status: structured target resonance magnetic suppression

22
Status: 1.Structured target resonance 2.Magnetic suppression 3.Low-Z LPM, Undulator-rad., Quantum suppression Plans: 4.Heavy ion bremsstrahlung 5.Positron production

Upload: landen

Post on 22-Feb-2016

26 views

Category:

Documents


4 download

DESCRIPTION

Status: Structured target resonance Magnetic suppression Low-Z LPM, Undulator-rad ., Quantum suppression Plans: Heavy ion bremsstrahlung Positron production. STATUS. Structured target resonance. 2x20 micron Au/Ta foils separated by 0 – 5000 microns (tolerance about 2 microns ). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Status: Structured target resonance Magnetic suppression

Status:1. Structured target resonance2. Magnetic suppression3. Low-Z LPM, Undulator-rad., Quantum

suppression

Plans:4. Heavy ion bremsstrahlung5. Positron production

Page 2: Status: Structured target resonance Magnetic suppression

STATUS

Page 3: Status: Structured target resonance Magnetic suppression

• 2x20 micron Au/Ta foils separated by 0 – 5000 microns (tolerance about 2 microns)

Signal ‘on top of’ about 2.0 (in these units) for separations in microns

2040120100

Structured target resonance

Page 4: Status: Structured target resonance Magnetic suppression

Measuring the formation length with a micrometer screw....

PreliminarySPS H4 exp., Sept. 2011

Structured target resonance

Page 5: Status: Structured target resonance Magnetic suppression

If the deflection angle over half a formation length

exceeds the ‘emission angle’

which happens for photons:

Suppression (crude model):

More elaborate theory needed...

Magnetic suppression

Page 6: Status: Structured target resonance Magnetic suppression

Magnetic suppression

•Material immaterial.•Higher fields move effect to higher photon energies.• Magnitude insensitive

•BUT: The effect will not be visible due to LPM suppression!

10% effect...

Page 7: Status: Structured target resonance Magnetic suppression

Magnetic suppression

•Material immaterial.•Higher fields move effect to higher photon energies.• Magnitude insensitive

NB!

300% effect!

Page 8: Status: Structured target resonance Magnetic suppression

Magnetic suppression

MCS

Field

The effect will not be visible due to LPM suppression!

Page 9: Status: Structured target resonance Magnetic suppression

Low-Z LPM• SLAC (1995) and CERN

(2001) indicate problems with low-Z targets.

• Test LPM theory in low-Z targets

• Analysis in progress (deconvolution of synchr. rad. poses problems)

Page 10: Status: Structured target resonance Magnetic suppression

from Electron/Positron Channeling in a Single CrystalA. Solov’yov, A. Korol, W. Greiner et al.

Initially tested (unsuccesfully) by NA63

Undulator radiation

Page 11: Status: Structured target resonance Magnetic suppression

Undulator radiationH. Backe, W. Lauth, A. Solov’yov, W. Greiner, U. Uggerhøj, J. Esberg, J.L. Hansen

Il Nuovo Cimento C, 34, 157-165, 2011Il Nuovo Cimento C, 34, 175-180, 2011

MAinz MIcrotron (MAMI)

Page 12: Status: Structured target resonance Magnetic suppression

0.01 0.1 1 10 1001E-3

0.01

0.1

10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

I/Icl

0.001 0.01 0.1 1 10 100 1000 10000 1000000.001

0.01

0.1

1

10

Critical energy

Classical synchrotron radiation

Incident energy,Ee=10 GeV

Standard magnet, B = 1 T, 1m Si <110>max, Bequiv = 25.000 T, 0.1 mm

dN

/d

Photon energy [MeV]

Quantum Suppression

Page 13: Status: Structured target resonance Magnetic suppression

-4 -2 0 2 40.0

0.2

0.4

0.6

0.8

1.0

Qua

ntum

sup

pres

sion

of i

nten

sity

log10

(1/), log10

(C)

Synchrotron radiation Blankenbecler & Drell, eq. (7.5)

Classical: -> 0 => Cb -> infty

Quantum Suppression

Page 14: Status: Structured target resonance Magnetic suppression

Quantum Suppression

Analysis in progress• Factor 2 problem with normalization…

MonteCarlo

‘Fudge-factor’normalization

Page 15: Status: Structured target resonance Magnetic suppression

PLANS

Page 16: Status: Structured target resonance Magnetic suppression

Heavy ion bremsstrahlung33 TeV Pb82+ → Pb82+

γ = 170

Intact projectile

Scattering on a single rigid objectof charge Ze and mass M

Coherent scattering on Z quasi-free protons each of mass Mp

Incoherent scattering on individual quasi-free protons

Approx. binding energy per nucleon

Wavelength corresp. to nuclear size

Weizsäcker-Williams type calculation

Page 17: Status: Structured target resonance Magnetic suppression

BS never becomes the dominating mechanism in energy loss

Previous theories Now

Heavy ion bremsstrahlung

Page 18: Status: Structured target resonance Magnetic suppression

Heavy ion bremsstrahlung

Delta-electronsFinite nuclear size

Page 19: Status: Structured target resonance Magnetic suppression

…studies with aligned crystals – to be used for e.g. CLIC, LHeC previous studies with tungsten

High multiplicity and ’low’ energies (10 MeV e+)

Positron production

Page 20: Status: Structured target resonance Magnetic suppression

Positron productionMIMOSA detectors (M. Winter, Strasbourg)

• Vertex detectors for CLIC (?)

Page 21: Status: Structured target resonance Magnetic suppression

Positron production

Applications for funding – 100 kCHF – submitted

Funding expected by December 2011

11 MIMOSAs + DAQ delivered February 2012

Page 22: Status: Structured target resonance Magnetic suppression

Status:1. Structured target resonance2. Magnetic suppression3. Low-Z LPM, Undulator-rad., Quantum

suppression

Plans:4. Heavy ion bremsstrahlung5. Positron production