Suppose that the consistent mass matrix is expressed as,

CnnCnCn

nCCC

nCCC

C

mmm

mmm

mmm

M

21

22221

11211

(1-13)

The lumped matrix can be evaluated from the consistent mass matrix from the

following formula:

Lnn

L

L

L

m

m

m

M

00

00

00

22

11

,

n

jCijLii mm

1

(1-14)

5) Gravity force

Gravity force is considered as a body force as

g

FdrdsJFHtFdxdyHtdvFHR T

yxV

T

V

T

0

,det1

1

1

1),(

(1-15)

where )/8.9( 2smg is the gravity acceleration.

ijjiT

ji

i jjiji

Jg

srHsrI

srIwwtR

det0

,,

,3

1

3

1

(1-16)

71

Page 72: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2. EIGEN VALUE PROBLEM

The free vibration equilibrium equation without damping is

0 KUUM (2-1)

where K is the stiffness matrix and M is the lumped mass matrix in the form,

nm

m

m

M

00

00

00

2

1

(2-2)

The solution can be postulated to be in the form

tieU (2-3)

where is a vector of order n, is a frequency of vibration of the vector .

Then, the generalized eigenproblem is,

MK 2 (2-4)

This eigenproblem yields the n eigensolutions nn ,,,,,, 22

221

21 where the

eigenvevtors are M-orthonormalized as,

ji

jimM

n

kkjkikj

Ti ;0

;1

1,, (2-5)

222

210 n (2-6)

The vector i is called the i-th mode shape vector, and i is the corresponding

frequency of vibration.

Defining a matrix whose columns are the eigenvectors and a diagonal matrix 2

which stores the eigenvalues on its diagonal as,

72

Page 73: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

n 21 ,

2

22

21

2

n

(2-7)

We introduce the following transformation on the displacement vector of the

equilibrium Equation (1-6),

)()( tXtU (2-8)

Then,

RXKXCXM (2-9)

Multiplying T ,

RXKXCXM TTTT (2-10)

Using 2, KIM TT ,

RXXCX TT 2 (2-11)

A damping matrix that is diagonalized by is called a classical damping matrix.

nn

T

h

h

h

CC

2

2

2

22

11

(2-12)

where ih is the modal damping ratio of the i-th mode.

Then, Equation (2-11) reduce to n- equations of the form

)()()(2)( 2 trtxtxhtx iiiii (2-13)

where )()( tRtr Tii

The initial conditions on X(t) are obtained from Equation (2-8) as,

0000 , tT

ttT

t UMXMUX (2-14)

73

Page 74: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

3. CLASSICAL DAMPING

Three procedures for constructing a classical damping matrix are described as follow:

1) Proportional damping

Consider first mass-proportional damping and stiffness-proportional damping,

MaC 0 and KaC 1 (3-1)

where the constants 10 , aa have units of sec-1 and sec, respectively.

For a system with mass-proportional damping, the generalized damping for the i-th

mode is,

ii mac 0 , iiii hmc 2/ (3-2)

Therefore,

iiha 20 , i

i

ah

1

20 (3-3)

Similarly, for a system with stiffness-proportional damping, the generalized damping

for the i-th mode is,

iii mac 21 , iiii hmc 2/ (3-4)

Therefore,

i

iha

2

1 , ii

ah

21 (3-5)

ih

KaC 1

ii

ah

21

MaC 0

ii

ah

1

20

74

Page 75: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Rayleigh damping

A Rayleigh damping matrix is proportional to the mass and stiffness matrices as,

KaMaC 10 (3-6)

The modal damping ratio for the i-th mode of such a system is,

ii

i

aah

2

1

210 (3-7)

The coefficients 10 , aa can be determined from specified damping ratios 21, hh modes,

respectively. Expressing Equation (3-3) for these two modes in matrix form leads to:

2

1

1

0

22

11

/1

/1

2

1

h

h

a

a

(3-8)

Solving the above system, we obtain the coefficients 10 , aa :

2

22

1

12211

22

21

1221210

2

2

hha

hha

(3-9)

ih

KaMaC 10

ii

i

aah

2

1

210

75

Page 76: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

3) Modal damping

It is an alternative procedure to determinate a classical damping matrix from modal

damping ratios. From the definition of a classical damping matrix,

nn

T

h

h

h

CC

2

2

2

22

11

11 CC T (3-10)

Since ,IMT

MT 1, MT1 (3-11)

Therefore,

MCMC T (3-12)

76

Page 77: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

4. EQUATION OF MOTION UNDER EARTHQUAKE GROUND MOTION

1) Equation of motion under earthquake ground motion

Earthquake ground motions are defined as two components acceleration; 0X and 0Y , in X and Y

directions. The inertia forces at node i are defined as,

0

0

0

0

0

0

10

01

Y

XMIUM

Y

XM

v

uM

YvM

XuM

i

i

ii

ii

(4-1)

where

10

01,

00

00

00

, 2

1

I

m

m

m

Mv

uU

n

i

i (4-2)

Equilibrium condition of the structure under earthquake ground motion is:

Finally the equation of motion is obtained as:

RY

XMIKUUCUM

0

0

(4-3)

Inertia force Damping force

Restoring force

0

0

Y

XMIUMKUUC

77

Page 78: STERA FEM - 豊橋技術科学大学€¦ · Unit Weight (kN/m3) Normal Concrete Fc≦36 24 Material Parameters Young’s Modulus (N/mm2 = MPa) Poisson’s Ratio Thermal Expansion

2) Numerical integration by Newmark-β method

The incremental formulation for the equation of motion of a structural system is,

iiii pdKvCaM (4-4)

where, M , C and K are the mass, damping and stiffness matrices. id , iv ,

ia and ip are the increments of the displacement, velocity, acceleration and external force

vectors, that is,

iii ddd 1 , iii vvv 1 ,

iii aaa 1 , iii ppp 1 (4-5)

Using the Newmark-β method,

tatav iii 2

1 (4-6)

22

2

1tatatvd iiii (4-7)

From Equation (4-7), we obtain

iiii avt

dt

a 2

1112

(4-8)

Substituting Equation (4-7) into Equation (4-6) gives

tavdt

v iiii

4

11

2

1

2

1 (4-9)

Equations (4-8) and (4-9) are substituted into Equation (4-4), and we obtain

tavCavt

Mp

KCt

Mt

d

iiiii

i

14

1

2

1

2

11

2

112

(4-10)

The equation can be rewritten as,

ii pdK ˆˆ (4-11)

where,

Mt

Ct

KK2

1

2

(4-12)

tavCav

tMpp iiiiii 1

4

1

2

1

2

11ˆ

(4-13)

78