stationary)perturbation)theory)nsmn1.uh.edu/cratti/phy6316-spring_2018_files/qm_lecture_11_cla… ·...

46
Stationary perturbation theory Lecture notes 11 (based on CT, Sec4on 11)

Upload: others

Post on 09-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

ì  Stationary  perturbation  theory  Lecture  notes  11  (based  on  CT,  Sec4on  11)  

Page 2: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Introduction  Ø  In  the  case  of  harmonic  oscillator  and  hydrogen  atom,  their  

Hamiltonians  are  simple  enough  for  their  eigenvalue  equa4ons  to  be  solved  exactly  

Ø  This  happens  only  in  a  small  number  of  problems  

Ø  There  exist  approxima4on  methods  which  enable  us  to  find  analy4cally  approximate  solu4ons  of  the  eigenvalue  equa4on  in  certain  cases  

Ø  Sta4onary  perturba4on  theory  is  widely  used  in  quantum  physics  

Ø  One  isolates  the  main  effects  and,  when  they  have  been  understood,  one  tries  to  explain  the  finer  details  

Page 3: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  We  can  use  perturba4on  theory  when  the  Hamiltonian  of  the  

system  being  studied  can  be  wriHen  as  H=H0+W,  where  we  know  the  eigenstates  and  eigenvalues  of  H0  and  W  is  small  compared  to  H0  (its  matrix  elements  are  much  smaller  than  those  of  H0)  

Ø  H0  is  4me-­‐independent  and  it  is  called  the  “unperturbed  Hamiltonian”  

Ø  W  is  called  “the  perturba4on”  

Ø  If  W  is  not  4me-­‐dependent,  we  say  that  it  is  a  “sta4onary  perturba4on”  

Ø  We  need  to  find  the  modifica4ons  in  the  eigenvalues  and  eigenstates  due  to  the  perturba4on  

Page 4: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  We  assume  that  W  is  propor4onal  to  a  real,  dimensionless  

parameter  λ:  

Ø  Here,                is  an  operator  whose  matrix  elements  are  comparable  to  those  of  H0  in  magnitude  

Ø  Perturba4on  theory  consists  of  expanding  the  eigenvalues  and  eigenstates  of  H  in  powers  of  λ,  keeping  only  a  finite  number  of  terms  

Page 5: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  We  assume  the  eigenvalues  and  eigenvectors  of  H0  to  be  known  

Ø  We  assume  that  the  unperturbed  energies  form  a  discrete  spectrum:  

the  index  i  labels  the  various  eigenvectors  associated  with  the  energy  level                in  the  case  of  degeneracy  

Ø  The  set  of  vectors                            forms  an  orthonormal  basis  of  the  state  space:          

Ø  We  can  rewrite                                                                          :  the  eigenvalues  E(λ)  of  H(λ)  generally  depend  on  λ  

 

Page 6: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Example  of  varia4on  of  the  eigenvalues  E(λ)  of  H(λ)  with  respect  to  λ  

Ø  For  λ=0  we  obtain  the  spectrum  of  H0    

Ø  The  eigenvalues                and                  are  doubly  degenerate  

Ø  The  applica4on  of  the  perturba4on  removes  the  degeneracy  in                  but  not  the  one  in    

Ø  An  addi4onal  two-­‐fold  degeneracy  appears  at      λ=λ1  

Page 7: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  We  are  looking  for  the  eigenstates  |ψ(λ)>  and  the  eigenvalues  

E(λ)  of  the  Hermi4an  operator  H(λ):  

Ø  We  assume  that  they  can  be  expanded  in  powers  of  λ:  

 

Ø  We  replace  the  expression  for  H(λ):  

Ø  We  want  this  equa4on  to  be  sa4sfied  for  λ  small  but  arbitrary:  we  must  equate  the  coefficients  of  successive  powers  of  λ  

Page 8: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  Thus  we  have:  

Ø  0th-­‐order  terms  

Ø  1st-­‐  order  terms  

Ø  2nd-­‐order  terms  

Ø  qth-­‐order  terms  

Page 9: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  We  will  neglect  terms  of  order  higher  than  2  in  λ  

Ø  We  require  that  |ψ(λ)>  is  normalized,  and  we  fix  the  phase  by  requiring  that  <0|ψ(λ)>  is  real  

Ø  To  0th-­‐order,  this  implies  that  |0>  must  be  normalized:  <0|0>=1  

Ø  To  1st-­‐order,  we  can  write  

which  is  =1  if  the  λ  term  is  zero.  But,  since  we  chose  the  phase  such  that  <0|1>  is  real,  we  must  have  <0,1>=<1,0>=0  

A  similar  argument,  for  2nd-­‐order  in  λ  yields  <0|2>=<2|0>=-­‐1/2<1|1>  

Page 10: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  In  general  we  have:  

Ø  Therefore,  confining  ourselves  to  2nd-­‐order  in  λ,  we  have  found  the  perturba4on  equa4ons  and  we  have  to  supplement  them  with  the  above  condi4ons  

Page 11: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Description  of  the  method  Ø  This  equa4on  expresses  the  fact  that  |0>  is  an  eigenvector  of  H0  

with  eigenvalue  ε0  

Ø  This  was  to  be  expected  

Ø  We  therefore  choose  an  eigenvalue  of  H0  

Ø  There  can  exist  one  or  many  energies  E(λ)  of  H(λ)  which  approach                                  when  λà0  

Ø  The  number  of  eigenstates  corresponding  to  these  E(λ)  cannot  vary  discon4nuously  when  λ  varies  around  0.  Therefore,  this  equals  the  degeneracy  of    

Page 12: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  Consider  a  non-­‐degenerate  level                of  the  unperturbed  Hamiltonian  H0  

Ø  The  eigenvector                  associated  with  it  is  unique  within  a  constant  factor  

Ø  We  want  to  determine  the  change  in  the  energy  and  vector  by  adding  a  perturba4on  W  to  the  Hamiltonian  

Ø  We  choose          ,  which  means  that  |0>  is  propor4onal  to  

Ø  We  choose        

Page 13: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  We  call  En(λ)  the  eigenvalue  of  H(λ)  which  approaches                as  λà0  

Ø  We  assume  that  λ  is  small  enough  that  this  eigenvalue  remains  non-­‐degenerate  

Ø  We  now  calculate  the  first  terms  of  the  expansion  of  En(λ)  and            |ψn(λ)>  in  powers  of  λ    

Page 14: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  First  order  correc+ons  

Ø  The  equa4ons  we  need  are:  

and  

Ø  We  project  the  first  equa4on  onto  

Ø  The  first  term  is  zero  since                          is  eigenvector  of  H0  with  eigenvalue  ε0      

Page 15: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  The  equa4on  then  becomes  

Ø  Therefore,  to  first  order  in  the  perturba4on  we  have:  

Ø  The  first-­‐order  correc4on  to  a  non-­‐degenerate  energy  is  simply  equal  to  the  mean  value  of  the  perturba4on  term  W  in  the  unperturbed  state  

Page 16: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  We  must  now  find  the  correc4on  to  the  eigenvector  

Ø  We  project  the  equa4on  onto  all  vectors  of  the  basis        other  than  

Ø       

Ø  The  last  term  is  zero  due  to  the  orthogonality  of  the  eigenvectors  

Ø  Besides,  we  can  let  H0  act  on            :  

   

Page 17: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  Therefore,  the  coefficients  of  the  expansion  of  |1>  on  the  unperturbed  basis  states  is:  

Ø  The  last  coefficient,                  ,  is  zero  because                          and  <1|0>=0  due  to  the  boundary  condi4ons  

Ø  Therefore:  

Ø  To  1st-­‐order  in  perturba4on  theory  we  have:  

     

Page 18: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  Second  order  correc+ons  

   We  need  the  following  equa4ons:  

 

And  <0|2>=<2|0>=-­‐1/2<1|1>  

Ø  We  project  the  first  one  onto  

Ø  Again  the  first  term  is  zero,  as  well  as                for  the  orthogonality  of  the  states  

Page 19: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  We  get:  

namely,  replacing  the  expression  for  vector  |1>:  

 

 

Ø  Therefore,  the  energy  En(λ)  can  be  wriHen,  to  second  order,  as:  

Page 20: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  If  we  limit  the  energy  expansion  to  first  order  in  λ,  we  can  have  an  idea  of  the  error  involved  by  evalua4ng  the  second  order  term  

Ø  Consider  the  expression  for  ε2.  It  contains  a  sum  of  terms  whose  numerators  are  posi4ve  or  zero.  

Ø  We  call  ΔΕ  the  absolute  value  of  the  difference  between                    and  that  of  the  closest  level.  We  have:    

Ø  This  gives  an  upper  limit  for  |ε2|  

Page 21: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  We  can  rewrite  it  as  

 

Ø  Recalling  the  closure  rela4on:  

we  get:  

Page 22: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  non-­‐degenerate  level  

Ø  Mul4plying  both  sides  by  λ2  we  obtain  an  upper  limit  for  the  second  order  term  in  the  expansion  of  En(λ)  as:  

where  ΔW  is  the  root-­‐mean-­‐square  devia4on  of  the  perturba4on  W  in  the  unperturbed  state  

Ø  This  indicates  the  order  of  magnitude  of  the  error  commiHed  by  taking  only  the  first-­‐order  correc4on  into  account  

Page 23: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  We  now  take  a  level                    which  is  gn-­‐fold  degenerate  

Ø  The  corresponding  eigensubspace  of  H0  is  

Ø  In  this  case,  the  choice      is  not  enough  to  determine  the  vector  |0>  

Ø  Under  the  ac4on  of  W,  the  level              generally  gives  rise  to  several  dis4nct  sublevels  

Ø  Their  number  fn  is  between  1  and  gn  

Ø  The  total  number  of  orthogonal  eigenvectors  of  H  associated  with  the  fn  sublevels  is  always  equal  to  gn:  if  fn<gn,  some  of  these  sublevels  are  degenerate  

Page 24: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  We  limit  ourselves  to  1st-­‐order  in  λ  for  the  energies  and  to  0th-­‐

order  for  the  eigenvectors  

Ø  We  need  to  determine  ε1  and  |0>  

Ø  We  project  the  equa4on    

onto  the  gn  basis  vectors  

Ø  Since  the                        are  eigenvectors  of  H0  with  eigenvalue                            we  obtain  the  gn  rela4ons      

Page 25: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  We  use  the  closure  rela4on  

Ø  The  vector  |0>  is  orthogonal  to  all  the  basis  vectors                                  for  which  p≠n  

Ø  Therefore  the  sum  over  p  reduces  to  a  single  term:    

Ø  We  have  gn2  numbers            :  we  arrange  them  in  a  gnxgn  matrix  of  raw  index  i  and  column  index  i’  

Page 26: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  This  square  matrix            is  cut  out  of  the  matrix  which  

represents                in  the                    basis  

Ø  The  column  vector  of  elements              is  an  eigenvector  of                                                  with  the  eigenvalue  ε1          

Ø  Effec4vely,  this  corresponds  to  solving  the  vector  equa4on  

Page 27: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  

To  calculate  the  eigenvalues  (to  first  order)  and  the  eigenvectors  (to  zeroeth  order)  of  the  Hamiltonian  corresponding  to  a  degenerate  unperturbed  state                ,  diagonalize  the  matrix      which  represents  the  perturba4on  W  inside  the  eigensubspace          associated  with          

/  

Page 28: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  We  call  ε1j  the  dis4nct  roots  of  the  characteris4c  equa4on  of    

Ø  These  eigenvalues  are  all  real  and  the  sum  of  their  degrees  of  degeneracy  is  equal  to  gn  

Ø  Each  eigenvalue  introduces  a  different  energy  correc4on  

Ø  The  degenerate  level  splits,  to  first  order  in  λ,  into  fn(1)  dis4nct  sublevels  whose  energies  can  be  wriHen  as  

Page 29: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Perturbation  of  a  degenerate  state  Ø  If  fn(1)=gn  we  say  that,  to  first  order,  the  perturba4on  completely  

removes  the  degeneracy  of  

Ø  If    fn(1)<gn  we  say  that  the  degeneracy,  to  first  order,  is  only  par4ally  removed  

Ø  We  now  choose  an  eigenvalue  ε1j  of  

Ø   If  it  is  non-­‐degenerate,  the  eigenvector  |0>  is  uniquely  determined  

Ø  Then  there  exists  a  single,  non-­‐degenerate  eigenvalue  E(λ)  of  H(λ)  which  is  equal  to    

Page 30: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  Consider  a  physical  system  whose  Hamiltonian  H  is  4me-­‐

independent  

Ø  We  assume  that  the  en4re  spectrum  of  H  is  discrete  and  non-­‐degenerate:  

Ø  We  know  H  but  not  its  eigenvalues  and  eigenstates  

Ø  The  varia4onal  method  is  useful  when  we  do  not  know  how  to  diagonalize  H  exactly  

Page 31: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  choose  an  arbitrary  ket  |ψ>  of  the  state  space  of  the  system  

Ø  For  sure  we  have:  

where  E0  is  the  ground  state  energy  and  the  equality  holds  only  when  |ψ>  is  the  eigenstate  of  H  with  eigenvalue  E0  

Ø  To  prove  the  above  inequality,  we  expand  |ψ>  on  the  basis  of  eigenstates  of  H:  

 

 

Page 32: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  then  have:  

Ø  And  of  course:  

which  proves  the  inequality  

Ø  This  is  a  basis  for  a  method  of  approximate  determina4on  of  E0  

Ø  We  choose  a  family  of  kets  |ψ(α)>  which  depend  on  a  certain  number  of  parameters  α  

Ø  We  minimize  <H>(α)  with  respect  to  the  parameters  α  

Ø  This  is  a  good  approxima4on  of  the  ground  state  E0  

 

 

Page 33: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  More  generally,  the  mean  value  of  the  Hamiltonian  H  is  sta4onary  

in  the  neighborhood  of  its  discrete  eigenvalues  

Ø  Consider              as  a  func4onal  of  |ψ>  

Ø  Calculate  its  increment  δ<H>    when  |ψ>  becomes  |ψ>+|δψ>  

Ø  To  do  so,  we  write:            and  differen4ate  both  sides:  

 

 

Page 34: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  Since  <H>  is  a  number,  we  can  write:  

Ø  The  mean  value  <H>  is  sta4onary  if  

which  means  that    

 

Ø  We  set:            and  rewrite  the  above  as  

 

 

Page 35: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  The  last  rela4on  must  be  sa4sfied  by  any  infinitesimal  ket  |δψ>  

Ø  In  par4cular,  if  we  choose                            ,  where  δλ  is  an  infinitely  small  real  number,  we  get:  

Ø  The  norm  of  the  ket    must  be  zero,  therefore  the  ket  itself  is  zero  

Ø  This  means  that:  

Ø  <H>  is  sta4onary  if  and  only  if  the  state  vector  |ψ>  to  which  it  corresponds  is  an  eigenstate  of  H  and  the  sta4onary  values  of  <H>  are  the  eigenvalues  of  the  Hamiltonian  

 

 

Page 36: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  The  varia4onal  method  can  be  generalized  and  applied  to  the  

approximate  determina4on  of  the  eigenvalues  of  H  

Ø  If  the  func4on  <H>(α)  obtained  from  the  trial  kets  |ψ(α)>  has  several  extrema,  they  give  the  approximate  values  of  some  of  its  energies  En  

 

 

Page 37: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  will  now  apply  this  method  to  the  one-­‐dimensional  harmonic  

oscillator  

Ø  We  will  consider  the  Hamiltonian:  

and  solve  its  eigenvalue  equa4on  approximately  by  varia4onal  calcula4ons  

Ø  The  Hamiltonian  is  even  under  parity  transforma4ons,  therefore  its  ground  state  is  necessarily  represented  by  an  even  wavefunc4on  

 

 

Page 38: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  consider  even  trial  func4ons  

Ø  For  example,  we  take  the  one-­‐parameter  family  

Ø  The  square  of  the  norm  of  the  ket  is  equal  to:  

 

 

Page 39: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  find:  

Ø  so  that:  

 

 

Page 40: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  The  deriva4ve  of  the  above  func4on  goes  to  zero  when:  

and  we  then  have:  

 

Ø  We  find  that  the  minimum  value  of  <H>(α)  is  exactly  equal  to  the  energy  of  the  ground  state  of  the  harmonic  oscillator  

Ø  This  is  due  to  the  simplicity  of  the  problem  we  are  studying:  the  wavefunc4on  of  the  ground  state  happens  to  be  one  of  the  func4ons  of  the  trial  family  

Ø  The  varia4onal  method  in  this  case  gives  the  exact  solu4on  

 

 

Page 41: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  To  calculate  the  first  excited  state  we  have  to  choose  

wavefunc4ons  which  are  orthogonal  to  the  ground  state  

Ø  We  choose  the  trial  family  of  odd  func4ons:  

Ø  In  this  case:  

and  

 

 

Page 42: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  The  above  results  yield:  

Ø  This  func4on,  for  the  same  value  of  α0  as  above,  presents  a  minimum  equal  to:  

Ø  Again  we  find  exactly  the  energy  E1  and  the  associated  eigenstate  because  the  trial  family  includes  the  correct  wavefunc4on  

 

 

Page 43: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  So  far,  the  families  we  chose  always  included  the  exact  

wavefunc4on  

Ø  We  now  try  a  totally  different  type  of  wavefunc4on:  

Ø  A  simple  calcula4on  yields:  

and:  

 

 

Page 44: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  The  minimum  of  this  func4on  is  obtained  at:  

and  is  equal  to:  

 

Ø  This  minimum  is                4mes  the  exact  ground  state  energy  

Ø  The  error  we  commit  with  this  method  is:    

 

 

Page 45: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  We  found  a  minimum  of  H  which  is  rela4vely  close  to  the  real  one  

Ø  However,  the  corresponding  approximate  state  is  quite  far  from  the  true  eigenstate  

Ø  The  wavefunc4on      decreases  too  rapidly    for  small  values  of  x  and  way  too  slowly  at  large  x  

Ø  We  have  to  be  very  careful  when  physical  proper4es  other  than  the  energy  are  calculated  using  the  varia4onal  method  

Ø  For  example  we  find  that  

which  is  not  very  far  from  the  actual  one,    

 

 

Page 46: Stationary)perturbation)theory)nsmn1.uh.edu/cratti/PHY6316-Spring_2018_files/QM_Lecture_11_Cla… · Description)of)the)method) " We!can!use!perturbaon!theory!when!the!Hamiltonian!of!the!

Variational  method  Ø  However,  the  expecta4on  value  of  X4  is  infinite  in  the  trial  

func4on  and  finite  for  the  real  wavefunc4on  

Ø  It  is  impossible  to  evaluate  the  error  in  a  varia4onal  calcula4on,  if  we  do  not  know  the  exact  solu4on  of  the  problem  

Ø  This  method  can  be  very  flexible,  and  usually  gives  a  good  approxima4on  for  the  energy    

Ø  It  is  par4cularly  valuable  when  physical  arguments  give  us  an  idea  of  the  qualita4ve  or  semi-­‐quan4ta4ve  form  of  the  solu4ons