step 2015 mark scheme

Upload: syed-ali-raza

Post on 13-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 STEP 2015 Mark Scheme

    1/71

    STEP Mark Scheme 2015

    Mathematics

    STEP 9465/9470/9475

    October 2015

  • 7/23/2019 STEP 2015 Mark Scheme

    2/71

    This mark scheme is published as an aid to teachers and students, to indicate therequirements of the examination. It shows the basis on which marks were awardedby the Examiners and shows the main valid approaches to each question. It isrecognised that there may be other approaches and if a different approach wastaken in the exam these were marked accordingly after discussion by the marking

    team. These adaptations are not recorded here.

    All Examiners are instructed that alternative correct answers and unexpectedapproaches in candidates scripts must be given marks that fairly reflect the relevantknowledge and skills demonstrated.

    Mark schemes should be read in conjunction with the published question papers andthe Report on the Examination.

    The Admissions Testing Service will not enter into any discussion or correspondencein connection with this mark scheme.

    UCLES 2015

    More information about STEP can be found at:www.stepmathematics.org.uk

  • 7/23/2019 STEP 2015 Mark Scheme

    3/71

    Contents

    STEP Mathematics (9465, 9470, 9475)

    Mark Scheme PageSTEP Mathematics I 4STEP Mathematics II 18STEP Mathematics III 45

  • 7/23/2019 STEP 2015 Mark Scheme

    4/71

    SI-2015/Q1

    (i) y= ex(2x 1)(x 2) B1 Correct factorisation of quadratic term (or formula, etc.)

    (21 , 0) & (2, 0) B1 Noted or shown on sketch

    y

    d

    d= ex(2x2x 3) M1 Derivative attempted and equated to zero for TPs

    = ex(2x 3)(x+ 1)

    ( 23 , e1.5) & (1, 9e 1) A1 A1Noted or shown on sketch

    (ify-coords. missing, allow one A1 for 2 correctx-coords.)

    G1 Generally correct shape

    G1 for (0, 2) noted or shown on sketch

    G1 for negative-x-axis asymptote

    (penalise curves that clearly turn up away from axis

    or that do not actually seem to approach it)

    Give M1for either 0, 1, 2 or 3 solutions ORclear indication they know these arise from where a

    horizontal line meets the curve (e.g. by a line on their diagram) implied by any correct answer(s)

    Then y = k has NO solutions for k < e1.5 A1

    ONE solution for k= e1.5 and k > 9e 1 A1 A1

    TWO solutions for e1.5

    < k0 and k= 9e 1

    A1 A1

    THREE solutions for 0< k < 9e 1 A1

    FTfrom theiry-coords.of the Max. &Min. points.

    (ii) G1 Any curve clearly symmetric iny-axis

    G1 Shape correct

    G1 A Max. TP at (0, 2) FT

    G1 Min. TPs at (23 , e1.5) FT

    G1 Zeroes at x=21 , 2 FT

  • 7/23/2019 STEP 2015 Mark Scheme

    5/71

    SI-2015/Q2

    (i) M1 Use of cos(A B) formula withA= 60o,B= 45o OR A= 45o,B= 30o

    or 2 cos215o 1 etc.

    A1 Exact trig.values used (visibly) to gain cos 15o=22

    13

    legitimately(Given Answer)

    M1 Similar method OR sin = 2cos1 (as 15ois acute, no requirement to justify +vesq.rt.)

    A1 sin 15o=22

    13(however legitimately obtained)

    (ii) M1 Use of cos(A + B) formula anddouble-angle formulae ORde MoivresThm. (etc.)

    A1 cos34cos3 3cos

    A1 Justifying/noting that x= cos is thus a root of 03cos34 3 xx

    M1 For serious attempt to factorise cxcx 34 33 as linear quadratic factorsor via Vietas Theorem(roots/coefficients)

    A1 34)( 22 ccxxcx M1 Solving 03444 22 ccxx FTtheir quadratic factor

    Remaining roots arex= 34 2221 ccc

    M1 Use of 21 cs to simplify sq.rt. term

    A1 x= sin3cos21

    (iii) M1 022

    23

    21 3 yy

    A1 02

    2

    2

    13

    2

    14

    3

    yy

    M1 cos3=2

    2= cos 45o

    A1 = 15o

    M1 cos2

    1y , sin3cos

    21 , sin3cos

    21 with their

    A1 y= 2 cos 15o=2

    13

    A1 oo 15cos15sin3 =2

    13

    A1 oo 15cos15sin3 = 2

  • 7/23/2019 STEP 2015 Mark Scheme

    6/71

    B1 For correct lengths in smaller

    M1 By similar s (ORtrig.ORcoord.geom.)

    A1)(

    )(

    21

    21

    ab

    ab

    b

    PQ

    PQ=ab

    abb

    )(

    M1 so a guard at a corner can see 2(b+PQ)

    A1 =ab

    b

    24(might be given as all but

    ab

    ba

    4or as a

    fraction of the perimeter)

    Lengths a21 and )(

    21 ab in smaller

    M1 By similar s (ORtrig.ORcoord.geom.)

    A1)(

    21

    21

    21

    ab

    a

    PQ

    b

    PQ=a

    abb

    2

    )(

    M1 so a guard at a midpoint can see b + 2PQ

    A1 =a

    b2

    (might be given as all buta

    bab )4( or as a

    fraction of the perimeter)

    Lengths a21 and )(

    21 ab in smaller

    M1 By similar s (ORtrig. OR coord.geom.)

    A1

    )(21

    21

    ab

    a

    b

    PQ

    PQ=

    ab

    ba

    M1 so a guard at a midpoint can see 4b 2PQ

    A1 =ab

    abb

    )32(2(might be given as all but

    ab

    ba

    2or as a

    fraction of the perimeter)

    SI-2015/Q3

    )(21 ab

    )(21 ab

    b a Q

    b21

    M

    P

    M Q

    B1 Recognition that b= 3a is the case when guard atM/ Cequally preferable

    (Pat corner in the twoMcases)

    M1A1 Relevant algebra for comparison of one case

    a

    b

    ab

    b 224

    baaba

    b

    3

    )(

    2

    A1 Correct conclusion: Guard stands at C for b< 3aand atMfor b> 3a

    M1A1 Relevant algebraab

    abb

    ab

    b

    )32(24 2 ba

    abab

    ba

    3

    ))((

    2

    A1 Correct conclusion: Guard stands at C for b< 3aand atMfor b> 3a

    C P

    Q P

    Overall, I am anticipating that most attempts will do the Corner scenario and o of the Middle scenarios. This

    will allow for a maximum of 12 = 5 (for the Corner work) 4(for the Middle work) 3(for the comparison).

    In this circumstance, it wont generally be suitable to give the B1for the b= 3aobservation.

  • 7/23/2019 STEP 2015 Mark Scheme

    7/71

    SI-2015/Q4

    M1 WhenPis at (x, 241x ) ... and makes an angle of with the positivex-axis

    A1 ... the lower end, Q, is at sin,cos 241 bxbx

    M1 Also, 241xy x

    y21

    d

    d = tan

    A1 x= 2 tan i.e.P=

    2 tan,tan2

    A1A1 so thatQ= sintan,costan2 2 bb obtained legitimately(Given Answer)

    M1A1 When x= 0, costan2 b

    cos

    tan2b

    M1A1 Substg. intoy-coordinate yA=

    22 tan

    cos

    sintan2tan

    M1A1 Eqn. of lineAPis 2tantan xy

    M1A1 Area between curve and line is tantan22

    41 xx dx

    B1 Correct limits (0, 2tan )

    A1A1 = 22213

    121 tantan xxx (Any 2 correct terms; all 3)

    A1A1 = 333

    3

    2 tan2tan2tan (Any 2 correct terms; all 3 FT)

    A1 = 332 tan obtained legitimately(Given Answer)

    ALTERNATIVE

    O B C

    A

    M1 A1 for obtaining the conversion factor bcos = 2 tan or tan2= sin2

    1 b

    M1 A1 for distances OB=BC(= cos21 b ) and so PC= OA= tan

    2

    M1 A1 giving OABCPB

    A1 Area is 2

    41x dx

    B1 Correct limits (0, 2 tan) used

    A1 A1 Correct integration; correct Given Answer

    ALTERNATIVE Translate whole thing up by tan2 and calculate

    cos

    0

    22

    41 tan

    b

    x dx

    P

  • 7/23/2019 STEP 2015 Mark Scheme

    8/71

    SI-2015/Q5

    (i) M1A1 f(x) =1

    3)1(

    x

    tx

    A1 =x

    x2

    M1 Differentiating by use of Quotient RuleORtaking logs.anddiffg. implicitly)

    B1 for 2ln.22d

    d xx

    x seen at any stage

    A1y

    d

    d=

    2

    22ln.2.

    x

    x xx

    A1 TP at

    2lne,

    2ln

    1

    (y-coordinate not required)

    B1 Jusitfying that the TP is a minimum

    G1 Generally correct -shape

    G1 Asymptotic toy-axis

    and TP in FTcorrect position

    (ii) M1 Let xtxu 21 22

    A1 2udu= 2xdt

    B1 t:(1, 1) u:( | 1 +x|, | 1 x| ) Correct limits seen at any stage

    M1A1 Full substn. attempt; correct g(x) =

    ud.11

    A1 g(x) = xx 111 n. may be done directly, but be strict on the limits

    org(x) =

    12

    112

    12

    xx

    x

    xx

    (Must have completely correct three intervals: x< 1, 11 x , x> 1)

    M1 Graph split into two or three regions

    A1 A1 Reciprocal graphs on LHS & RHS (must be asymptotic tox-axis)

    (Allow even if they approachy-axis also)

    A1 Horizontal line for middle segment

  • 7/23/2019 STEP 2015 Mark Scheme

    9/71

    SI-2015/Q6

    LetP, Q,Rand Sbe the midpoints of sides (as shown)

    Then P

    M1A1 p= ba21

    21 , q= ab

    21

    21 ,

    r= ba 21

    21 , s= ab

    21

    21 Q

    and

    M1A1 aa 21SRPQ S

    A1 bb 21PSQR

    A1 so thatPQSR is a //gm. R

    (opposite sides // and equal)

    M1 bbaa 21

    21QSPQQRPQ for use of the scalar product

    A1 = babababa 41 Do not accept ba etc.

    M1 Use of perpendicularity of OA, OB and OA, OB

    = baba 41

    M1 AOB= AOB = 180o ; and cos(180o ) = cos

    A1 = 0 since cosba ba and cosba ba

    and we are given that a = b and a= b

    A1 so that PQRS is a rectangle (adjacent sides perpendicular)

    B1 PQPQSRPQ 22 = aa 2)( 2241 aa

    B1 22 PSQR = bb 2)( 2241 bb

    M1 Since a = b, a= b and o90cosaaaa , o90cosbbbab

    A1 it follows thatPQRSis a square (adjacent sides equal)

    M1A1 AreaPQRS= o2241 90cos2)( aaaa

    M1 ... which is maximal when 190cos o

    A1 i.e. when o90

  • 7/23/2019 STEP 2015 Mark Scheme

    10/71

    SI-2015/Q7

    M1 f (x) = 6ax 18x2

    = 6x(a 3x)

    A1A1 = 0 for x= 0 and x=31 a

    A1A1 f(0) = 0 f(31 a) = 9

    1 a3

    A1 (Min. TP) (Max. TP) since f(x) is a negative cubic

    (f(0) = 0 and the TPs may be shown on a sketch award the marks here if necessary)

    M1 Evaluating at the endpoints

    A1A1 f(31 ) = 9

    1 (3a+ 2); f(1) = 3a 6

    M191 (3a+ 2) 9

    1 a3 a3 3a 2 0

    M1 (a+ 1)2(a 2) 0

    A1 and since a 0, a 2

    M1 91 a3 3a 6 a3 27a+ 54 0

    M1 (a 3)2(a+ 6) 0

    A1 which holds for all a 0

    M191 (3a+ 2) 3a 6 3a+ 2 27a 54

    8(3a 7) 0

    A1 a 37

    (which, actually, affects nothing, but working should appear)

    Thus

    B1B1B1 M(a) =

    363

    32

    20)23(3

    91

    91

    aa

    aa

    aa

    (Ignore non-unique allocation of endpoints)

    (Do not award marks for correct answers unsupported or from incorrect working)

  • 7/23/2019 STEP 2015 Mark Scheme

    11/71

    SI-2015/Q8

    (i) S = 1 + 2 + 3 + + (n 2) + (n 1) + n

    M1 S= n+ (n 1) + (n 2) + + 3 + 2 + 1 Method

    M1 2S= n(n+ 1) Adding

    A1 S=21 n(n+ 1) obtained legitimately(Given Answer)

    (Allow alternatives using induction or theMethod of Differences, for instance, but NOTby stating

    that it is an AP and just quoting a formula; ditto -number formula)

    (ii) (N m)k+ mk (kodd)

    M1A1 =kkkkkk

    mmNmk

    kNm

    kmN

    kN

    1221

    1...

    21

    E1 which is clearly divisible byN (since each term has a factor ofN)

    (Allow alternatives using induction, for instance)

    Let S= 1k+ 2k+ + nk an odd no. of terms

    M1 = 0k+ 1k+ 2k+ + nk an even no. of terms

    M1 = kkkkkk nnnn )()(...1)1(0)0(21

    21

    21

    21

    (no need to demonstrate final pairing but must explain fully the pairing up orthe single extra nkterm)

    E1 and, by (ii), each term is divisible by n.

    For S= 1k+ 2k+ + nk an even no. of terms

    M1 = 0k+ 1k+ 2k+ + nk an odd no. of terms

    M1 = kkkkkkk nnnnn21

    21

    21 )1()1(...1)1(0)0(

    (no need to demonstrate final pairing but must explain the pairing and note the separate, single term)

    and, by (ii), each paired term is divisible by n

    E1 and the final single term is divisible by21 n required result

    M1 By the above result for neven, so that (n+ 1) is oddA1 (n+ 1) |1k+ 2k+ + nk + (n+ 1)k

    E1 (n+ 1)|S+ (n+ 1)k (n+ 1) |S

    M1 By the above result for nodd, so that (n+ 1) is even

    A121 (n+ 1) |1k+ 2k+ + nk + (n+ 1)k

    E121 (n+ 1)| S+ (n+ 1)k

    21 (n+ 1) |S (as

    21 (n+ 1) is an integer)

    E1 Since hcf(n, n+ 1) = 1 hcf( 21 n, n+ 1) = 1 for neven

    E1 and hcf(n,21 (n+ 1)) = 1 for nodd

    So it follows that21 n(n+ 1) | S for all positive integers n

  • 7/23/2019 STEP 2015 Mark Scheme

    12/71

    SI/15/Q9

    M1 Time taken to land (at the level of the projection) (fromy = utsin21 gt2, y= 0, t 0)

    A1 isg

    ut

    sin2 (may be implicit)

    M1 Bullet fired at time t

    60 t lands at time

    A1

    t

    g

    utTL

    3sin

    2

    M1A1

    t

    g

    u

    t

    TL

    3cos

    21

    d

    d=

    tk

    k

    3cos

    1

    A1 = 0 when

    tk

    3cos

    M1A1 Horizontal range isg

    uR

    cossin2 2

    (fromy = utsin 21 gt

    2 with above time)

    A1 22

    12

    kkg

    uRL obtained legitimately(Given Answer)

    M1A1 03

    sin2

    d

    d 2

    2

    2

    t

    g

    u

    t

    TL

    maximum distance

    M1A1

    60 t in

    tk

    3cos

    2

    3

    2

    1 k

    M1 If k 0, rain hitting top of bus is the same, and rain hits back of bus

    as before, but with vcos u instead of vcos

    E1 When vcos u < 0, rain hitting top of bus is the same, and rain hits front of bus

    as before, but with u vcos instead of vcos

    A1 Together, A h |vcos u|+ avsin Fully justified (Given Answer)

    M1 Journey time u

    1so we need to minimise

    A1u

    uvh

    u

    avJ

    |cos|sin

    (Ignore additional constant-of-proportionality factors)

    M1 For vcos u > 0,

    if w vcos, we minimise hu

    hv

    u

    avJ

    cossin

    E1 and this decreases as uincreases

    E1 and this is done by choosing uas large as possible; i.e. u = w

    M1 For u vcos> 0,

    we minimise hu

    hv

    u

    avJ

    cossin

    E1 and this decreases as uincreases if asin> hcos

    E1 so we again choose uas large as possible; i.e. u = w

    [Note: minimisation may be justified by calculus in either case or both.]

    M1 If asin< hcos, thenJincreases with uwhen uexceeds vcos

    A1 so we choose u= vcos in this case

    M1A1 If asin = hcos then Jis independent of u, so we may as well take u = w

    M1 Replacing by 180o gives hu

    hv

    u

    avJ

    cossin

    A1 Which always decreases as uincreases, so take u = w again

  • 7/23/2019 STEP 2015 Mark Scheme

    14/71

    SI-2015/Q11

    (i) B1 O1: F=F1

    O2: F=F2 (Both, with reason)

    (ii) B1 Resg. ||plane (for C1): sin11 WRF

    B1 Resg.r. plane (for C1): cos11 WFR

    B1 Resg.||plane (for C2): sin22 WRF

    B1 Resg

    .r

    . plane (for C2): cos22 WFR Max 4 marks to be given for four independent statements (though only 3 are required).

    One or other of

    Resg.||plane (for system) : sin2121 WWFF

    Resg.r. plane (for system) : cos2121 WWRR

    may also appear instead of one or more of the above.

    (F1andF2may or may not appear in these statements asF, but should do so below)

    M1A1 Equating for sin:21 W

    RF

    W

    RF

    usingand

    M1A1 Re-arranging forFin terms ofR: RWW

    WWF

    21

    21

    M1 Use of the Friction Law, RF

    A1

    21

    21

    WW

    WW obtained legitimately(Given Answer)

    O1

    O2

  • 7/23/2019 STEP 2015 Mark Scheme

    15/71

    M1A1 (e.g.) FR

    RF

    1

    tan

    M1A1 Substg. forR =FR

    WW

    WWFF

    1

    21

    21

    using FWW

    WWR

    21

    21

    A1 =11

    21

    1

    2

    FR

    WW

    WF

    M1A1 Substg. forR1 (correct inequality)using Friction Law 111 RF 1

    11

    FR

    1

    1

    1

    21

    12

    FF

    WW

    WF

    M1 Tidying-up algebra =

    1

    1

    21

    1

    1

    2

    F

    WW

    WF

    A1 tan 211

    11

    1

    2

    WW

    W

    obtained legitimately(Given Answer)

  • 7/23/2019 STEP 2015 Mark Scheme

    16/71

    SI-2015/Q12

    (i) M1A1 P(exactly rout of nneed surgery) =

    rnr

    r

    n

    4

    3

    4

    1

    (A binomial prob. term; correct)

    (ii) M1 P(S= r) = !)(!

    !

    !

    8e

    8

    rnr

    n

    nrn

    n

    rnr

    4

    34

    1

    Attempt at sum of appropriate product terms

    B1B1A1 Limits All internal terms correct; allow nCrfor the A mark

    M1 =

    rnr

    rn

    n

    rnr

    8

    4

    3

    4

    1

    !)(

    8

    !

    e

    Factoring out these two terms

    M1 =n

    rn

    rn

    n

    rnr 4

    3

    !)(

    8

    !

    e 8

    Attempting to deal with the powers of 3 and 4

    A1 =

    rn

    rnn

    rnr

    8

    !)(

    32

    !

    e

    Correctly

    M1 =

    rn

    rnr

    rnr

    8

    !)(

    6

    !

    2eSplitting off the extra powers of 2 ready to

    M1 =

    0

    8

    !

    6

    !

    2e

    m

    mr

    mr adjust the lower limit (i.e. using m= n r)

    A1 = 68

    e!

    2e

    r

    r

    i.e.!

    2e 2

    r

    r

    A1 which is Poisson with mean 2 (Give B1for noting this without the working)

    (iii) M1 P(M = 8 |M + T= 12) Identifying correct conditional probability outcome

    A1A1A1 =

    !12

    4e

    !4

    2e

    !8

    2e

    124

    4282

    One A mark for each correct term (& no extras for 3 rdA mark)

    A1A1 =!4!84

    !12212

    12

    Powers of e cancelled; factorials in correct part of the fraction

    (unsimplified is okay at this stage)

    A1 =4096

    495

  • 7/23/2019 STEP 2015 Mark Scheme

    17/71

    SI-2015/Q13

    Reminder

    A: the 1st6 arises on the n

    ththrow

    B: at least one 5 arises before the 1st6

    C: at least one 4 arises before the 1st6

    D: exactly one 5 arises before the 1st6

    E: exactly one 4 arises before the 1st6

    (i) M1A1 P(A) = 611

    65

    n

    (ii) M1A1 By symmetry (either a 5 or a 6 arises before the other), P(B) =21

    (iii) M1 The first 4s, 5s, 6s can arise in the orders 456, 465, 546, 564, 645, 654

    A1 P(BC) = 31 (i.e. by symmetry but with three pairs)

    (iv) M1A1A1 P(D) = ...1

    3

    1

    2612

    64

    61

    61

    64

    61

    61

    61

    M1 for infinite series with 1stterm; A1 for 2

    ndterm; A1 for 3

    rdterm and following pattern

    M1 = ...321 232

    32

    361 For factorisation and an infinite series

    M1 =

    2

    3

    2

    36

    1

    1

    Use of the given series result

    A1 = 41

    (v) M1 P(DE) = P(D) + P(E) P(DE) Stated or used

    B1 P(E) = P(D) = answer to (iv) Stated or used anywhere

    M1A1A1 P(DE) = ...24

    1

    36

    1

    6

    1

    6

    22

    6

    3

    6

    1

    6

    1

    6

    2

    6

    3

    6

    1

    6

    1

    6

    2

    M1 for infinite series with 1stterm; A1 for 2ndterm; A1 for 3rdterm and following pattern

    M1 = ...631 221

    21

    1081 For factorisation and an infinite series

    M1 = 321

    1081 1

    Use of the given series result

    A1 P(DE) = 5423

    272

    21

  • 7/23/2019 STEP 2015 Mark Scheme

    18/71

    Question

    1

    (i) ln1 1

    11 B1

    For 0, 1 M1Therefore

    ln1 0for 0 A1If 0, ln1 0Therefore ln1 ispositiveforallpositive . B1Therefore

    ln 1 0forallpositive .

    So,

    1

    ln 1 1

    B1

    ln 1 1 ln

    1 ln 1 l n

    M1

    So,

    ln 1 1

    ln 1 l n

    ln 1 l n 1 M1

    Therefore,

    1

    ln 1 A1

    (ii)

    ln1 1 1

    1 B1

    For0 1, 1 M1

    Therefore

    ln1 0for0 1. A1If 0, ln1 0Therefore ln1 isnegativefor0 1. B1Therefore

    ln 1 0forall 1.

    So,

    1

    ln1 1

    B1

    ln1 1 ln 1 ln 1 2l n ln 1 M1M1A1So,

    ln1 1

    ln 2 ln ln 1 M1A1

    As ,ln ln 1 0 B1Therefore,

    1

    11

    1

    1 ln 2 A1

  • 7/23/2019 STEP 2015 Mark Scheme

    19/71

    Question

    1

    Notethatthestatementofthequestionrequirestheuseofaparticularmethodinbothparts.

    (i)

    B1 Correctdifferentiationoftheexpression.

    M1

    Considerationof

    the

    sign

    of

    the

    derivative

    for

    positive

    values

    of

    .A1 Deductionthatthederivativeispositiveforallpositivevaluesof.B1 Clearexplanationthat ln1 ispositiveforallpositive .

    Notethatanswerisgiveninthequestion.

    B1 Useof andsummation.M1 Manipulationoflogarithmicexpressiontoformdifference.

    M1 Attempttosimplifythesum(somepairscancelledoutwithinsum).

    A1 Clearexplanationofresult.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    (ii)

    B1 Correctdifferentiationoftheexpression.

    M1 Considerationofthesignofthederivativefor0 1.A1 Deductionthatthederivativeisnegativeforthisrangeofvalues.

    B1 Deductionthat ln1 isnegativeforthisrangeofvalues.B1 Useof andsummation.M1 Expressionwithinlogarithmasasinglefractionandnumeratorsimplified.

    M1 Logarithmsplittochangeatleastoneproducttoasumoflogarithmsoronequotientasa

    differenceoflogarithms.

    A1 Completesplitoflogarithmtorequiredform.

    M1 Useofdifferencestosimplifysum.

    A1 ln 2correct.B1 Correctlydealingwithlimitas .

    Notethatanswerswhichuseastheupperlimitonthesumfromthebeginningmusthave

    clear

    justification

    of

    the

    limit.

    Those

    beginning

    with

    as

    the

    upper

    limit

    must

    haveln ln 1correctinsimplifiedsum.

    A1 Inclusionof 1 tothesumtoreachthefinalanswer.Notethatanswerisgiveninthequestion.

  • 7/23/2019 STEP 2015 Mark Scheme

    20/71

    Question

    2

    3 B1

    sin 3 sin M1A1

    sin 3 sin3 B1

    sin 3sin sin cos2 cos sin2sin M1sin 1 2 s i n cos 2 sin cos sin M1M1 3 4 s i n A1 (or ) B1 2 3 4 s i n cos2 B1B1 2 3 4 s i n 21 2 s i n

    2 M1M1A1

    sin ,so B1M1A1

    Therefore 3 2 M1M1 13 3

    13

    So

    trisectstheangle

    A1

  • 7/23/2019 STEP 2015 Mark Scheme

    21/71

    Question

    2

    B1 Expressionfor(maybeimpliedbylaterworking).M1 Applicationofthesinerule.

    A1 Correctstatement.

    B1

    Does

    not

    need

    to

    be

    stated

    as

    long

    as

    implied

    in

    working.

    M1 Useofsin formula.M1 Useofdoubleangleformulaforsin.

    M1 Useofdoubleangleformulaforcos.

    A1 Simplificationofexpression.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Identificationofthisrelationshipbetweendistances.(just issufficient)B1 Correctexpressionsubstitutedforthelengthof.B1 Correctexpressionsubstitutedforthelengthof.M1 Useofdoubleangleformulaforcos.

    M1

    Simplificationof

    expression

    obtained.

    A1 Correctexpressionindependentof.B1 Identificationofarightangledtriangletocalculatesin.M1 Deductionthatoneofthelengthsinsineofthisangleisequalto.A1 Valueoftheangle(Degreesorradiansarebothacceptable).

    M1 Obtaining 2M1 Useof .A1 Expressiontoshowthat andconclusionstated.

  • 7/23/2019 STEP 2015 Mark Scheme

    22/71

    Question

    3

    isthenumberoftrianglesthatcanbemadeusingarodoflength8andtwoother,shorterrods.

    M1

    Ifthemiddlelengthrodhaslength7thentheotherrodcanbe1,2,3,4,5or6. M1

    Ifthemiddlelengthrodhaslength6thentheotherrodcanbe2,3,4or5.

    Ifthemiddlelengthrodhaslength5thentheotherrodcanbe3or4. M1 2 4 6. A1Assumethatthelongestofthethreerodshaslength7: M1

    Ifthemiddlelengthrodhaslength6thentheotherrodcanbe1,2,3,4or5. M1

    Ifthemiddlelengthrodhaslength5thentheotherrodcanbe2,3or4.

    Ifthemiddlelengthrodhaslength4thentheotherrodmustbe3. M1

    Therefore 1 3 5. A1 1 2 3 4 5 6. A1

    2 4 2 1 B1 1 2 3 2 1 B1 3.(Thepossibilitiesare1,2,3, 1,3,4and2,3,4.) B1Substituting 2intotheequationgives 22 14 2 1 3.Thereforetheformulaiscorrectinthecase 2. B1Assumethattheformulaiscorrectinthecase :

    M1

    14 1

    2 1

    M1

    4 3 1 12 6 4 1 1,whichisastatementoftheformulawhere 1. M1Therefore,byinduction, 14 1 A1 2 4 2 1 1. M1A1Therefore 14 1 1. 14 5.(Or 14 1) A1

  • 7/23/2019 STEP 2015 Mark Scheme

    23/71

    Question

    3

    M1 Appreciationofthemeaningof .M1 Identifythenumberofpossibilitiesforthelengthofthethirdrodinonecase.

    M1 Identifythesetofpossiblecasesandfindnumbersofpossibilitiesforeach.

    A1

    Clear

    explanation

    of

    the

    result.

    Notethatanswerisgiveninthequestion.

    M1 Anattempttoworkout .M1 Correctcalculationforanyonedefinedcase.

    M1 Identificationofacompletesetofcases.

    A1 Correctvaluefor .A1 Correctdeductionofexpressionfor .B1 Correctexpression.Nojustificationisneededforthismark.

    B1 Correctexpression.Nojustificationisneededforthismark.

    B1 Correctjustificationthat 3.Requiressightofpossibilitiesorotherjustification.B1 Evidenceofcheckingabasecase.(Acceptconfirmationthat 1 gives 0here.)M1

    Application

    of

    the

    previously

    deduced

    result.

    M1 Substitutionofformulafor andtheformulaforthesum.M1 Takingcommonfactortogiveasingleproduct.

    A1 Rearrangementtoshowthatitisastatementoftherequiredformulawhen 1andconclusionstated.

    M1 Useofresultfromstartofquestion.

    A1 Correctsummationof2 4 2 1.A1 Correctformulareached(anyequivalentexpressionisacceptable).

  • 7/23/2019 STEP 2015 Mark Scheme

    24/71

    Question

    4

    (i)

    B1

    B1

    (ii)

    ,sostationarypointswhen 1.

    B1

    B1

    M1

    A1

    A1

    B1

    B1

    B1B1

    (iii)

    B1

    B1

    B1

    B1

    B1

    B1

    B1

    B1

    B1

  • 7/23/2019 STEP 2015 Mark Scheme

    25/71

    Question4

    Penaliseadditionalsectionstographs(verticaltranslationsby)onlyonthefirstoccasionprovidingthatthecorrectsectionispresentinlaterparts.

    B1 Correctshape.

    B1 Asymptotes and shown.B1 Rotationalsymmetryaboutthepoint0,0.B1 Correctshape.

    M1 Differentiationtofindstationarypoints.

    A1 Correctstationarypoints 1,.(coordinates)A1 Correctcoordinates.

    B1

    Rotationalsymmetry

    about

    the

    point

    0, .B1 Correctshape.B1 Stationarypointshavesamecoordinatesaspreviousgraph.(Followthroughincorrect

    stationarypointsinpreviousgraphifconsistenthere).

    B1 Correctcoordinatesforstationarypoints 1, arctan B1 Correctasymptotes 1.B1 axisasanasymptote.B1 Middlesectioncorrectshape.

    B1 Outsidesectionscorrectshape.

    B1

    Sectionfor

    1 1correctshape.B1 1 .B1 1 .B1 Sectionfor 1 correctwithasymptote 2.B1 Sectionfor 1correctwithasymptote 0orarotationof 1sectionabout0, .

  • 7/23/2019 STEP 2015 Mark Scheme

    26/71

    Question

    5

    (i) tan tan arctan ,sotheformulaiscorrectfor 1. B1Assumethattan :

    arctan .

    M1

    tan

    M1

    tan ,whichsimplifiestotan .

    M1

    A1

    Hence,byinductiontan . A1Clearly, arctan . B1Suppose

    that

    it

    is

    not

    true

    that

    arctan forallvaluesof.Thenthereisasmallestpositivevalue,suchthat arctan .Since , arctan andtan ,but arctan . M1M1However, arctan ,sothisisnotpossible. A1Therefore arctan . A1

    (ii) tan2 . M1A1So,

    B1Whichsimplifiesto2 tan 1 4 tan 2 0 M1A1tan 22 tan 1 0 A1Sincemustbeacute,tancannotequal2. B1Therefore arctan .

    lim arctan1

    4. M1A1

  • 7/23/2019 STEP 2015 Mark Scheme

    27/71

    Question

    5

    B1 Confirmationthattheformulaiscorrectfor 1.M1 Expressionofintermsof.M1 Useoftan formula.M1

    Simplification

    of

    fraction.

    A1 Expressionoftoshowthatitmatchesresult.A1 Conclusionstated.

    B1 Confirmationfor 1.M1 Observationthat 0M1 Evidenceofunderstandingthatsuccessivevaluesofwiththesamevalueoftanmust

    differby.A1 Evidenceofunderstandingthat cannotbesufficientlylargefortobeofthe

    formarctanifis.A1 Clearjustification.

    M1 Identificationoftherelevantsidesofthetriangle(diagramissufficient).

    A1 Correctexpressionfortan2.B1 Useofdoubleangleformula.

    M1 Rearrangementtoremovefractions.

    A1 Correctquadraticreached.

    A1 Quadraticfactorised.

    B1 Irrelevantcaseeliminated(mustbejustified).

    M1 SumexpressedaslimitofA1 Correctvaluejustified.

    Notethatanswerisgiveninthequestion.

  • 7/23/2019 STEP 2015 Mark Scheme

    28/71

    Question

    6

    (i) sec 1cos B1

    sec

    1cos cos sin sin

    B1

    sec 2cos sin

    cos sin cos 2 sin cos sin 1 sin M1Therefore,sec M1A1Therefore, tan . M1A1

    (ii)Limits:

    0 0

    1 B1sin sin B1Therefore, sin sin 1 sin sinSo,2 sin sin M1 sin sin A1 ,andapplyingtheresultfrompart(i): tan tantan 2. B1 2 B1

    (iii) Consider sin .Makingthesubstitution : sin sin 1 M1A1So, sin sinTherefore, 2 3sin 3 sin B1 sec

    sec ta n sec

    M1

    2tan tan A1

    Andso, B1Therefore, 3 . B1

  • 7/23/2019 STEP 2015 Mark Scheme

    29/71

    Question

    6

    B1 Expressionofsec intermsofanyothertrigonometricfunctions.B1 Correctuseofaformulasuchasthatforcos toobtainexpressionwith

    trigonometricfunctionsof.

    M1

    Expanding

    the

    squared

    brackets.

    M1 Useofsin 2 sin cos andsin cos 1A1 Fullyjustifiedanswer.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    M1 Anymultipleoftan .A1 Correctanswer

    B1 Dealswithchangeoflimitscorrectly.AND

    Correctlydealswithchangetointegralwithrespectto.Note

    that

    both

    these

    steps

    need

    to

    be

    seen

    the

    correct

    result

    reached

    without

    evidence

    of

    these

    steps

    should

    not

    score

    this

    mark.

    B1

    Useof

    sin sin (maybejustseenwithinworking)M1 Groupingsimilarintegrals.

    A1 Fullyjustifiedanswer.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Evaluationoftheintegralfrom(i)withtheappropriatelimits.

    B1 Useofresultfrom(ii)toevaluaterequiredintegral.

    M1 Attempttomakethesubstitution.

    A1 Substitutionallcompletedcorrectly.

    B1 Rearrangetogivesomethingthatcanrepresenttherequiredintegralononeside.

    M1

    Use

    of

    sec 1 tan

    within

    integral.

    A1 Correctevaluationofthisintegral.

    B1 Correctuseofresultfrompart(i).

    B1 Correctapplicationofresultdeducedearliertoreachfinalanswer.

  • 7/23/2019 STEP 2015 Mark Scheme

    30/71

    Question

    7

    (i) Mostlikelyexamples:

    and M1

    M1

    A1

    If

    thentherecannotbetwopointsonthecirclethatareadistanceof

    2

    apartand

    any

    two

    diametrically

    opposite

    points

    on

    mustbeadistanceof2apart. B1If thenthecirclemustbethesameas,sothereisnotexactly2pointsofintersection.

    B1

    (ii) Thedistancesofthecentreoffromthecentresofandare and .

    M1A1

    B1

    Ifthecoordinateofthecentreofis,thenthecoordinateisgivenby and B1B1Therefore, M14 andso

    . M1A1

    Therefore,thecoordinateofthecentreofsatisfies

    and

    B1

    So2 2

    2 2 2 2

    So,

    Therefore, 0 B116 8 8 16 0 M1M116 16 8 8 164 M1164 4 M1164 24 2 164 4 A1

  • 7/23/2019 STEP 2015 Mark Scheme

    31/71

    Question

    7

    M1 Calculationthatthedistancebetweenthecentresofthecirclesmustbe .M1 Anexamplewhichshowsthatitispossibleforatleastonevalueof.A1 Exampleshowingthatitispossibleforall .B1

    Statement

    that

    the

    two

    intersection

    points

    must

    be

    adistance

    2apart.B1 Explanationthatinthecase itwouldhavetobethesamecircle.M1 Thelinejoiningthecentreof(or)andtheradiitoapointofintersectionformaright

    angledtriangleineachcase.(onecase)

    A1 Useofthistofindthedistancebetweencentresofcircles.

    B1 Applyingthesametotheothercircle.

    B1 Expressionrelatingthecoordinatesandradiiobtainedfromconsidering.B1 Expressionrelatingthecoordinatesandradiiobtainedfromconsidering.M1 Eliminationoffromtheequations.M1 Eitherexpansionofsquaredtermsorrearrangementtoapplydifferenceoftwosquares.

    A1

    Expressionfor

    reached.Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Substitutiontofindexpressionforcoordinate.Note

    that

    any

    expression

    for

    in

    terms

    of

    ,

    ,

    andissufficient,butitmustbeexpressed

    as

    ,

    not

    .B1 Observationthatmustbepositive.

    Alternativemarkschemeforthismayberequiredoncesomesolutionsseen.

    M1 Attempttorearrangetheinequalitytoget16ontheleft.M1 Reachapointsymmetricinand.M1 Reachacombinationofsquaredterms.

    M1

    Applydifference

    of

    two

    squares

    to

    simplify.

    A1 Reachtherequiredinequality.

    Notethatanswerisgiveninthequestion.

  • 7/23/2019 STEP 2015 Mark Scheme

    32/71

    Question

    8

    (i) Letbethevectorfromthecentreofto.Usingsimilartriangles,thevectorfromthecentreoftois . M1A1Therefore

    ,sincethesearebothexpressionsforthevector

    fromthecentreoftothecentreof. M1So A1Thepositionvectorofis M1A1

    (ii) Thepositionvectorsofandwillbe and . B1Therefore,

    M1A1 M1A1Similarly,

    M1A1M1A1Sincetheyaremultiplesofeachotherthepoints,andmustlieonthesamestraightline.

    B1

    (iii) lieshalfwaybetweenandif B1Therefore

    M1So, Whichsimplifiesto 2 M1A1

  • 7/23/2019 STEP 2015 Mark Scheme

    33/71

    Question

    8

    M1 Identificationofsimilartriangleswithinthediagram.

    A1 Relationshipbetweenthetwovectorsto.M1 Equatingtwoexpressionsforthevectorbetweenthecentresofthecircles.

    A1

    Correct

    simplified

    expression.

    M1 Calculationofvectorfromcentreofonecircleto.A1 Correctpositionvectorfor.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Identifyingthecorrectvectorsforthefocioftheotherpairsofcircles.

    M1 Expressionforvectorbetweenanytwoofthefoci.

    A1 Termsgroupedbyvector.

    M1 Simplificationofgroupedterms.

    A1 Extractionofcommonfactor.

    M1

    A1M1

    A1

    Expressionforavectorbetweenadifferentpairoffoci.

    Award

    marks

    as

    same

    scheme

    for

    previous

    example,

    but

    award

    all

    four

    marks

    for

    thecorrect

    answer

    written

    down

    as

    it

    can

    be

    obtained

    by

    rotating

    1,

    2

    and

    3

    in

    the

    previous

    answer.

    B1 Statementthattheylieonastraightline.

    B1 Statementthatthetwovectorsmustbeequal.

    M1 Reductiontostatementinvolvingonlyterms.M1 Attempttosimplifyexpressionobtained(ifnecessary).

    A1 Anysimplifiedform.

  • 7/23/2019 STEP 2015 Mark Scheme

    34/71

    Question

    9

    (i) Takingmomentsabout: 3 sin3 0 M1A1 5 sin3 0 M1A1

    B1

    5cos 30 sin cos sin 30 3cos 30 sin cos sin 30 M15 32 sin

    12 cos 3

    32 sin

    12 cos A1

    Therefore

    43 sin cos A1Either

    Usesin cos 1andjustifychoiceofpositivesquareroot.Or

    Drawrightangledtrianglesuchthattan andcalculatethelengthofthehypotenuse.

    M1

    sin A1(ii) Letbetheverticaldistanceofbelow.

    Letbetheverticaldistanceofbelow. sin M1M1A1

    sin M1A1Ifisthecentreofmassofthetriangle:

    M1A1

    Conservationof

    energy:

    4 8.2forcompleterevolutions. M1A1Therefore . A1

  • 7/23/2019 STEP 2015 Mark Scheme

    35/71

    Question

    9

    M1 Attempttofindthemomentofabout.A1 Correctexpressionformoment(sin3 0 maybereplacedbycos6 0 ).M1 Attempttofindthemomentofabout.A1

    Correct

    expression

    for

    moment

    (sin3 0

    may

    be

    replaced

    by

    cos6 0 ).

    B1 Correctstatementthatthesemustbeequal.

    M1 Useofsin orcos formulae.A1 Correctvaluesusedforsin30andcos30.A1 Correctlysimplified.

    M1 Useofacorrectmethodtofindthevalueofsin.A1 Fullyjustifiedsolution.Ifusingrightangledtrianglemethodthenchoiceofpositiverootnot

    needed,ifchoiceofpositiverootnotgivenwhenapplyingsin cos 1methodthenM1A0shouldbeawarded.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    M1

    Attemptto

    find

    .M1 Correctlydealwithsineorcosineterm.A1 Correctvalue.

    M1 Attempttofind.A1 Correctvalue.

    M1 Combinetwovaluestoobtaindistanceofcentreofmassfrom.A1 Correctvalue

    M1 Applyconservationofenergy.

    A1 Correctinequality.

    A1 Correctminimumvalue.

  • 7/23/2019 STEP 2015 Mark Scheme

    36/71

    Question

    9

    Alternative

    part

    (i)

    (i) Letbethecentreofmassofthetriangleandletthedistancebe.Takingmomentsabout:5cos 3 cos M1A1Therefore

    5 3 ,so

    .

    A1

    mustlieonand 30 . B1sin3 0 cos M1sin 30 cos cos 30 sin cos M1

    . A1Thereforecos 43sinandsocos 48sin M1sin ,andso(sinceisacute)sin . M1A1

    M1

    Takingmoments.

    A1 Correctequation.

    A1 Correctrelationshipbetweenand.B1 Identificationthatliesonandcalculationof.M1 Useofsineofidentifiedangle.

    M1 Useofsin formula.A1 Directrelationshipbetweensinandcos.M1 Rearrangementandsquaringbothsides.

    M1 Applyingsin cos 1.A1 Finalanswer(choiceofpositiverootmustbeexplained).

    Note

    that

    answer

    is

    given

    in

    the

    question.

  • 7/23/2019 STEP 2015 Mark Scheme

    37/71

    Question

    10

    Ifthelengthofstringfromtheholeatanymomentis,then . B1Thedistance,,fromthepointbeneaththeholesatisfies, . B1Therefore

    2. M1A1

    ,and cosec M1Therefore,thespeedoftheparticleiscosec. A1Acceleration:

    cosec cosec cot M1A1

    sin ,socos

    M1Therefore

    cot A1

    Theaccelerationis

    cot M1Since

    sec ,theaccelerationcanbewrittenas

    cot

    . M1A1

    Horizontally:

    sin cot ,so

    cot cosecM1M1

    A1

    Theparticlewillleavethefloorwhen cos M1A1

    cot andsotan

    M1A1

  • 7/23/2019 STEP 2015 Mark Scheme

    38/71

    Question

    10

    B1 Aninterpretationofintermsofothervariables(includinganynewlydefinedones).B1 Anyvalidrelationshipbetweenthevariables.

    M1 Differentiationtofindhorizontalvelocity.

    A1

    Correct

    differentiation.

    M1 Attempttoeliminateanyintroducedvariables.

    A1 Correctresult.

    Answers

    which

    make

    clear

    reference

    to

    the

    speed

    of

    the

    particle

    in

    the

    direction

    of

    the

    string

    being

    V.

    M1 Differentiationofspeedfoundinfirstpart.

    A1 Correctanswer.

    M1 Attempttodifferentiatetofindanexpressionfor .

    A1 Correctanswer.

    M1 Substitutiontofindexpressionforacceleration.

    M1

    Relationshipbetween

    required

    variables

    and

    any

    extra

    variables

    identified.

    A1 Substitutiontogiveanswerintermsofcorrectvariables.

    M1 Horizontalcomponentoftension.

    M1 ApplicationofNewtonssecondlaw.

    A1 Correctanswer.

    M1 Verticalcomponentoftensionfound.

    A1 Identificationthatparticleleavesgroundwhentensionisequaltothemass.

    M1 Substitutionoftheirvaluefor.A1

    Rearrangement

    to

    give

    required

    result.

    Note

    that

    answer

    is

    given

    in

    the

    question.

  • 7/23/2019 STEP 2015 Mark Scheme

    39/71

    Question

    11

    (i) cos , sin B1B1Differentiating: sin , cos M1Sinceismovingwithvelocityandisatthepoint, 0attime, :Velocity

    of

    is sin , cos . A1(ii) Initialmomentumwas(horizontally). M1

    Horizontalvelocityofwillbethesameasthatof,sohorizontallythetotalmomentumisgivenby 2 sin M1Therefore3 2sin . A1Initialenergywas

    M1

    Totalenergyis 2 sin cos M1A1

    Therefore

    2 2sin sin cos M1

    So 3 4sin 2 Substituting gives3 2sin 4sin 2sin 6 M16 3 4sin 4 sin 4sin 8 sin 6 4 sin 2So, . A1

    (iii) 0,sotherecanonlybeaninstantaneouschangeofdirectioninwhichvariesatacollision.Sincethefirstcollisionwillbewhen

    0,thesecond

    collisionmust

    be

    when

    .B1

    B1

    (iv) Sincehorizontalmomentummustbe, 0 2sin . B1TheKEofmustbe ,so B1 sin sin ,so or M1A1isonly0whentakesthesevaluesand ispositiveaswouldneedanonzerovaluetosatisfy3 2sin if isnegative.(Therelationshipisstilltruesincecollisionsareelastic).

    B1

  • 7/23/2019 STEP 2015 Mark Scheme

    40/71

    Question

    11

    B1 Horizontalcomponent.

    B1 Verticalcomponent.

    M1 Differentiation.

    A1

    Complete

    justification,

    including

    clear

    explanation

    that

    .

    Notethatanswerisgiveninthequestion.

    M1 Statementthatmomentumwillbeconserved.

    M1 Identificationthathorizontalmomentumofandwillbeequal.A1 Correctequationreached.

    Notethatanswerisgiveninthequestion.

    M1 Statementthatenergywillbeconserved.

    M1 Useofsymmetrytoobtainenergyof(acceptanswerswhichsimplydoubletheenergyofratherthanstatingtheverticalvelocityinoppositedirection).A1 Correctrelationship.

    M1

    Useof

    sin cos 1.M1 Substitutingtheotherrelationshiptoeliminate.A1 Correctequationreached.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Correctvalueof.B1 Answerjustified.

    B1 Firstequationidentified.

    B1 Secondequationidentified.

    M1 Solvingsimultaneouslytofind

    .

    A1

    Correctvalues

    for

    .B1 Justifiedanswerthatisnotalways0whentakesthesevalues.

  • 7/23/2019 STEP 2015 Mark Scheme

    41/71

    Question

    12

    (i) Ifatailoccursthenplayermustalwayswinbeforecanachievethesequencerequired.Thereforetheonlywayfortowinisifbothofthefirsttwotossesareheads.

    B1

    Afterthefirsttwotossesareheadsitdoesnotmatterifmoretossesresultin

    headsasthefirsttimetailsoccurswillwin. B1Theprobabilitythatwinsistherefore B1

    (ii) Asbefore,after,onlycanwin. B1Similarly,after,onlycanwin. B1Inallothercasesforthefirsttwotossesonlyandwillbeabletowin. M1Theprobabilitiesforandtowinmustbeequal. M1Theprobabilityofwinningis

    foralloftheplayers. A1

    (iii)

    If

    the

    first

    two

    tosses

    are

    then

    must

    win

    (as

    soon

    as

    a

    occurs),

    so

    the

    probabilityis1. B1After:mustwinifthenexttossisaasneedstwostowin,butwillwinthenexttimeanoccurs. M1Ifthenexttossis,thenthepositionisasifthefirsttwotosseshadbeen,andsotheprobabilitythatwinsfromthispointis. M1Therefore, 1 A1After:Ifthenexttossis

    then

    willwinwithprobability

    .

    Ifthe

    next

    toss

    is

    thenwillwinwithprobability. M1Therefore ,andso . A1After:Ifthenexttossisthenplayerwinsimmediately.Ifthenexttossisthenwillwinwithprobability. M1Therefore . A1Solvingthetwoequationsinand,gives , From

    the

    third

    equation

    M1

    A1

    Theprobabilitythatwinsis 1 M1A1

  • 7/23/2019 STEP 2015 Mark Scheme

    42/71

    Question

    12

    B1 Identifyingthatcannotwinonceatailhasbeentossed.B1 Identifyingthatmustwinoncethefirsttwotosseshavebeenheads.B1 Showingthecalculationtoreachtheanswer.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    B1 Recognisingthatthesituationisunchangedforplayer.B1 Recognisingthatthesamelogicappliestoplayer.M1 Allothercasesleadtowinsforoneoftheremainingplayers.

    M1 Recognisingthattheprobabilitiesmustbeequal.

    A1 Correctstatementoftheprobabilities.

    If

    no

    marks

    possible

    by

    this

    scheme

    award

    one

    mark

    for

    each

    probability

    correctly

    calculated

    with

    supporting

    working.

    All

    four

    calculated

    scores

    5

    marks.

    B1 Explanationthatprobabilitymustbe1.M1

    Explanation

    of

    the

    case

    that

    the

    next

    toss

    is

    .Thismarkandthenextcouldbeawardedforanappropriatetreediagram.M1 Explanationofthecasethatthenexttossis.A1 Justificationoftherelationshipbetweenand.

    Note

    that

    answer

    is

    given

    in

    the

    question.

    M1 Considerationofonecasefollowing.This

    mark

    could

    be

    awarded

    for

    an

    appropriate

    tree

    diagram.

    A1 Establishmentoftherelationship.

    M1 Considerationofonecasefollowing

    .

    This

    mark

    could

    be

    awarded

    for

    an

    appropriate

    tree

    diagram.

    A1 Establishmentoftherelationship.

    M1 Attempttosolvethesimultaneousequations.

    A1 Correctvaluesfor,and.M1 Attempttocombineprobabilitiestoobtainoverallprobabilityofwin.

    A1 Correctprobability.

  • 7/23/2019 STEP 2015 Mark Scheme

    43/71

    Question

    13

    (i) for for B1

    M1

    M1

    A1

    Usethesubstitution intheintegral:

    B1

    M1Therefore . A1

    ,sothestationarypointoccurswhen ln . M1A1If

    1

    thenchoose

    ln

    asitispositive.

    If 1thenchoose 0astheminimumoccursatanegativevalueof. B1(ii) 2

    M1

    A1

    Usethesubstitution intheintegral: 2

    B1

    Applyingintegrationdonebefore:

    2

    2

    Usingintegrationbyparts:

    M1A1and,applyingtheintegrationalreadycompleted,

    .Therefore

    . A1Var M1

    Var

    .

    Var

    2

    . A1

    Var

    2 1 M1

    For 0, Var 0,sothevariancedecreasesasincreases. A1

  • 7/23/2019 STEP 2015 Mark Scheme

    44/71

    Question

    13

    B1 Statementofrandomvariable.

    M1 Anycorrectterminexpectation(allowmultipliedbyanattemptattheprobabilityfornotneedinganyextracosts).

    M1 Correctintegralstated(allow

    missing).

    A1 Fullycorrectstatement.

    May

    be

    altered

    to

    accommodate

    other

    methods

    once

    solutions

    seen.

    B1 Substitutionperformedcorrectly.

    M1 Integrationbypartsusedtocalculateintegral.

    A1 Correctlyjustifiedsolution.

    Notethatanswerisgiveninthequestion.

    M1 Differentiationtofindminimumpoint.

    A1 Correctidentificationofpoint.

    B1 Bothcasesidentifiedwiththesolutionsstated.

    M1

    Attemptat

    (atleasttwotermscorrect).A1 Correctstatementof.B1 Substitutionperformedcorrectly.

    M1 Applyingintegrationbyparts.

    A1 Correctintegration.

    A1 Correctexpressionfor.M1 UseofVar A1 CorrectsimplifiedformforVarM1 DifferentiationofVar.A1 Correctinterpretation.

    Note

    that

    answer

    is

    given

    in

    the

    question.

  • 7/23/2019 STEP 2015 Mark Scheme

    45/71

    1. (i)

    11 11

    1 11

    1 B1

    1

    121 121

    integratingbyparts M1A1

    0 12 11 12 A1*

    (4) M1

    M1

    tan B1

    !! !! M1Thus !! !! A1* (5)(ii)

    .

    usingthesubstitution , andthenthesubstitution , 1 M1A1*2

    1

    So 1 M1A1*Using

    the

    substitution

    ,

    1 ,

  • 7/23/2019 STEP 2015 Mark Scheme

    46/71

    1 M1A1*(6)(iii)

    M1A1

    M1So M1 !! !! A1 (5)

  • 7/23/2019 STEP 2015 Mark Scheme

    47/71

    2. (i) True. B1

    1000 B1If

    1000,then

    1000 ,so

    1000 ,i.e.

    1000

    M1A1(4)

    (ii) False. B1

    E.G.Let 1 and 2 for odd,and 2 and 1 for even. B1Then forwhichfor , ,nor M1Soitisnotthecasethat ,butnorisitthecasethat A1(4)(iii)True. B1

    meansthatthereexistsapositiveinteger,say

    ,forwhich for

    ,

    .

    E1 meansthatthereexistsapositiveinteger,say ,forwhich for , .

    E1

    Thenif max, , B1for , ,andso A1(5)(iv) True. B1

    4 B1Assume 2 forsomevalue 4 . B1Then 1 1 1 2 2 2 2

    M1A1

    4 2 B1sobytheprincipleofmathematicalinduction,

    2 for

    4,andthus

    2

    A1(7)

  • 7/23/2019 STEP 2015 Mark Scheme

    48/71

    3. (i)

    Symmetryaboutinitialline G1

    Two

    branches G1

    Shapeandlabelling G1(3)

    If | sec | ,then sec or sec So sec or sec M1A1If sec 0 , sec 0 as and sec 0 as and arebothpositive,andthusinbothcases, 0 whichisnotpermitted. B1If sec 0, sec 0 and sec 0 giving 0so

    sec 0 asrequired. B1 (4)

    So sec ,thuspointssatisfying(*)lieonacertainconchoidofNicomedeswithAbeingthepole(origin), B1

    dbeingb, B1

    andLbeingtheline sec . B1(3)(ii)

    Symmetryaboutinitialline G1

    Twobranches

    G1

    Loop,shapeandlabelling G1

  • 7/23/2019 STEP 2015 Mark Scheme

    49/71

    If ,thenthecurvehastwobranches, sec with sec 0 and sec with sec 0 ,theendpointsoftheloopcorrespondingto sec . B1(4)Inthecase 1 and 2 , sec 2 so Areaofloop

    2 sec 2 M1A1 sec 4 sec 4 tan 4 ln|sec tan | 4 M1A1

    4 3 4 ln2 3

    3 4 l n 2 3

    M1A1(6)

  • 7/23/2019 STEP 2015 Mark Scheme

    50/71

    4. (i) iscontinuous.For , andfor , . B1Sothesketchofthisgraphmustbeoneofthefollowing:

    B1

    Hence,itmustintersectthe axisatleastonce,andsothereisatleastonerealrootof 0 B1(3)(ii)

    M1

    Thus A1 A1

    and,as 0, 0, 0addingthesethreeequationswehave,

    3 0 M1(Alternatively,

    3 6 )So

    3 0 M1

    Thus 6 3 2 A1*(6)

  • 7/23/2019 STEP 2015 Mark Scheme

    51/71

    (iii) Let cos sin for 1, 2,3 M1Then cos2 sin 2 and cos3 sin 3 bydeMoivre M1As

    sin 0 sin2 0 sin3 0

    0

    0 0

    andso , ,and arereal, M1andthereforesoare

    ,

    ,and

    A1

    Hence, as ,,and aretherootsof 0 with ,,and real,bypart(i),atleastoneof ,,and isreal. M1Soforatleastonevalueof ,cos sin isrealandthus, sin 0,andas , 0 asrequired. A1(6)If 0 then isreal. and aretherootsof 0whichis

    0 (say

    0)

    and andsothequadraticofwhich and aretherootshasrealcoefficients. Thus, . ( 0 because 0) B1If 4 0, M1Thus cos cos,andso ,as .Butsin sin andso . M1A1If

    4 0,then

    and

    arerealroots,so

    sin sin 0,andthus

    0,so

    . B1(5)

  • 7/23/2019 STEP 2015 Mark Scheme

    52/71

  • 7/23/2019 STEP 2015 Mark Scheme

    53/71

    5.(i)Havingassumedthat 2 isrational(step1), 2 ,where , , 0 B1Thusfromthedefinitionof(step2),as and2 ,so provingstep3.B1

    (2)

    If ,then isanintegerand2isaninteger. B1So 2 1 2 isaninteger, B1and2 1 2 2 2 whichisanintegerandso2 1 provingstep5. B1(3)1 2 2 andso M10 2 1 1,andthus0 2 1 A1andthusthiscontradictsstep4that

    isthesmallestpositiveintegerin

    as

    2 1 hasbeen

    showntobeasmallerpositiveintegerandisin. A1(3)(ii) If 2 isrational,then2 ,where , , 0

    So 2 ,thatis 2 ,whichcanbewritten 2 2 M1andhence2 2 provingthat 2 isrational. A1If

    2 isrational,then

    2 ,where

    , , 0 M1

    andso2 provingthat2 isrationalandthat 2 isrationalonlyif 2 isrational.A1

    (4)

    Assumethat2 isrational.Definetheset tobethesetofpositiveintegerswiththefollowingproperty: isinifandonlyif2 and 2 areintegers. B1The

    set

    containsatleastonepositiveintegerasif 2 ,where , , 0,then2 and 2 ,so . M1A1Define tobethesmallestpositiveintegerin . Then 2 and 2 areintegers. B1Consider 2 1. 2 1 2 whichisthedifferenceoftwointegersandsoisitselfaninteger. 2 1 2 2 2 whichisaninteger,and

    2 1 2 2 2 2 2 2 whichisaninteger.

  • 7/23/2019 STEP 2015 Mark Scheme

    54/71

    Thus 2 1 isin. M1A11 2 2 andso 0 2 1 1,andthus0 2 1 ,andthusthiscontradictsthat

    isthesmallestpositiveintegerin

    as

    2

    1hasbeenshowntobeasmallerpositive

    integerand

    is

    in

    . M1A1(8)

  • 7/23/2019 STEP 2015 Mark Scheme

    55/71

    6. (i) , , B1For , ,werequiretosolve , M1

    2 2 0 2 4 8 84 2 2 2 2

    M1A1

    Sofor

    , ,as

    mustbereal,

    mustbereal,and

    2 0

    i.e. 2 B1*(5)(ii) 2 soif , then 2 so 3 1 M1A1

    3 1M1A1

    Thusif

    , 1 1 M1A1Thus 1 1 0, M1 1 0 M1A1Thus 1 or Soas and 0 ,thevaluesof arereal. B1Therearethreedistinctvaluesof

    unless

    1 inwhichcase

    1 4 3,i.e.

    2

    M1A1(12)

    For , ,from(i)werequire whichitis, whichitis,and 2 inotherwords . M1So and neednotbereal. Acounterexamplewouldbe 1 B1forthen 1, ,so 1 , i.e. 2 2 0inwhichcasethe

    discriminant

    is

    0

    so

    .

    B1

    (3)

  • 7/23/2019 STEP 2015 Mark Scheme

    56/71

    7. M1 M1A1(3)(i)

    Suppose

    isapolynomialofdegree i.e. forsomeinteger. B1Then 1 1 whichisapolynomialofdegree . M1A1Suppose ,then 1 sotheresultistruefor 1, M1A1andwehaveshownthatifitistruefor ,itistruefor 1. Hencebyinduction,itistrueforanypositiveinteger . B1(6)

    (ii) Suppose 1 isdivisibleby1 i.e. 1 1 forsomeinteger,with 1. B1Then

    1

    1

    1

    1 1 1 1 whichisdivisibleby 1 . M1A11 1 1 soresultistruefor 1. M1A1Wehaveshownthatifitistruefor ,itistruefor 1. Hencebyinduction,itistrueforanypositiveinteger . B1(6)(iii)

    1 1 M1So1 1 1 M1A1Butby(ii), 1 isdivisibleby1 andso 1 1 ,andthusif 1, 1 0, andhence

    1 0

    M1A1*

    (5)

  • 7/23/2019 STEP 2015 Mark Scheme

    57/71

    8. (i) cos sin cos M1A1and sin cos sin M1A1Thus

    becomes sin cos sin cos M1Thatis sin cos cos sinsin cos sin cosas 0, 0Multiplyingoutandcollectingliketermsgives

    cos sin

    sin cos 0whichis 0 . M1A1*(7)So 0 M1andthus , A1

    A1

    G1

    (4)

    (oralternatively M1so ln|| A1andhence A1)

    (ii) becomes sin cos cos sin cos sinthatis

    sin cos cos cos sin sin cos sin sin cos

  • 7/23/2019 STEP 2015 Mark Scheme

    58/71

    Multiplyingoutandcollectingliketermsgives

    cos sin cos sin sin cos 0 M1whichis

    0 . A1

    M1So A1 ln A1So

    1 with 0

    11 thatis

    A1*

    G1

    G1

    G1

    (9)

  • 7/23/2019 STEP 2015 Mark Scheme

    59/71

    9. Iftheinitialpositionofis ,thenattime, ,soconservingenergy,12 12 2

    M1

    A1

    A1

    Thus, M1

    i.e. A1*

    (5)

    Thegreatestvalue,,attainedby,occurswhen 0. M1Thus So (negativerootdiscountedasallquantitiesarepositive)Thus

    2

    and

    2 M1

    A1

    (3)

    As

    differentiatingwithrespectto2 2 12 2 M1A1

    Thus

    A1

  • 7/23/2019 STEP 2015 Mark Scheme

    60/71

    Sowhen ,theaccelerationofis

    2

    2 M1

    A1

    (5)

    Thatis

    andthus

    1

    where istheperiod. M1A1So

    4 1

    4 11

    Let

    B1

    then

    andso

    2

  • 7/23/2019 STEP 2015 Mark Scheme

    61/71

    2 1 2 2 as Thus

    1 2M1A1

    andso

    4 1 1

    1 2 32 1 1

    as

    required.

    M1

    A1*

    (7)

  • 7/23/2019 STEP 2015 Mark Scheme

    62/71

    10. Thepositionvectoroftheupperparticleis sin cosB1B1

    sodifferentiatingwithrespecttotime,itsvelocityis

    cos sinE1*

    (3)

    Itsacceleration,bydifferentiatingwithrespecttotime,isthus

    cos sin sin cos

    M1

    A1

    A1

    sobyNewtonssecondlawresolvinghorizontallyandvertically

    sin cos cos sin sin cosM1A1

    Thatis

    cos sin sin cos sincos 01Theotherparticlesequationis

    cos sin sin cos sincos 01B1

    (6)

    Addingthesetwoequationswefind

    2 2 01i.e. 0 and M1A1*Thus cos sin sin cos sincosi.e.

    cos

    sin sin and

    sin

    cos cos

    Multiplyingthe

    second

    of

    these

    by

    sinandthefirstby cosandsubtracting,

  • 7/23/2019 STEP 2015 Mark Scheme

    63/71

    0 andso 0. M1A1*(4)Thus andasinitially 2 , M1A1Thereforethetimetorotateby

    isgivenby

    ,so

    A1

    As andinitially ,attime , ,andso asthecentreoftherodisinitially abovethetable. M1A1Hence,giventheconditionthattheparticleshitthetablesimultaneously,0 / 1/2 / .

    Hence

    0 2 2

    ,

    or

    2 2

    as

    required.

    M1

    A1*

    (7)

  • 7/23/2019 STEP 2015 Mark Scheme

    64/71

    11. (i) Supposethattheforceexertedbyontherodhascomponentsperpendiculartotherodand paralleltotherod. Thentakingmomentsfortherodaboutthehinge, 0, M1whichas 0 yields 0 andhencetheforceexertedontherodby isparalleltotherod.A1*

    (2)

    Resolvingperpendiculartotherodfor , sin sin cos M1A1Dividingby sin, sin cotThatis cot cos orinotherwords cot cos asrequired. M1A1*(4)Theforceexertedbythehingeontherodisalongtherodtowards , B1andifthatforceis ,thenresolvingverticallyfor , cos M1A1so

    sec

    .

    A1

    (4)

    (ii) Supposethattheforceexertedbyontherodhascomponentperpendiculartotherodtowardstheaxis,thattheforceexertedbyontherodhascomponentperpendiculartotherodtowardstheaxis, B1

    thenresolvingperpendiculartotherodfor , sin sin cosM1A1

    and

    similarly

    for

    ,

    sin sin cos

    M1A1

    Takingmomentsfortherodaboutthehinge, 0 M1A1Somultiplyingthefirstequationby ,thesecondby andaddingwehave sin sin sin cos sin cosDividingby

    sin,

    cot

    cos M1A1

    Thatis cot cos ,where A1(10)

  • 7/23/2019 STEP 2015 Mark Scheme

    65/71

    12. (i) Theprobabilitydistributionfunctionof is 1 2 3 4 5 6

    16

    16

    16

    16

    16

    16

    sotheprobabilitydistributionfunctionof is 0 1 2 3 4 5 16 16 16 16 16 16

    andthus

    1 . B1Theprobabilitydistributionfunctionof is 2 3 4 5 6 7 8 9 10 11 12 136 236 336 436 536 636 536 436 336 236 136

    M1

    sotheprobabilitydistributionfunctionof is 0 1 2 3 4 5 636 636 636 636 636 636

    A1

    whichisthesameasfor

    andhenceitsprobabilitygeneratingfunctionisalso

    . A1*

    Therefore,theprobabilitygeneratingfunctionof isalso B1andthustheprobabilitythat isdivisibleby6is 16 . B1(6)(ii) Theprobabilitydistributionfunctionof is

    0 1 2 3 4

    16

    26

    16

    16

    16

  • 7/23/2019 STEP 2015 Mark Scheme

    66/71

    andthus 1 2 M1A1 wouldbe exceptthatthepowersmustbemultipliedcongruenttomodulus5. 1 2 1

    B1

    Thus wouldbe except 1 1 M1A1and 1 1 1 1 1 1 1 5 A1So

    2

    2 5

    7

    M1A1*(8)

    16 16 7 16 7 7Thatis

    16 7 7 16 7 35 16 43Wenoticethatthecoefficientof insidethebracketin is 1 6 6 6Thiscanbeshownsimplybyinduction. Itistruefor

    1trivially.

    Consider 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 51 6 6 6

    5 1 6 6 6 6 1 1 6 6 6 6 1So

    1 6 6

    6

    51 6 6

    6

    1 6 6

    6

    asrequired. M1

    However,thiscoefficientisthesumofaGPandso where isanintegersuchthat 0 5 4. M1A1Soif isnotdivisibleby5,theprobabilitythat isdivisibleby5willbethecoefficientof whichinturnisthecoefficientof ,namely 1 asrequired. B1*If

    isdivisibleby5,theprobabilitythat

    isdivisibleby5willbe

    1

    as

  • 7/23/2019 STEP 2015 Mark Scheme

    67/71

    Thatis 1 M1A1(6)

  • 7/23/2019 STEP 2015 Mark Scheme

    68/71

    13. (i)

    G1

    if 0 1 B1

    G1

    and 1 2 if 1 2 B1 0if 0 and 1 if 2So

    0 0 0 11 2 1 21 2

    B1(5)

    Thus

    1

    1 12 1 12 2 1 12 10 12

    M1

    A1

    Soas

    ,

  • 7/23/2019 STEP 2015 Mark Scheme

    69/71

    0 121 2 1 12 1

    1 1

    asrequired. M1A1*(4)

    1 2 . 2 l n

    1 2 ln 12 2 1 2 ln 2M1

    A1

    (2)

    (ii)

    G1

    12 0 11 12 1B1

    (2)

    Thus

    1

    1 1

    1

    So

    1 12 1 1 12 112 1 1 0 12

    i.e.

    12 3

    12 112 1 0 12

  • 7/23/2019 STEP 2015 Mark Scheme

    70/71

    M1A1

    Soas ,

    12 12 112 1 0 12M1A1

    (4)

    because,bysymmetry, and 1 1 B1

    12 1 12

    12 1 12 1

    12 ln

    12 12 ln1

    12 ln 12

    12 12 ln 12 12 ln 1212asrequired. M1A1(3)

  • 7/23/2019 STEP 2015 Mark Scheme

    71/71