status&of&future&heavy&ion& experiments&

79
Status of future Heavy ion Experiments Anand Kumar Dubey , Variable Energy Cyclotron Centre (VECC), Kolkata XXI DAE Symposium in High Energy Physics, GuahaG 1 08/01/15 Outline: 1. IntroducGon 2. The “terra incognita” in the QCD phase diagram 3. Future experiments Status and Development in CBM expt. Status of CBM MUCH 4. Summary

Upload: others

Post on 02-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Status  of  future  Heavy  ion  Experiments  

Anand  Kumar  Dubey  ,  Variable  Energy  Cyclotron  Centre  (VECC),  

Kolkata  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   1  08/01/15  

Outline:  1.  IntroducGon  2.  The  “terra  incognita”  in  the  QCD  phase  diagram  3.  Future  experiments                  -­‐-­‐-­‐  Status  and  Development  in  CBM  expt.                  -­‐-­‐-­‐  Status  of  CBM-­‐  MUCH  4.  Summary  

Heavy  ion  Collisions  

•  By  colliding  two  heavy  nuclei  at  ultrarelaGvisGc  Energies,  the  aim  is  to  study  the  properGes  of  ma]er  at  such  extreme  condiGons  of  temperature  and  density.      

•  The  strongly  interacGng  ma]er  formed  is  called  Quark  Gluon  Plasma(QGP).  

•  Such  condiGons  of  high  temperature  and  density  prevailed  in  the  early  Universe,  a  few  micro  seconds  a^er  its  formaGon.  

•  mimicing  this  situaGon  in  the  laboratory.            The  main  goals  that  we  study  in  heavy  ion  physics.                    -­‐-­‐  to  understand  theory  of  strong  interacGon    -­‐-­‐  QCD.                    -­‐-­‐  to  study  the  parton-­‐hadron  transiGon  and  the  nature  of  confinement                  -­‐-­‐  to  understand  the  underlying  mechanism  of  chiral-­‐symmetry  breaking.         XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   2  08/01/15  

Ø  The  quest  for  QGP  took  off  in  1986  at  CERN  (SPS)  and  BNL  (AGS)  first  with  light  ions  (mass  =30)  and  later  in  1990  with  heavy  ions  (mass  =200)    Ø  ‘compelling  evidence’  of  the  existence  of  such  a  new  state  of  ma]er,  which  possessed  

many  CharacterisGc  feature  of  QGP  was  found  in  the  SPS  experiment  at  CERN  –  year  2000.  

 Ø  At  RHIC  (√sNN  =200  GeV)  several  of  these  signatures  were  seen  and  several  new  ones,  

like  jet  quenching,  Ncq  scaling,  etc.  confirming  the  existence  of  a  partonic  medium  was  observed  –  QGP  finally  seen.  It  was  concluded  that  the  newly  formed  ma]er  was  “Strongly  coupled”  or  sQGP  and  had  properGes  more  of  a  perfect  liquid  rather  than  that  of  a  gas.    

 Ø  At  LHC,  at  much  higher  beam  energies,  high  energy  densiGes  and  temperatures,  with  

the  plasma  having  greater  lifeGme  -­‐-­‐  an  opportunity  to  invesGgate  the  QGP  properGes  in  greater  details.  Planned  upgrades  in  these  experiments  focus  on  precision  measurements  in  future.  

 XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   3  08/01/15  

Exploring  the  QCD  Phase    Diagram      

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   4  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   5  08/01/15  

Tsung-Dao Lee (Nobel Prize 1957): „The challenge for the next century physics is: explain confinement and broken (chiral) symmetry“

Frank Wilczek (Nobel Prize 2004): „But perhaps the most interesting and surprising thing about QCD at high density is that, by thinking about it, one discovers a fruitful new perspective on the traditional problem of confinement and chiral-symmetry breaking”.

Steven Weinberg (Nobel Prize 1979): „Go for the messes – thats were the action is“ (One of his four golden rules for scientists)

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   6  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   7  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   8

"5·1011/s; 1.5-2 GeV/u; 238U28+

" factor 100-1000 increased intensity " 4x1013/s 90 GeV protons " 1010/s 238U 35 GeV/u (Ni 45 GeV/u)

"rare isotopes 1.5 - 2 GeV/u; "factor 10 000 increased intensity "antiprotons 3(0) - 30 GeV

FAIR: the international Facility for Antiproton and Ion Research

primary beams

secondary beams

" rapidly cycling superconducting magnets " high energy electron cooling " dynamical vacuum, beam losses

accelerator technical challenges

PANDA  

NuSTAR  

CBM/HADES  

APPA  

FAIR will provide intense beams of rare isotopes, relativistic heavy ions and antiprotons for a wide range of expts. in particle, nuclear and atomic physics

08/01/15  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   9  

The  CBM  Experiment@FAIR    

10  

Dileptons  at  FAIR  -­‐  the  aim  

no ρ,ω,φ → e+e- (µ+µ-) measurement between 2 and 40 AGeV no J/ψ → e+e- (µ+µ-) measurement below 158 AGeV

Study EM radiation (+ heavy flavor) in baryon dominated matter at moderate temperature as accessible by FAIR!

•  Photons: access to early

temperatures •  Low-mass vector mesons: in-

medium properties of ρ •  Intermediate range: acces to

fireball radiation •  J/ψ: charm as a probe for dense

baryonic matter

 So  far  :  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   11  

Randrup and Cleymans arXiv:1107.2624  

•  I.  Tserruya,  arXiv::0903.0415v3    •  Phase  diagram  of  strongly  interacGng  ma]er                arXiv:0801.4256v2,  P.  Braun-­‐Munziger  et.  al.    •  Ryugo  S.  Hayano,  Rev.Mod.Phys.82:2949,2010  

Particle multiplicity x branching ratio for min. bias Au+Au collisions at 25 A GeV (from HSD and thermal model)

SPS Pb+Pb 30 A GeV STAR Au+Au √sNN=7.7 GeV

Experimental challenges

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   12  08/01/15  

Dipole magnet

The Compressed Baryonic Matter Experiment

Ring Imaging Cherenkov Detector

Transition Radiation Detector

Resistive Plate Chambers (TOF) Electro-

magnetic Calorimeter (parking position)

Silicon Tracking Stations

Muon Detection System (parking position)

Projectile Spectator Detector Vertex

Detector

HADES  XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   13  08/01/15  

08/01/15   GEM  R&D  for  CBM  MUCH-­‐-­‐    IWAD,VECC,  Kolkata,  2014   14  

Constraints  and  Challenges  in  Detector  Design  for  CBM    

High  interac:on  rates  •  105  –  107  Au+Au  collisions/sec.    

Fast  and  radia:on  hard  detectors    

Free  streaming  read-­‐out    •  Gme-­‐stamped  detector  data  •  high  speed  data  acquisiGon    

On-­‐line  event  reconstruc:on    •  powerful  compuGng  farm    •  4-­‐dimensional  tracking    •  so^ware  triggers      

Challenges in Muon detection Main  issues:            

Ø       High  collision  rates  ~  10  MHz  Ø       The  first  plane(s)  have  a  high  density  of  tracks                granularity  ~  average  hit  rate  is  about  0.4  hit/cm2  Ø       Should  be  radiaGon  resistant  –                            high  neutron  flux  à  ~1013  n.eq./sq.cm/year  Ø         Large  area  detector  –  with  modular  arrangement  Ø         Data  to  be  readout  in  a  self  triggered  mode                    -­‐-­‐  a  must  for  all  CBM  detectors.                    -­‐-­‐  and  event  reconstructed  offline  by  grouping                          the  Gmestamps  of  the  detector  hits.    For  the  first  two  sta:ons  GEM  based  detectors  have  been  envisaged.                                

08/01/15   15  XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  

CBM Technical Developments Micro-­‐Vertex  Detector:  Frankfurt,  Strasbourg  

SC  Magnet:  JINR  Dubna   Silicon  Tracking  System:  Darmstadt,  Dubna,  Krakow,  Kiev,  Kharkov,  Moscow,  St.  Petersburg,  Tübingen  

RICH  Detector:  Darmstadt,  Giessen,  Pusan,    St.  Petersburg,  Wuppertal    

MRPC  ToF  Wall:  Beijing,  Bucharest,  Darmstadt,  Frankfurt,  Hefei,  Heidelberg,  Moscow,  Rossendorf,  Wuhan  

Muon  detector:      Kolkata  +  13  Indian  Inst.,  Gatchina,  Dubna  

Forward  calorimeter:  Moscow,  Prague,  Rez  

DAQ  and  online  event  selecGon:  Darmstadt,  Frankfurt,  Heidelberg,    Kharagpur,  Warsaw  

TransiGon  RadiaGon  Detector:    Bucharest,  Dubna,  Frankfurt,  Heidelberg,  Münster  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   16  

STS  integraGon  concept    

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   17  

•  8  staGons,  volume  2  m3,  area  4  m2  

•  896  detector  modules  -  1220  double-­‐sided  microstrip  sensors  -  ~  1.8  million  read-­‐out  channels  -  ~  16  000  r/o  STS-­‐XYTER  ASICs  -  ~  58  000  ultra-­‐thin  r/o  cables  

•  106  detector  ladders  with  4-­‐5  modules  •  power  dissipaGon:  42  kW    (CO2  cooling)  

building  block:    “module”  

self-­‐triggering    r/o  ASICs  

sensor  

8  tracking  staGons  ladder  mech.  unit    

material  budget  in  physics  aperture      [%X0]        

ultra-­‐thin  r/o  cables  

08/01/15  

Detector  performance  simulaGons      

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   18  

track  reconstrucGon  efficiency   momentum  resoluGon  

•  detailed,  realisGc  detector  model  based  on  tested  prototype  components      •  CbmRoot  simulaGon  framework    •  using  Cellular  Automaton  /  Kalman  Filter  algorithms  

08/01/15  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   19  

CBM      Muon  Chambers  (MUCH)  

 CBM  Experiment  @  FAIR  

PSD  

Dipole  Magnet  

MuCh  TRD   RPC  

(TOF)  

STS   ≡  7.5  λI  

Fe

                     

Dipole    

STS  

Muon  Chamber  (MUCH)  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  

20  

Aim: to detect dimuon signals from low mass vector mesons and J/ψ  

(13.5  λI)  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   21  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   22  

 ParGcle  Density  at  Different  MUCH  staGons  

Radius  (cm)  

3  layout  op:ons  for  SIS100  and  SIS300  

Basic  SIS100  Extended  SIS100  

SIS300  

Lengths:  6.4m  (SIS100)  7.3m  (SIS300)  

TOF  wall  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   23  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   24  

Figure  3.1:  RelaGve  gain  of  a  MWPC  as  a  funcGon  of  rate.  

Comparison  of  technology  op:ons  

GEM

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   25

Gas Electron Multiplier (GEM) and its working principle

l  Active medium is a gas mixture. l  electron multiplication takes place in holes of two copper foils separated by kapton l  Amplification may use 2 or 3 stages.

–  Maximum size ~100 cm x ~50 cm

70µm

140um 140µm

a 50 micron polyimide foil with a 5 micron Cu layer deposited on both sides of polyimide Basic elements of a GEM chamber:

1. Drift plane 2. Amplifying element – GEM 3. Readout Plane Cascaded GEMs can give higher gains and have lesser spark proability

GEM detectors have potential applications

in medical imaging

70um

08/01/15  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   26  

Prototype  fabrica:on    at  VECC  

Readout  plane      256  Pads      8  mm  x  3.5  mm  

10  ohm  Resistors  for  protec:on    

Outer  side  view  GEMS  1    2    3      

CERN  made  framed    GEMs  10  cm  x  10  cm  Gas  -­‐  Ar/CO2  –  70/30  

     inner  side              512  pads  3  mm  x  4  mm  

Outer  side  view    

MulGlayered    Readout  PCB  

Picture of the triple GEM prototype chambers

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   27  

built  at  VECC   built  at  GSI  

(GEMS  stretched  and  framed  at  GSI)  

Parameter     GEM  chamber  (VECC)   GEM  chamber  (GSI)  

Dri^  gap   3  mm     3  mm  

Transfer  gap-­‐1   1  mm   2  mm  

Transfer  gap-­‐2   1  mm   2  mm  

InducGon  gap   1.5  mm   2  mm  

SegmentaGon     3  mm  x  3  mm     6  mm  x  6  mm  

Number  of  pads   512   256  

MPV=24  (HV  =  3600)  

Results  from  Lab  tests  at  VECC  (using  conven:onal  electronics)  

Ra:o

 of  coinciden

ce    cou

nts-­‐    Eff(%)  

X-­‐ray  source    

 Test  with  Cosmic  muons  in  VECC  lab  

 gain   MPV=60  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   28  

A.K.  Dubey,  et.  al.  GEM  detector  development  for  CBM  experiment  at  FAIR    Nucl.Instrum.Meth.  A718  (2013)  418-­‐420  

 Beam  test  of  GEM  prototype  chambers  

       Aim  :    -­‐-­‐  to  test  the  response    of    the  detector  to  charged    par:cles.  mainly  in                        terms  of  efficiency,  cluster  size,    gain  uniformity,  rate    handling  capability    -­‐-­‐  tes:ng  with  actual  electronics  for  CBM  :  nXYTER            nXYTER  is  a  32  MHz,  128  channel  self  triggered  ASIC    first  developed  by            DETNEE  collabora:on  for  neutron  measurements.            –  coupled  to  ROC(ReadOut  Controller)                    and  then  fed  to  the  DAQ.      -­‐-­‐  tes:ng  with  the  actual  CBM  DAQ                                08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   29  

The  nXYTER  ADC  spectra  is  inverted  as  compared  to  conven:onal  picture,    this  has  to  be  subtracted  from  a  baseline  value  channel  by  channel  

08/01/15   30  XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  

DAQ Schematic  

31

Test setup at Jessica beamline at COSY (Julich)

GEM chambers

STS station

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   31  

Test  Beam  Set  Up  (CERN/  H4  beam  line  )      

08/01/15  XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   32  

08/01/15   33  XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  

Test  Results  

gain  

Time  correlaGon  

Efficiency  

Cluster  size  vs.  voltage  

 self  triggered  mode  

Published  in  NIMA  

Pulse  height    spectra  

Cluster  size  

Ageing/stability tests at GSI

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   34  

Rate test using high intensity Cu X-ray

source in RD51 lab at CERN, with conventional electronics

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   35  

Gain  remains  almost  stable  with  rate  Highest  Rate  in  this  picture  ~  1.4  MHz/cm2  

95  kHz/sq.cm  

1.38  MHz/sq.cm  HV  =  3200  V,    Vgem~358  V,    gas-­‐  Ar/CO2(70/30)    

Published  in  JINST-­‐2014    

30  kHz  MPV  =  124  

253  kHz  MPV=122  

25  kHz  MPV=240  

357  kHz    MPV=227  

GEM  2  

GEM  3  

Vgem  =  359  V  -­‐-­‐  A  constant  baseline  value  of  2000  was  taken  for  all  of  the  above  -­‐-­‐  Vb�  set  to  180  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   36  

Rate  test  with  high  intensity  protons  (COSY  Dec.  2013)  Using  self  triggered  readout  FEB  

Test  with  absorbers  –  MiniMUCH    at  CERN  SPS,  H4  beamline.  Pion  beams  of  GeV/c(with  some  muons  and  

electrons)    

Team  :  VECC  +  Colleagues  from  GSI  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   37  

Test  beam  setup  @CERN  SPS  H4  beamline,  Oct-­‐Nov  2012  

beam  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   38  

Gem1   Gem2   Gem3  

Residuals  for  GEM2    beam  

Reconstruc:ng  the  track  using  GEM1  and  GEM3  and  Projec:ng  the    hits  at  plane_GEM2  and  finding  the  distribu:on  of  residuals  08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  

GuahaG   39  

•  -­‐-­‐-­‐  in  collaboraGon  T.  Bandopadhyay  and  R.  Ravishankar  of  the  Health  Physics  group  at  VECC.  

•  Triple  GEM  detector,    delta_Vgem  ~340V.  Ar/CO2,  premixed  gas  (70/30).  

•  Beam  :  α    (40  MeV)  on  Tantalum  target  •  Neutrons  measured  with  BF3  counters  for  flux  esGmates  from(50  –  

500  nA).  The  counter  was  then  replaced  by  GEM  detector  •  Data  taken  at  varying    neutron  intensiGes    -­‐-­‐    for  currents  from  50  

nA  to  5  uA.  For  any  parGcular  beam  Intensity,  data  taken  for  about  15-­‐20  min.  ,then  beam  stopped  and  acGvity  spectra  recorded  every  two  minutes,  for  about  15  minutes  for  each  case.  

•  Detector  exposed  to  neutron  radiaGon  for  about  4  days.    

 

Test  of  triple  GEM  detector  with  Neutrons  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   40  

Neutron  tests  -­‐-­‐  The  Test  Setup  @cave1,    VECC  

Tantallum  target  

Lead  Shield  

Triple  GEM    detector  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   41  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   42  

GEM_hits  vs  beam  intensity  

On  an  average  ~350  GEM  hits  for  a  neutron  intensity  ~10^5  neutrons/sq.cm/s.    In  CBM  the  expected  rate  is  10^5  neutrons  per  10^6  collisions  So  one  would  expect  0.0035  GEM  hits/event  due  to  neutrons    

For  each  current  se�ng,  there  were  three    irradiaGon  file  segments  recorded  just  to  check    systemaGcs,  if  any.  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   43  

Inching  towards  actual  size  of  MUCH  sector  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   44  

MUCH station layout

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   45  

Towards making a large size GEM chamber

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   46  

31  cm  x  31  cm  GEM  foil    12  HV  seg.  

             

~    Sector  based  readout.            1200  pads  with  progressive            increasing  size    -­‐-­‐  9  FEBs  placed  at  the  three              sides  of  the  board      -­‐-­‐  coupled  to  5  ROC’s  

 

Thermal stretching and framing of 30 cm x 30 cm large size GEMs at VECC

08/01/15   47  XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  

Strip1    

Strip2    Strip3      

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   48  

A Large size 30 cm x 30 cm single GEM chamber under test

Single  GEM    

ADC  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   49  

Rela:ve  gain    Vgem  ~353  V  

Large  size(31  cm  x  31  cm)  triple  GEM  chamber  –  X-­‐ray  test  using  55Fe  source  in  lab  

   Triple  GEM    

ADC  

 gas–  Ar/CO2,    Vgem  ~525  V  

Rela:ve  gain    

31  cmx  31  cm  Large  Size  Triple  GEM  Detector  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   50  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   51  

STS  staGons    

Beam  

GEM  3  GEM  2  

08/01/15   GEM  R&D  for  MUCH,  Bose  InsGtute   52  

Beamtest  of  Large  size  chamber  at  COSY—Dec.  2013  

Beam  spot  for  high  intensity  runs,  2.3  GeV/c  protons  

•     

GEM  2     GEM  3  

Beam  profiles    as  seen  by  10  cm  x  10  cm  prototype  and    31  cm  x  31  cm  prototype  (right)  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   53  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   54  

Large  Size  GEM  modules  would  be  made  for  CMS  experiment,  also  for  other  experiments.  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   55  

Readout  PCB    inner  side  

Readout  PCB    outer  side  

08/01/15  

Towards making a Real size GEM Prototype

08/01/15   GEM  R&D  for  CBM  MUCH-­‐-­‐    IWAD,VECC,  Kolkata,  2014   56  

31  cm  x  31  cm  GEM  foil    12  HV  seg.  

             

~    Sector  based  readout.            1200  pads  with  progressive            increasing  size    -­‐-­‐  9  FEBs  placed  at  the  three              sides  of  the  board      -­‐-­‐  coupled  to  5  ROC’s  

 

Real  size  GEM  foil    For  CBM  MUCH    -­‐-­‐  having  GEM  foils  having  24    HV  SegmentaGon.  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   57  08/01/15  

Response  of  the  real  size  prototype    to  Fe55  X-­‐rays  

Status  of  Different  detector  systems    

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   58  08/01/15  

Recently  approved    

FAIR Civil Construction

P.  Senger,  FAIR  workshop@Worms,  Germany  

Summary  :    Ø   at  LHC,  condiGons  are  opGmal  to  study  QGP  in  regions  of  

small  baryon  densiGes  –  corresponding  to  the  early  universe  scenario,  upgrades  are  on  to  carry  out  precision  studies.  

 Ø   Several  experiments  are  planned  (one  is  running)  to  

invesGgate  the  regions  of  high  density  –  corresponding  to    neutron  star  scenario.  

 Ø     Development  and  status  of  CBM  detectors,  in  parGcular            of    Muon  Tracker  (MUCH)  has  been  discussed.            GEM  based  R&D  for  the  first  few  staGons  of  MUCH  has            been  discussed.  Successful  operaGon  in  a  self  triggered            mode  of      

The CBM Physics Book Foreword by Frank Wilczek Springer Series: Lecture Notes in Physics, Vol. 814 1st Edition., 2011, 960 p., Hardcover ISBN: 978-3-642-13292-6

Electronic Authors version: http://www.gsi.de/documents/DOC-2009-Sep-120-1.pdf

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   62  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   63  

Backups  

             

 Ø   Several triple GEM detector prototypes have been built and tested. Ø Response to MIPs: using cosmics an efficiency of 95 % achieved using conventional electronics. Prototypes tested with proton, pions, muon beams. Ø Beam test results – charged particle detection efficiency of ~95 % using self triggered readout. Ø  First Beamtest with absorbers: Track reconstruction possible and the residuals are in line with expectations. Ø Stretching, framing and testing large size GEM (31cm x 31 cm) – -- built one such triple GEM prototype, Used thermal stretching technique. Beam Test results –Gain remains quite stable for  low  and  high  intensity  cases.     and efficiency of > 90 % has been achieved. -- may adopt “ns2” stretching technique being developed by RD51 for CMS. Ø  Next Steps:

-- Building of a real size MUCH sector prototype using ns2 technique – first prototype expected in September. -- Building a dummy sector-module with realistic dimensions

Ø  GEM foils – CERN made foils for SIS100 would be provided by RD51. As a parallel effort, we are collaborating with ECIL, Hyderabad to produce GEM foils in India.

Ø  GEM frames – we have started probing Indian companies. Part of it can as well be done at VECC, a 31 cm x 31 cm frame has been made.

 

SUMMARY  

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   64  

Station # for

SIS100  

Layer #  

Total no of

pads  

R1 (cm)  

Pad size (min)  

R2 (cm)  

Pad size (max)  

Area (sq.mt)  

No of 128 channel

FEB/layer

(round off)  

No of Sector

per layer  

1   1   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

2   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

3   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

2   1   30600   34.5   5.9mm   146.9   25.4mm   6.4   240   24  

2   30600   34.5   5.9mm   146.9   25.4mm   6.4   240   24  

3   30600   34.5   5.9mm   146.9   25.4mm   6.4   240   24  

Station # for

SIS300  

Layer #  

Total no of

pads  

R1 (cm)  

Pad size (min)  

R2 (cm)  

Pad size (max)  

Area (sq.mt)  

No of 128 channel

FEB/layer

(round off)  

No of Sector

per layer  

1   1   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

2   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

3   28800   25   4.36mm   100.25   17.48mm   2.95   240   16  

2   1   30240   29.5   5mm   123.5   21.3mm   4.5   240   20  

2   30240   29.5   5mm   123.5   21.3mm   4.5   240   20  

3   30240   29.5   5mm   123.5   21.3mm   4.5   240   20  

# of sectors, FEB, area, etc.

08/01/15   XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   65  

LHC  Physics  in  the  Next  Ten  Years  

66  

Run  2   Run  3  

Pb+Pb   Pb+Pb/p+Pb   Pb+Pb/p+Pb/Ar+Ar  

sPHENIX  measurements  well  Gmed  with    LHC  Run-­‐3  measurements  

 Very  good  for  enabling  theory  focus    on  simultaneous  understanding  

RHIC  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  08/01/15  

Figure 3. The STAR Beam Energy Scan Phase II White Paper details the motivation and the plans to return to energy scans at RHIC in years 2018 and 2019.

Collision  Energy  (GeV)  

Fixed  Target  √sNN  

Center  of  Mass  

Rapidity  

Single  Beam  Kine:c  

Chemical  Poten:al  Collider  

Chemical  Poten:al  µB  

(MeV)  

19.6   4.471   1.522   8.87   206   589  17.2   4.214   1.456   7.67   230   608  14.5   3.904   1.370   6.32   264   633  13.0   3.721   1.315   5.57   288   649  11.5   3.528   1.253   4.82   316   666  9.1   3.196   1.134   3.62   375   699  7.7   2.985   1.049   2.92   422   721  

successfully  installed  a  gold  target  in  the  STAR  detector  in  2014.  

This  fixed-­‐target  program  will  enable  STAR  to  make  key  measurements  related  to  the  phase  diagram  of  QCD  ma]er  below  the  reported  onset  of  deconfinement  at  √sNN  =  7.7  GeV.  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   67  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   68  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   69  08/01/15  

Development  of  detector  components  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   70  

Silicon  microstrip  sensors   Detector  module  

•  300  µm  thick,  n-­‐type  silicon  •  double-­‐sided  segmentaGon  •  1024  strips  of  58  µm  pitch  •  strip  length  6.2/4.2/2.2  cm  •  angle  front/back:  7.5  deg  •  read-­‐out  from  top  edge  •  rad.  tol.  up  to  1014  neq/cm2    

71  (+3)  components    

module  produc:on:    most  work  intensive  part  of  

STS  construc:on  

08/01/15  

Performance  of  open  charm  measurement  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   71  

D0  →Kπππ   D±  →Kππ  

D0 →Kπππ D±  →Kππ  D0  →Kπ  

 p+C  collisions,  30  GeV  (SIS100)  

 Au+Au  collisions,  25  AGeV  (SIS300)  

1012  centr.    

08/01/15  

sPHENIX  in  a  Nutshell  

72  

BaBar  Magnet  1.5  T    

Coverage  |η|  <  1.1    

All  silicon  tracking  Heavy  flavor  tagging  

 

ElectromagneGc  Calorimeter  

 

Two  longitudinal    Segment  Hadronic  

Calorimeter  

Common  Silicon  PhotomulGplier  readout  for  Calorimeters  Full  clock  speed  digiGzers,  digital  informaGon  for  triggering  

High  data  acquisiGon  rate  capability  ~  10  kHz    XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  08/01/15  

sPHENIX  Run  Plan  

73  

Two  years  of  physics  running  2021  and  2022  with  30-­‐cryo  week  runs    20  weeks  Au+Au  @  200  GeV  10+  weeks  p+p  @  200  GeV    [comparable  baseline  staGsGcs]  10+  weeks  p+Au  @  200  GeV  [comparable  baseline/new  physics  stats]    sPHENIX  maintains  very  high  PHENIX  DAQ  rate  sPHENIX  maintains  fast  detector  capability  –  no  pile  up  problems    If  we  just  record  Au+Au  minimum  bias  events  (no  trigger  bias),  in  20  weeks  with  current  RHIC  performance  and  PHENIX  liveGme,  we  record  50  billion  events  within  |z|  <  10  cm  [opGmal  for  silicon  tracking]    Note  this  is  not  sampled,  but  recorded.      Full  range  of  differenGal  measurements  and  centraliGes  with  no  trigger  biases.  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG  08/01/15  

Preliminary  Spectrometer  Design    

74

Muon    tracker

Solenoid  (BL=1Tm)

2m

2m

1.5m

0.3m

30o

TOF  (5m  from  target)

10o

TOF

EMCAL GEM  Trackers  

RICH

hadron-­‐ID  (θ<117o)  e-­‐ID  :  θ<30o  µ-­‐ID  :  θ<25o  20o  =  mid  rapidity  

1m

ZCAL

Muon  dipole

1m

RICH  Aerogel  +gas  

Top  View Dipole  (BL=1.5Tm)

Centrality  MC  +  ZCAL  

target

Silicon  pixel/strip  trackers

GEM  trackers

Mul:plicity  counter

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   75  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   76  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   77  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   78  08/01/15  

XXI  DAE  Symposium  in  High  Energy  Physics,  GuahaG   79  08/01/15