status of the qcd phase diagram from the...

38
Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar, 15.03.2011 Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase transition? Imaginary chemical potential: rich phase structure, benchmark for models!

Upload: others

Post on 11-Feb-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Status of the QCD phase diagram from the lattice

Owe Philipsen

QGHXM St. Goar, 15.03.2011

Is there a critical end point in the QCD phase diagram?

Is it connected to a chiral phase transition?

Imaginary chemical potential: rich phase structure, benchmark for models!

Page 2: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The conference location...

Page 3: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The conference location...

...a critical point for Rhine navigation

Page 4: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The QCD phase diagram established by experiment:

B

Nuclear liquid gas transition with critical end point

Page 5: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

QCD phase diagram: theorist’s view

T

µ

confined

QGP

Color superconductor

Tc!

~170 MeV

~1 GeV?

Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models, ...

Until 2001: no finite density lattice calculations, sign problem!

earl

y un

iver

se

heavy ion collisio

ns

compact stars ?

B

QGP and colour SC at asymptotic T and densities by asymptotic freedom!

Page 6: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The Monte Carlo method, zero density

QCD partition fcn:

links=gauge fields

lattice spacing a<< hadron << L ! thermodynamic behaviour, large V !

Monte Carlo by importance sampling U

det M e!Sgauge

T =1

aNtNt !", a! 0Continuum limit:

Here:

Z =!

DU"

f

det M(µf , mf ;U) e!Sgauge(!;U)

Nt = 4! 10 a ! 0.1" 0.3 fm staggered fermions

Page 7: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Theory: how to calculate p.t., critical temperature

= crit. exponent

Page 8: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The order of the p.t., arbitrary quark masses

chiral p.t.restoration of global symmetry in flavour space

µ = 0

deconfinement p.t.: breaking of global symmetry

SU(2)L ! SU(2)R ! U(1)A

Z(3)

anomalous

chiral critical line

deconfinement critical line

Page 9: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

How to identify the critical surface: Binder cumulant

B4(!̄!) !"("!̄!)4#

"("!̄!)2#2V !"

$%

!

"

#

1.604 3d Ising1 first $ order3 crossover

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.018 0.021 0.024 0.027 0.03 0.033 0.036

B4

am

L=8

L=12

L=16

Ising

B4(m, L) = 1.604 + bL1/!(m ! mc0), ! = 0.63µ = 0 :

university-logo

Intro Tc CEP Results Discussion Concl. Others Strategy

Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant

• Measure B4(!̄!) ! "("!̄!)4#"("!̄!)2#2

!!!"("!̄!)3#=0

=

"

#

$

3 crossover

1 first$order1.604 3d Ising

for V % #

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1

First order

Crossover

V1V2 > V1

V3 > V2 > V1V=$$"

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.018 0.021 0.024 0.027 0.03 0.033 0.036

B4

am

L=8

L=12

L=16

Ising

• Finite volume, µ= 0: B4(am) = 1.604+ c(L)(am$amc

0)+ . . . , c(L) % L1/&

Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

How to identify the order of the phase transition

x! xc

parameter along phase boundary, T = Tc(x)

Page 10: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Hard part: order of p.t., arbitrary quark masses

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.01 0.02 0.03 0.04

ams

amu,d

Nf=2+1

physical point

mstric - C mud

2/5

phys.point

00

N = 2

N = 3

N = 1

f

f

f

m s

sm

Gauge

m , mu

1st

2nd orderO(4) ?

2nd orderZ(2)

2nd orderZ(2)

crossover

1st

d

tric

!

!

Pure

deconf. p.t.

chir

al p

.t.

physical point: crossover in the continuum Aoki et al 06

chiral critical line on de Forcrand, O.P. 07

consistent with tri-critical point at

But: chiral O(4) vs. 1st still open Di Giacomo et al 05, Kogut, Sinclair 07 anomaly! Chandrasekharan, Mehta 07

Nt = 4, a ! 0.3 fm

mu,d = 0, mtrics ! 2.8T

Nf = 2UA(1)

chiral critical line

µ = 0

Page 11: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06

Page 12: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

How to identify the critical surface: Binder cumulant

B4(!̄!) !"("!̄!)4#

"("!̄!)2#2V !"

$%

!

"

#

1.604 3d Ising1 first $ order3 crossover

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.018 0.021 0.024 0.027 0.03 0.033 0.036

B4

am

L=8

L=12

L=16

Ising

B4(m, L) = 1.604 + bL1/!(m ! mc0), ! = 0.63µ = 0 :

university-logo

Intro Tc CEP Results Discussion Concl. Others Strategy

Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant

• Measure B4(!̄!) ! "("!̄!)4#"("!̄!)2#2

!!!"("!̄!)3#=0

=

"

#

$

3 crossover

1 first$order1.604 3d Ising

for V % #

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1

First order

Crossover

V1V2 > V1

V3 > V2 > V1V=$$"

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.018 0.021 0.024 0.027 0.03 0.033 0.036

B4

am

L=8

L=12

L=16

Ising

• Finite volume, µ= 0: B4(am) = 1.604+ c(L)(am$amc

0)+ . . . , c(L) % L1/&

Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

How to identify the order of the phase transition

x! xc

parameter along phase boundary, T = Tc(x)

The ‘sign problem’ is a phase problem

importance sampling requirespositive weights

Dirac operator:

Lattice QCD at finite temperature and density

Difficult (impossible?): sign problem of lattice QCD

Z =

!

DU [detM(µ)]fe!Sg[U ]

positivity governed by !5-hermiticity: D/ (µ)† = !5D/ (!µ")!5

"det(M) complex for SU(3), µ #= 0

"real positive for SU(2), µ = iµi

N.B.: all expectation values are real, but MC importance sampling impossible

The following methods evade the sign problem, they don’t cure it!

N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

D/ (µ)† = !5D/ (!µ!)!5

Z =

!DU [detM(µ)]fe!Sg[U ]

Lattice QCD at finite temperature and density

Difficult (impossible?): sign problem of lattice QCD

Z =

!

DU [detM(µ)]fe!Sg[U ]

positivity governed by !5-hermiticity: D/ (µ)† = !5D/ (!µ")!5

"det(M) complex for SU(3), µ #= 0

"real positive for SU(2), µ = iµi

N.B.: all expectation values are real, but MC importance sampling impossible

The following methods evade the sign problem, they don’t cure it!

µu = !µd

Same problem in many condensed matter systems!

Page 13: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Finite density: methods to evade the sign problem

Reweighting:

Optimal: use |det| in measure, reweight in phase

Taylor expansion:

Imaginary : no sign problem, fit by polynomial, then analytically continue

All require !

U

Sµ=0 finite µ

~exp(V) statistics needed,overlap problem

coefficients one by one, convergence?

requires convergencefor analytic continuation

µ/T < 1

!O"(µi) =N!

k=0

ck

" µi

!T

#2k, µi # $iµ

!O"(µ) = !O"(0) +!

k=1

ck

" µ

!T

#2k

Z =!

DU det M(0)det M(µ)det M(0)

e!Sg

use for MC calculate

µ = iµi

inte

gran

d

Page 14: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Comparing approaches: the critical line

university-logo

Intro Tc CEP Results Discussion Concl.

The good news: curvature of the pseudo-critical line

All with Nf = 4 staggered fermions, amq = 0.05,Nt = 4 (a! 0.3 fm)

PdF & Kratochvila

4.8

4.82

4.84

4.86

4.88

4.9

4.92

4.94

4.96

4.98

5

5.02

5.04

5.06

0 0.5 1 1.5 2

1.0

0.95

0.90

0.85

0.80

0.75

0.70

0 0.1 0.2 0.3 0.4 0.5!

T/T

c

µ/T

a µ

confined

QGP<sign> ~ 0.85(1)

<sign> ~ 0.45(5)

<sign> ~ 0.1(1)

D’Elia, Lombardo 163

Azcoiti et al., 83

Fodor, Katz, 63

Our reweighting, 63

deForcrand, Kratochvila, 63

imaginary µ

2 param. imag. µ

dble reweighting, LY zeros

Same, susceptibilities

canonical

Agreement for µ/T ! 1

Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

de Forcrand, Kratochvila LAT 05

; same actions (unimproved staggered), same massNt = 4, Nf = 4

Test of methods: comparing Tc(µ) de Forcrand, Kratochvila 05

Page 15: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc!

need

Upper region: equation of state, screening masses, quark number susceptibilities etc.under control

µ/T <! 1 (µ = µB/3)

Page 16: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

The (pseudo-) critical temperature

Tc(µ)Tc(0)

= 1! !(Nf , mq)! µ

T

"2+ . . .

de Forcrand, O.P. 03D’Elia, Lombardo 03

! ! Nf

Nc

Curvature rather small

Toublan 05

Page 17: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Tc(µ)Tc(0)

= 1! 0.059(2)(4)! µ

T

"2+ O

#! µ

T

"4$

Curvature of crit. line from Taylor expansion2+1 flavours, Nt=4, 8 improved staggered

Extrapolation to chiral limit assuming O(4),O(2) scaling of magn. EoS

Consistent with determinations at finite mass with imag. chem. pot.

Phase boundary in the chiral limit hotQCD 11

scaling form of magnetic EoS

=2!T

t0msh!(1!!)/!" dfG(z)

dz

z = h1/!"/t

Page 18: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Phase boundary for physical masses Endrödi et al. 11

Curvature of crit. line from Taylor expansion2+1 flavours, Nt=6,8,10 improved staggered

Observables

Continuum extrapolation:

!̄!r, "s

t =T ! Tc

Tc

Page 19: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Comparison with freeze-out curve

freeze-out

Page 20: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Much harder: is there a QCD critical point?

Page 21: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Much harder: is there a QCD critical point?

1

Page 22: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Much harder: is there a QCD critical point?

12

Page 23: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Fodor,Katz JHEP 04

abrupt change: physics or problem of the method? Splittorff 05; Han, Stephanov 08

Lee-Yang zero:

Critical point from reweighting

physical quark masses, unimproved staggered fermionsNt = 4, Nf = 2 + 1

Approach 1a: CEP from reweighting Fodor, Katz 04

Splittorf 05, Stephanov 08

Page 24: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Approach 1b: CEP from Taylor expansion

p

T 4=!!

n=0

c2n(T )" µ

T

#2n

Nearest singularity=radius of convergenceµE

TE= lim

n!"

!""""c2n

c2n+2

"""", limn!"

""""c0

c2n

""""

12n

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 1 2 3 4 5 6

µB / Tc(0)

T / Tc(0)

!2 !4

nf=2+1, m"=220 MeVnf=2, m"=770 MeV

CEP from [5]CEP from [6]

Bielefeld-Swansea-RBC

FK

Gavai, Gupta

Nf = 2

improved staggered Nt = 4

Page 25: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Predictivity ?

0

1

2

3

4

5

6

7

8

0.85 0.9 0.95 1 1.05 1.1

T/Tc(0)

! !2(p/T4)!4(p/T4)!2("B)!4("B)

Radius of convergence necessary condition, but can it proof the existence of a CEP?

Hadron resonance gas

C.Schmidt, hotQCD 09

Different definitions agree only for not n=1,2,3,... CEP may not be nearest singularity, control of systematics?

n!"

Page 26: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Approach 2: follow chiral critical line surface

mc(µ)mc(0)

= 1 +!

k=1

ck

" µ

!T

#2k

chir

al p

.t.

chir

al p

.t.

hard/easyde Forcrand, O.P. 08,09

Page 27: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Finite density: chiral critical line critical surface

phys.point

00

N = 2

N = 3

N = 1

f

f

f

m s

sm

Gauge

m , mu

1st

2nd orderO(4) ?

2nd orderZ(2)

2nd orderZ(2)

crossover

1st

d

tric

!

!

Pure

* QCD critical point

crossover 1rst0

!

Real world

X

Heavy quarks

mu,dms

!

QCD critical point DISAPPEARED

crossover 1rst0

!

Real world

X

Heavy quarks

mu,dms

!

mc(µ)

mc(0)= 1 +

!

k=1

ck

" µ

!T

#2k

T

µ

confined

QGP

Color superconductor

m > mc(0)

Tc

T

!

confined

QGP

Color superconductor

m > > mc(0)

Tc

!

transition strengthens transition weakens

Page 28: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Curvature of the chiral critical surface

de Forcrand, O.P. 08,09

Page 29: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

On coarse lattice exotic scenario: no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks de Forcrand, Kim, Takaishi 05

-Light quarks with finite isospin density Kogut, Sinclair 07

-Electroweak phase transition with finite lepton density Gynther 03

Page 30: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Towards the continuum: Nt = 6, a ! 0.2 fm

phys.point

00

N = 2

N = 3

N = 1

f

f

f

m s

sm

Gauge

m , mu

1st

2nd orderO(4) ?

2nd orderZ(2)

2nd orderZ(2)

crossover

1st

d

tric

!

!

Pure

Nt=4

mc!(Nt = 4)

mc!(Nt = 6)

! 1.77

Physical point deeper in crossover region as

Cut-off effects stronger than finite density effects!

Preliminary: curvature of chiral crit. surface remains negative de Forcrand, O.P. 10

No chiral critical point at small density, other crit. points possible

a! 0

Nf = 3 de Forcrand, Kim, O.P. 07Endrodi et al 07

Nt=6

Page 31: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Same statement with different methods

Endrödi et al., 11 findweakening of crossover

Study suitably defined width of crossover region

strengthening of transition

Page 32: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Chiral/deconf. and Z(3) transitions at imaginary

Nf=4: D’Elia, Di Renzo, Lombardo 07 Nf=2: D’Elia, Sanfilippo 09 Nf=3:

Strategy: fix , measure Im(L), order parameter at

determine order of Z(3) branch/end point as function of m

µi

T= !µi

T=

!

3, !

µ

de Forcrand, O.P. 10

0 0.5 1 1.5 2 2.5 3 3.5 4

T

µi

T /(!3 )

ordered

disordered

ordered

disordered

Page 33: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Results:

1

1.5

2

2.5

3

5.216 5.217 5.218 5.219

B4(Im

(L))

!

m=0.040

L=8L=12L=16

1

1.5

2

2.5

3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

B4(Im

(L))

(!-!c)L1/"

m=0.040

L=8L=12L=16

! = 0.33

B4 at intersection has large finite size corrections (well known), more stable!

B4(!, L) = B4(!c,!) + C1(! " !c)L1/! + C2(! " !c)2L2/! . . .

Page 34: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

! = 0.33, 0.5, 0.63

for 1st order, tri-critical, 3d Ising scaling

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.01 0.1 1

!

quark mass

Second order

Tricritical

First order

On infinite volume, this becomes a step function, smoothness due to finite L

T

m

Phase diagram at fixedµi

T=

!

3, !

triple line

triple line

3d Ising

ordered phase

disordered phase

Page 35: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Critical lines at imaginary µ

phys.point

00

N = 2

N = 3

N = 1

f

f

f

m s

sm

Gauge

m , mu

1st

2nd orderO(4) ?

2nd orderZ(2)

2nd orderZ(2)

crossover

1st

d

tric

!

!

Pure

µ = i!T

3µ = 0

-Connection computable with standard Monte Carlo! -Here: heavy quarks in eff. theory

triple

tricritical1st ordertriple

1st order

2nd order 3d Ising

mu,d

ms

?

Page 36: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Critical surfaces

shape, sign of curvature determined by tric. scaling!

Similar chiral crit. surface: tric. line renders curvature negative!

de Forcrand, O.P. 10

(µ/T)2

ms!

mu,d!

0crossover

1.O.chiral 1.O.

deconf.

tric.

x phys. point

(µ/T)2

ms!

mu,d!

0crossover

1.O.chiral 1.O.

deconf.

tric.

x phys. point

-("/3)2-("/3)2-("/3)2-("/3)2

Page 37: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

0.5

1

1.5

2

2.5

3

3.5

4

-1.5 -1 -0.5 0 0.5 1

mc

(µ/T)2

Potts: QCD, Nt=1, strong coupling series:Langelage, O.P. 09

mc

T(µ2) =

mtric

T+ K

!"!

3

#2+

" µ

T

#2$2/5

tri-critical scaling: exponent universal

6.5

7

7.5

8

8.5

9

9.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

mc /

T

(µ/T)2

Imaginary µ Real µ

6.6+1.6((!/3)2+(µ/T)2)2/5

Page 38: Status of the QCD phase diagram from the latticecrunch.ikp.physik.tu-darmstadt.de/qghxm/2011/TALKS/...Status of the QCD phase diagram from the lattice Owe Philipsen QGHXM St. Goar,

Conclusions

Reweighting, Taylor: indications for critical point, systematics ?

Chiral crit. surface, deconfinement crit. surface: Transitions weaken with chemical potential

For lattices a~0.3, 0.2 fm no chiral critical point for

Still possible: chiral critical point at large chemical potential non-chiral critical point(s)

µ/T <! 1

?