stability indicating hplc methods for cyclodextrin derivatives 1 chiroquest chiral technologies...

1
STABILITY INDICATING HPLC METHODS FOR CYCLODEXTRIN STABILITY INDICATING HPLC METHODS FOR CYCLODEXTRIN DERIVATIVES DERIVATIVES 1 ChiroQuest Chiral Technologies Development Ltd., Budapest, Hungary 2 CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary, e-mail: [email protected] 3 Semmelweis University, Faculty of Pharmacy, Department of Pharmaceutics, Hőgyes Endre u. 7, Budapest, H-1092, Hungary Gábor Varga 1 , Krisztina Ludányi 3 , Julianna Szemán 2 , Imre Klebovich 3 , Lajos Szente 2 The characterisation of the isomer distribution and purity of cyclodextrin (CD) derivatives, their routine quality control and examination of their stability during storage are still a real problem. Using even the most sophisticated analytical methods the separation and identification of all components is far beyond the possibility. CD-Screen column designed for cyclodextrin analysis contains susbstituted phenyl groups bonded to silicagel stationary phase. This stationary phase suitable for fingerprint characterization of different CD derivatives, as well as, gives the possibility to follow their degradation [1]. CDs and CD derivatives are relatively stable substances, only a few articles can be found on their decomposition [2.3,4]. However, to follow the hydrolytical, oxidative or enzymatic decomposition of CDs and their derivatives can be interesting not only as research subject, but also from practical point of view. In this work our aim was to develop stability indicating HPLC methods for CD derivatives, to follow their degradation pathways by studying the structures of the degradation products. INTRODUCTION INTRODUCTION RESULTS AND DISCUSSION RESULTS AND DISCUSSION Acidic decomposition of RAMEB CONCLUSIONS CONCLUSIONS The acidic degradation of CD derivatives resulted in substituted linear dextrins, which show the same complexity as the parent cyclodextrins The first step of the acidic hydrolysis is the ring opening; the further fragmentation of the substituted maltoheptaoses is faster in case of HPBCD than in case of RAMEB The obtained information provides the theoretical basis of the future development: development of a simple method using even RI or ELS detection for quantitation of the formed decomposition products of cyclodextrin derivatives [1] J. Szemán, K. Csabai, K. Kékesi, l. Szente, G. Varga; J. Chromatography A, 1116, 76-82 (2006) [2] S. Kawakishi, A. Satake, T. Komiya, M. Namiki; Starch/Stärke 25 203-206 (1983) [3] K. Uchida, S. Kawakishi; Agricult. Biol. Chem. 50(2) 54-57 (1986) [4] É. Fenyvesi, K. László; Cyclodextrin News 15(11) 203-206 (2001) REFERENCES The authors are grateful to Ms. Zs. Zachár and Ms. E. Erdei to their valuable technical assistance. The work was supplied by the National Research Fund (NKFP-1A-041/2004 and NKFP1-012/2005). ACKNOWLEDGEMENT Forced degradation of CDs Samples stored under stress conditions: •2-(hydroxy)propyl--cyclodextrin (HPBCD) •Randomly methylated -cyclodextrin (RAMEB) Decomposition under stress conditions: •In 1 M hydrochloric acid solution moderate decomposition •In 1 M sodium hydroxide solution no decomposition •In 30% hydrogen peroxide solution slight decomposition Linear, methylated maltoheptaoses [min.] Time 0 5 10 15 20 25 30 [V] Voltage 0 50 100 150 200 MS detection ELSD detection m/z 200 400 600 800 1000 0 20 40 60 80 100 *MSD1 SPC, time=2.003:12.525 of D:\DOC\MS\R_HCL.D API-ES, Pos, Scan, Frag: 150 Max: 5210 786.6 610.8 596.8 787.6 420.8 962.6 772.6 434.8 624.8 406.8 323.8 597.8 963.6 948.4 582.8 788.6 773.6 156.8 283.8 244.8 625.8 230.8 301.8 758.6 802.6 435.8 216.8 949.4 976.4 117.0 methylat ed glucose 3GL 4-5-6- 7Me 4GL 5-6-7- 8Me 2GL 3-4- 5Me 5GL 7-8- 9Me Acidic decomposition of HPBCD Methylated maltooligomers m/z 200 400 600 800 1000 1200 1400 0 20 40 60 80 100 *M SD1 SPC,tim e=4.391:13.497 ofD:\DO C\M S\CD_HCL.D API-ES,Pos,Scan,Frag:150 Max: 5060 1406.4 758.6 700.6 920.6 538.8 1407.4 1082.4 1464.4 862.6 1348.4 480.8 714.8 921.6 759.6 318.8 1465.2 701.6 1408.2 1244.4 1140.4 1083.4 1349.2 978.6 203.0 642.6 1024.4 743.8 244.8 539.8 863.6 682.6 1302.4 596.8 1245.4 1466.2 1141.4 109.0 422.8 922.6 376.8 1350.2 1186.4 979.6 804.6 760.6 703.8 1084.4 1025.4 212.8 242.8 786.6 283.8 481.8 141.0 184.8 844.6 624.6 1006.4 1246.4 643.6 301.8 1142.4 864.6 1290.2 RAMEB components DS: 8-16 m/z 1280 1300 1320 1340 1360 1380 1400 0 20 40 60 80 100 *M SD1 SPC,tim e=12.067:18.429 ofD:\DO C\MS\R_HCL.D API-ES,Pos,Scan,Frag:150 Max: 18633 1342.4 1328.4 1356.4 1370.4 1314.4 1343.4 1329.4 1357.4 1384.4 1371.4 1315.4 1385.4 1344.4 1358.4 1330.4 1372.4 1300.4 1398.4 1386.4 1316.4 1399.4 1301.4 1345.4 1351.4 1359.4 1331.4 1365.4 1373.4 1337.4 1353.4 1379.4 1339.4 1325.4 1317.4 1367.4 1387.4 1311.4 DS: 12 DS: 15 DS: 9 HPBCD components DS: 1-10 Hydroxypropylated maltooligomers Linear, hydroxypropylated maltoheptaoses m/z 1200 1300 1400 1500 1600 1700 0 20 40 60 80 100 *MSD1 SPC, time=20.516:26.535 of D:\DOC\MS\CD_HCL.D API-ES, Pos, Scan, Frag: 150 Max: 5222 1562.4 1504.4 1563.2 1620.4 1505.2 1446.4 1621.2 1447.2 1388.4 1564.2 1506.2 1330.4 1622.2 1678.2 1389.2 1272.4 1448.2 1331.2 1366.4 1424.4 1214.4 1273.2 1308.4 1534.0 1204.4 1680.2 1591.8 1262.4 1482.4 1250.4 1192.4 1736.2 1180.4 1284.4 1342.4 1320.4 1472.4 DS: 7 m/z 1260 1280 1300 1320 1340 1360 1380 1400 0 20 40 60 80 100 *M S D1 SPC,tim e=18.815:25.791 of D:\DO C\MS\R_HCL.D API-ES,Pos,Scan,Frag:150 Max: 13261 1352.4 1338.4 1324.4 1353.4 1339.4 1366.4 1347.4 1310.4 1325.4 1333.4 1296.4 1367.4 1348.4 1361.4 1354.4 1311.4 1282.4 1340.4 1334.4 1297.4 1326.4 1362.4 1368.4 1349.4 1319.4 1268.4 1283.4 1380.4 1312.4 1335.4 1341.4 1355.4 1375.4 1298.4 1363.4 1269.4 1327.4 1382.4 1369.4 1284.4 1321.4 1313.4 1305.4 DS: 14 min 2.5 5 7.5 10 12.5 15 17.5 0 100000 200000 300000 400000 500000 600000 BCD DS1 DS2 DS3 DS4 [min.] Time 0 5 10 15 20 25 30 [V] Voltage 0 20 40 60 80 100 min 2.5 5 7.5 10 12.5 15 17.5 mAu 25 30 35 40 45 50 ADC1 A, ADC1 (F:\DATA\CTZ0509\HPBHCL4O.D) Degradation HPBCD products MS detection ELSD detection min 5 10 15 20 25 0 200000 400000 600000 800000 M SD 1 1301,EIC =1299:1303 (D :\D O C \M S\R_HC L.D) A PI-ES ,Pos,S can,Frag:150 M SD 1 1343,EIC =1341:1345 (D :\D O C \M S\R_HC L.D) A PI-ES ,Pos,S can,Frag:150 M SD 1 1385,EIC =1383:1387 (D :\D O C \M S\R_HC L.D) A PI-ES ,Pos,S can,Frag:150 D S:9 D S:12 D S:15 Extracted ion chromatogram m/z 1400 1450 1500 1550 1600 1650 1700 0 20 40 60 80 100 *MSD1 SPC, time=13.240:19.401 of D:\DOC\MS\CD_HCL.D API-ES, Pos, Scan, Frag: 150 Max: 12226 1522.4 1464.4 1580.4 1523.4 1465.2 1581.2 1638.2 1524.2 1466.2 1582.2 1639.2 1406.4 1640.2 1418.4 1696.2 1461.8 1491.0 DS: 6 DS: 4 DS: 6 Extracted ion chromatogram Extracted ion chromatogram min 5 10 15 20 25 0 50000 100000 150000 200000 250000 300000 MSD1 1407, EIC=1405:1409 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1465, EIC=1463:1467 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1523, EIC=1522:1525 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1581, EIC=1579:1583 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1639, EIC=1637:1641 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 DS: 4 DS: 4 DS: 8

Upload: calvin-stewart

Post on 13-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STABILITY INDICATING HPLC METHODS FOR CYCLODEXTRIN DERIVATIVES 1 ChiroQuest Chiral Technologies Development Ltd., Budapest, Hungary 2 CycloLab Cyclodextrin

STABILITY INDICATING HPLC METHODS FOR CYCLODEXTRIN STABILITY INDICATING HPLC METHODS FOR CYCLODEXTRIN

DERIVATIVESDERIVATIVES

1 ChiroQuest Chiral Technologies Development Ltd., Budapest, Hungary2 CycloLab Cyclodextrin R&D Laboratory Ltd., Budapest, Hungary, e-mail: [email protected] 3 Semmelweis University, Faculty of Pharmacy, Department of Pharmaceutics, Hőgyes Endre u. 7, Budapest, H-1092, Hungary

Gábor Varga1, Krisztina Ludányi3, Julianna Szemán2, Imre Klebovich3, Lajos Szente2

The characterisation of the isomer distribution and purity of cyclodextrin (CD) derivatives, their routine quality control and examination of their stability during storage are still a real problem. Using even the most sophisticated analytical methods the separation and identification of all components is far beyond the possibility. CD-Screen column designed for cyclodextrin analysis contains susbstituted phenyl groups bonded to silicagel stationary phase. This stationary phase suitable for fingerprint characterization of different CD derivatives, as well as, gives the possibility to follow their degradation [1].

CDs and CD derivatives are relatively stable substances, only a few articles can be found on their decomposition [2.3,4]. However, to follow the hydrolytical, oxidative or enzymatic decomposition of CDs and their derivatives can be interesting not only as research subject, but also from practical point of view.

In this work our aim was to develop stability indicating HPLC methods for CD derivatives, to follow their degradation pathways by studying the structures of the degradation products.

INTRODUCTIONINTRODUCTION

RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Acidic decomposition of RAMEB

CONCLUSIONSCONCLUSIONS

The acidic degradation of CD derivatives resulted in substituted linear dextrins, which show the same complexity as the parent cyclodextrins

The first step of the acidic hydrolysis is the ring opening; the further fragmentation of the substituted maltoheptaoses is faster in case of HPBCD than in case of RAMEB

The obtained information provides the theoretical basis of the future development: development of a simple method using even RI or ELS detection for quantitation of the formed decomposition products of cyclodextrin derivatives

[1] J. Szemán, K. Csabai, K. Kékesi, l. Szente, G. Varga; J. Chromatography A, 1116, 76-82 (2006)[2] S. Kawakishi, A. Satake, T. Komiya, M. Namiki; Starch/Stärke 25 203-206 (1983)  [3]  K. Uchida, S. Kawakishi; Agricult. Biol. Chem. 50(2) 54-57 (1986)[4]  É. Fenyvesi, K. László; Cyclodextrin News 15(11) 203-206 (2001)

REFERENCES

The authors are grateful to Ms. Zs. Zachár and Ms. E. Erdei to their valuable technical assistance. The work was supplied by the National Research Fund (NKFP-1A-041/2004 and NKFP1-012/2005).

ACKNOWLEDGEMENT

Forced degradation of CDs

Samples stored under stress conditions:•2-(hydroxy)propyl--cyclodextrin (HPBCD) •Randomly methylated -cyclodextrin (RAMEB)

Decomposition under stress conditions:•In 1 M hydrochloric acid solution moderate decomposition •In 1 M sodium hydroxide solution no decomposition•In 30% hydrogen peroxide solution slight decomposition

Linear, methylated maltoheptaoses

[min.]Time

0 5 10 15 20 25 30

[V]

Vol

tage

0

50

100

150

200 MS detection

ELSD detection

m/z200 400 600 800 1000

0

20

40

60

80

100

*MSD1 SPC, time=2.003:12.525 of D:\DOC\MS\R_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 5210

786

.6

610

.8 5

96.8

787

.6

420

.8

962

.6

772

.6

434

.8

624

.8

406

.8

323

.8

597

.8

963

.6 9

48.4

582

.8

788

.6 7

73.6

156

.8

283

.8

244

.8

625

.8

230

.8

301

.8

758

.6

802

.6

435

.8

216

.8

949

.4

976

.4

117

.0

methylated glucose

3GL4-5-6-7Me

4GL5-6-7-8Me

2GL3-4-5Me

5GL7-8-9Me

Acidic decomposition of HPBCD

Methylated maltooligomers

m/z200 400 600 800 1000 1200 1400

0

20

40

60

80

100

*MSD1 SPC, time=4.391:13.497 of D:\DOC\MS\CD_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 5060

140

6.4

758

.6

700

.6

920

.6

538

.8

140

7.4

108

2.4

146

4.4

862

.6

134

8.4

480

.8

714

.8

921

.6

759

.6

318

.8

146

5.2

701

.6

140

8.2

124

4.4

114

0.4

108

3.4

134

9.2

978

.6

203

.0

642

.6

102

4.4

743

.8

244

.8

539

.8

863

.6

682

.6

130

2.4

596

.8

124

5.4

146

6.2

114

1.4

109

.0

422

.8

922

.6

376

.8

135

0.2

118

6.4

979

.6

804

.6

760

.6

703

.8

108

4.4

102

5.4

212

.8

242

.8

786

.6

283

.8

481

.8

141

.0

184

.8

844

.6

624

.6

100

6.4

124

6.4

643

.6

301

.8

114

2.4

864

.6

129

0.2

RAMEB components DS: 8-16

m/z1280 1300 1320 1340 1360 1380 1400

0

20

40

60

80

100

*MSD1 SPC, time=12.067:18.429 of D:\DOC\MS\R_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 18633

134

2.4

132

8.4

135

6.4

137

0.4

131

4.4

134

3.4

132

9.4

135

7.4

138

4.4

137

1.4

131

5.4

138

5.4

134

4.4

135

8.4

133

0.4

137

2.4

130

0.4

139

8.4

138

6.4

131

6.4

139

9.4

130

1.4

134

5.4

135

1.4

135

9.4

133

1.4

136

5.4

137

3.4

133

7.4

135

3.4

137

9.4

133

9.4

132

5.4

131

7.4

136

7.4

138

7.4

131

1.4

DS: 12

DS: 15

DS: 9

HPBCD components DS: 1-10

Hydroxypropylated maltooligomers

Linear, hydroxypropylated maltoheptaoses

m/z1200 1300 1400 1500 1600 1700

0

20

40

60

80

100

*MSD1 SPC, time=20.516:26.535 of D:\DOC\MS\CD_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 5222

156

2.4

150

4.4

156

3.2

162

0.4

150

5.2

144

6.4

162

1.2

144

7.2

138

8.4

156

4.2

150

6.2

133

0.4

162

2.2

167

8.2

138

9.2

127

2.4

144

8.2

133

1.2

136

6.4

142

4.4

121

4.4

127

3.2

130

8.4

153

4.0

120

4.4

168

0.2

159

1.8

126

2.4

148

2.4

125

0.4

119

2.4

173

6.2

118

0.4

128

4.4

134

2.4

132

0.4

147

2.4

DS: 7

m/z1260 1280 1300 1320 1340 1360 1380 1400

0

20

40

60

80

100

*MSD1 SPC, time=18.815:25.791 of D:\DOC\MS\R_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 13261

135

2.4

133

8.4

132

4.4

135

3.4

133

9.4

136

6.4

134

7.4

131

0.4

132

5.4

133

3.4

129

6.4

136

7.4

134

8.4

136

1.4

135

4.4

131

1.4

128

2.4

134

0.4

133

4.4

129

7.4

132

6.4

136

2.4

136

8.4

134

9.4

131

9.4

126

8.4

128

3.4

138

0.4

131

2.4

133

5.4

134

1.4

135

5.4

137

5.4

129

8.4

136

3.4

126

9.4

132

7.4

138

2.4

136

9.4

128

4.4

132

1.4

131

3.4

130

5.4

DS: 14

min2.5 5 7.5 10 12.5 15 17.5

0

100000

200000

300000

400000

500000

600000

BC

D

DS1

DS2

DS3

DS4

[min.]Time

0 5 10 15 20 25 30

[V]

Vol

tage

0

20

40

60

80

100

min2.5 5 7.5 10 12.5 15 17.5

mAu

25

30

35

40

45

50

ADC1 A, ADC1 (F:\DATA\CTZ0509\HPBHCL4O.D)

Degradation

HPBCD

products

MS detection

ELSD detection

min5 10 15 20 25

0

200000

400000

600000

800000

MSD1 1301, EIC=1299:1303 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150MSD1 1343, EIC=1341:1345 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150MSD1 1385, EIC=1383:1387 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150

DS: 9

DS: 12

DS: 15

min5 10 15 20 25

0

200000

400000

600000

800000

MSD1 1301, EIC=1299:1303 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150MSD1 1343, EIC=1341:1345 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150MSD1 1385, EIC=1383:1387 (D:\DOC\MS\R_HCL.D) API-ES, Pos, Scan, Frag: 150

DS: 9

DS: 12

DS: 15

Extracted ion chromatogram

m/z1400 1450 1500 1550 1600 1650 1700

0

20

40

60

80

100

*MSD1 SPC, time=13.240:19.401 of D:\DOC\MS\CD_HCL.D API-ES, Pos, Scan, Frag: 150

Max: 12226

152

2.4

146

4.4

158

0.4

152

3.4

146

5.2

158

1.2

163

8.2

152

4.2

146

6.2

158

2.2

163

9.2

140

6.4

164

0.2

141

8.4

169

6.2

146

1.8

149

1.0

DS: 6

DS: 4DS: 6

Extracted ion chromatogram

Extracted ion chromatogram

min5 10 15 20 25

0

50000

100000

150000

200000

250000

300000

MSD1 1407, EIC=1405:1409 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1465, EIC=1463:1467 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1523, EIC=1522:1525 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1581, EIC=1579:1583 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150 MSD1 1639, EIC=1637:1641 (D:\DOC\MS\CD_HCL.D) API-ES, Pos, Scan, Frag: 150

DS: 4

DS: 4

DS: 8