statistical inference for rényi entropy

25
Statistical inference for R´ enyi entropy David K¨ allberg Department of Mathematics and Mathematical Statistics Ume ˙ a University David K¨ allberg Statistical inference for R´ enyi entropy

Upload: lamnhu

Post on 05-Jan-2017

233 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Statistical inference for Rényi entropy

Statistical inference for Renyi entropy

David Kallberg

Department of Mathematicsand Mathematical Statistics

Umea University

David Kallberg Statistical inference for Renyi entropy

Page 2: Statistical inference for Rényi entropy

CoauthorOleg SeleznjevDepartment of Mathematicsand Mathematical StatisticsUmea University

David Kallberg Statistical inference for Renyi entropy

Page 3: Statistical inference for Rényi entropy

Outline

Introduction

Measures of uncertainty

U-statistics

Estimation of entropy

Numerical experiment

Conclusion

David Kallberg Statistical inference for Renyi entropy

Page 4: Statistical inference for Rényi entropy

Introduction

A system described by probability distribution POnly partial information about P is available, e.g. the mean

A measure of uncertainty (entropy) in PWhat P should we use if any?

David Kallberg Statistical inference for Renyi entropy

Page 5: Statistical inference for Rényi entropy

Why entropy?

The entropy maximization principle: choose P, satisfying givenconstraints, with maximum uncertainty.

Objectivity: we don’t use more information than we have.

David Kallberg Statistical inference for Renyi entropy

Page 6: Statistical inference for Rényi entropy

Measures of uncertainty. The Shannon entropy.

Discrete P = {p(k), k ∈ D}

h1(P) := −∑k

p(k) log p(k)

Continuous P with density p(x), x ∈ Rd

h1(P) := −∫

Rd

log (p(x))p(x)dx

David Kallberg Statistical inference for Renyi entropy

Page 7: Statistical inference for Rényi entropy

Measures of uncertainty. The Renyi entropy.

A class of entropies. Of order s 6= 1 given by

Discrete P = {p(k), k ∈ D}

hs(P) :=1

1− slog (

∑k

p(k)s)

Continuos P with density p(x), x ∈ Rd

hs(P) :=1

1− slog (

∫Rd

p(x)sdx)

David Kallberg Statistical inference for Renyi entropy

Page 8: Statistical inference for Rényi entropy

Motivation

The Renyi entropy satisfies axioms on how a measure ofuncertainty should behave, Renyi (1970).

For both discrete and continuous P, the Renyi entropy is ageneralization of the Shannon entropy, because

limq→1

hq(P) = h1(P)

David Kallberg Statistical inference for Renyi entropy

Page 9: Statistical inference for Rényi entropy

Problem

Non-parametric estimation of integer order Renyi entropy, fordiscrete and continuous P, from sample {X1, . . .Xn} of P-iidobservations.

David Kallberg Statistical inference for Renyi entropy

Page 10: Statistical inference for Rényi entropy

Overview of Renyi entropy estimation, continuos P

Consistency of nearest neighbor estimators for any s,Leonenko et al. (2008)

Consistency and asymptotic normality for quadratic case s=2,Leonenko and Seleznjev (2010)

David Kallberg Statistical inference for Renyi entropy

Page 11: Statistical inference for Rényi entropy

U-statistics: basic setup

For a P-iid sample {X1, . . . ,Xn} and a symmetric kernel functionh(x1, . . . , xm)

Eh(X1, . . . ,Xm) = θ(P)

The U-statistic estimator of θ is defined as:

Un = Un(h) :=

(n

m

)−1 ∑1≤i1<...<im≤n

h(Xi1 , . . . ,Xim)

David Kallberg Statistical inference for Renyi entropy

Page 12: Statistical inference for Rényi entropy

U-statistics: properties

Symmetric, unbiased

Optimality properties for large class of PAsymptotically normally distributed

David Kallberg Statistical inference for Renyi entropy

Page 13: Statistical inference for Rényi entropy

Estimation, continuous case

Method relies on estimating functional

qs :=

∫Rd

ps(x)dx = E(ps−1(X ))

David Kallberg Statistical inference for Renyi entropy

Page 14: Statistical inference for Rényi entropy

Estimation, some notation

d(x , y) the Euclidean distance in Rd

Bε(x) := {y : d(x , y) ≤ ε} ball of radius ε with center x .

bε volume of Bε(x)

pε(x) := P(X ∈ Bε(x)) the ε-ball probability at x

David Kallberg Statistical inference for Renyi entropy

Page 15: Statistical inference for Rényi entropy

Estimation, useful limit

When p(x) bounded and continuous, we rewrite

qs = limε→0

E(ps−1ε (X ))/bs−1

ε

So, unbiased estimate of qs,ε := E(ps−1ε (X )) leads to

asymptotically unbiased estimate of qs as ε→ 0.

David Kallberg Statistical inference for Renyi entropy

Page 16: Statistical inference for Rényi entropy

Estimation of qs,ε

For s = 2, 3, 4, . . ., let

Iij(ε) := I (d(Xi ,Xj) ≤ ε)

Ii (ε) :=∏

1≤j≤s

j 6=i

Iij(ε)

Define U-statistic Qs,n for qs,ε by kernel

hs(x1, . . . , xs) :=1

s

s∑i=1

Ii (ε)

David Kallberg Statistical inference for Renyi entropy

Page 17: Statistical inference for Rényi entropy

Estimation of Renyi entropy

Denote by Qs,n := Qs,n/bs−1ε an estimator of qs and by

Hs,n := 11−s log (max (Qs,n, 1/n)) corresponding estimator of hs

David Kallberg Statistical inference for Renyi entropy

Page 18: Statistical inference for Rényi entropy

Consistency

Assume ε = ε(n)→ 0 as n→∞

Let v2s,n := Var(Qs,n)

v2s,n → 0 as nεd → a ∈ (0,∞], so we get

Theorem

Let nεd → a, 0 < a ≤ ∞ and p(x) be bounded and continuos.Then Hs,n is a consistent estimator of hs

David Kallberg Statistical inference for Renyi entropy

Page 19: Statistical inference for Rényi entropy

Smoothness conditions

Denote by Hα(K ), 0 < α ≤ 2, K > 0, a linear space of continuosfunctions in Rd satisfying α-Holder condition if 0 < α ≤ 1 or if1 < α ≤ 2 with continuos partial derivates satisfying(α− 1)-Holder condition with constant K .

David Kallberg Statistical inference for Renyi entropy

Page 20: Statistical inference for Rényi entropy

Asymptotic normality

When nεd →∞, we have v2s,n ∼ s(q2s−1 − q2

s )/n

Let Ks,n = max(s(Q2s−1,n − Q2s,n), 1/n)

L(n) > 0, n ≥ 1 is a slowly varying function as n→∞

Theorem

Let ps−1(x) ∈ Hα(K ) for α > d/2. If ε ∼ L(n)n−1/d andnεd →∞, then

√nQs,n(1− s)√

Ks,n

(Hs,n − hs)D−→ N(0, 1)

David Kallberg Statistical inference for Renyi entropy

Page 21: Statistical inference for Rényi entropy

Numerical experiment

χ2 distribution, 4 degrees of freedom. h3 = −12 log (q3),

where q3 = 1/54

300 simulations, each of size n = 500.

Quantile plot and histogram supports standard normality

David Kallberg Statistical inference for Renyi entropy

Page 22: Statistical inference for Rényi entropy

Figures

−3 −2 −1 0 1 2 3

−2

−1

01

23

Normal Q−Q Plot

Theoretical Quantiles

Sam

ple

Qua

ntile

s

David Kallberg Statistical inference for Renyi entropy

Page 23: Statistical inference for Rényi entropy

Figures

Chi2 sample

Sta

ndar

d no

rmal

den

sity

−2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

David Kallberg Statistical inference for Renyi entropy

Page 24: Statistical inference for Rényi entropy

Conclusion

Asymptotically normal estimates possible for integer order Renyientropy.

David Kallberg Statistical inference for Renyi entropy

Page 25: Statistical inference for Rényi entropy

References

Leonenko, N. ,Pronzato, L. ,Savani, V. (1982). A class ofRenyi information estimators for multidimensional densities,Annals of Statistics 36 2153-2182

Leonenko, N. and Seleznjev, O. (2009). Statistical inferencefor ε-entropy and quadratic Renyi entropy. Univ. Umea,Research Rep., Dep. Math. and Math. Stat., 1-21, J.Multivariate Analysis (submitted)

Renyi, A. Probability theory, North-Holland PublishingCompany 1970

David Kallberg Statistical inference for Renyi entropy