squeezing the sludge. thermal hydrolysis to improve wwtp...

31
June 25-28, 2013 Santiago de Compostela Spain Pedro P. Nieto Sara I. Pérez Elvira & Fernando Fdz-Polanco Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainability

Upload: others

Post on 31-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

June 25-28, 2013 Santiago de Compostela ● Spain

Pedro P. Nieto Sara I. Pérez Elvira & Fernando Fdz-Polanco

Squeezing the sludge.

Thermal hydrolysis to improve WWTP sustainability

Page 2: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

June 25-28, 2013 Santiago de Compostela ● Spain

1. PRETREATMENTS: Overview

2. Experimental results on Continuous Thermal Hydrolysis (CTH)

Page 3: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Removal 25%

Effluent: 10%

COD in sewage

1ary sludge 30%

2ary sludge 35%

Sludge waste 60-70%

BIOSOLIDS 40% DQO

Biogas 30-40% SLUDGE

>60% COD

Surplus sludge: 1-5%

Over 60% COD is converted into sludge COD = energy

Effluent

1ary sludge 2ary sludge

Biogas

COD in sewage

BIOSOLIDS

Hydrolysis is the limiting step

Energy

CO2

WHY pretreatments?

COD balance at a conventional WWTP

Page 4: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Energy content and organic matter (VS)

(-∆UC) ~ 3.4 Wh/gCOD ~ constant

kJ/gTS(1) kJ/g COD Wh/g COD

Wastewater 3.2 14.70 4.08

Primary sludge 15.9 11.12 3.08

Secondary

sludge 12.4 12.05 3.34

Biosolids 12.7 11.68 3.25

AVERAGE 12.38 3.43

Stream energy balance

E = F (m3/h).c(gCOD/m3). -∆UC (wh/gVS) = Wh/h

(1) From: Shizas and Bagley. (2004). J. Energ. Eng.130 (2)

Page 5: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Mass and energy balances for a conventional WWTP.

400.000 persons. SRT = 5 d

1ary 2ary

A.D

50 t COD/d

203.5 MWh/d

61 MWh/d

142.5 MWh/d

54.9 Mwh/d

67.1 MWh/d

61 MWh/d

20.5 MWh/d

61 MWh/d

35 t COD/d

15 t COD/d

5 t COD/d

15 t COD/d15 t COD/d

13.5 t COD/d

16.5 t COD/d

EECons = 25.2 MWh/d

EEProd = 19.2 “

1ary 2ary

A.D

50 t COD/d

203.5 MWh/d

61 MWh/d

142.5 MWh/d

54.9 Mwh/d

67.1 MWh/d

61 MWh/d

20.5 MWh/d

61 MWh/d

35 t COD/d

15 t COD/d

5 t COD/d

15 t COD/d15 t COD/d

13.5 t COD/d

16.5 t COD/d

EECons = 25.2 MWh/d

EEProd = 19.2 “

Garrido J.M., Fdz-Polanco M., Fdz-Polanco F. (2013). Wat. Sci. Tech. 67.10. 2094-2301

Page 6: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Well-contrasted technologies full-scale

Pre-

treatments

Chemical

Biolog.

Physic.

Acid or alkaline hydrolysis Ozonation

High pressure homogenizers Impact grinding Stirred ball mills Ultrasonic homogenizers High performance pulses Lysat centrifuge Gamma irradiation

THERMAL

Enzymatic treatment Incubation of enzymes

Thermal hydrolysis

How to increase biogas production from sludge

Hydrolysis limiting step

→ Pre-hydrolyze = Pre-treat

Page 7: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

IMPACT RING HIGH SHEAR ZONE

VALVE SEAT VALVE STEM

MICROSLUDGE

TECHNOLOGY DESCRIPTION

- High pressure pump: sludge pressurization

- Cell disruption valve: formation of cavitation bubbles

OPERATION CONDITIONS

Constant flow

High pressure: 827 bar

Acceleration: 310 m/s in 2 s

PROCESS DEVELOPMENT

First plant: Mera, 2007

2 plants in North America

PRE-TREATMENT PRINCIPLE

High pressure homogeneizer

Page 8: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

CROWN

TECHNOLOGY DESCRIPTION

- Macerator: crush solids

- Progressive cavity pump: 12 bar

- Mixer: homogeneus suspension

- Disintegrator: cavitation through a nozzle

Crown® Disintegration System SLUDGE

THICKENER

DIGESTER

DISCHARGE PUMP

DISINTEGRATION

NOZZLE

MACERATOR PRESURIZATION

PUMP HIGH SPEED MIXER

RECIRCULATION

PUMP

OPERATION CONDITIONS

Constant flow

Presurization to: 12 bar

Feed: WAS 3-5%DS (30% influent to AD)

PROCESS DEVELOPMENT

Developed in Germany

> 20 installations in Europe

PRE-TREATMENT PRINCIPLE

Controlled cavitation process

Page 9: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

ULTRASOUND TECHNOLOGY

PRE-TREATMENT PRINCIPLE

Ultrasound producing cavitation

TECHNOLOGY DESCRIPTION

PROCESS DEVELOPMENT

Industrial scale

EIMCO® Sonolizer™, SONICO® Sonix™ , IWEtec

OPERATION CONDITIONS

Concentrated sludge

Power and time

Energy

Frecuency 20 -40 kHz

Page 10: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

OPERATION CONDITIONS

Energy: 300 kWh/ton solids treated

Time < 500 ms

Temperature increase: 20ºF

TECHNOLOGY DESCRIPTION

- Cilindrical treatment chamber between two electrodes

- Rapidly pulsing, high voltage beam

- Formation of tiny pores in the membrane

OPENCEL

PROCESS DEVELOPMENT

First plant: Mera, 2007

2 plants in North America

PRE-TREATMENT PRINCIPLE

Focused Pulsed Technology

Page 11: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

OPERATION CONDITIONS

6 CSTR at 42ºC

HRT: 2-3 days upstream AD

Feed sludge : 6-8%ST

MONSAL

TECHNOLOGY DESCRIPTION

- Endogenous enzymes

- Enzymic Hydrolysis (EH)

- Enhanced Enzymic Hydrolysis (EEH)

PROCESS DEVELOPMENT

First plant: Macclesfield, 2002

11 plants in the UK

PRE-TREATMENT PRINCIPLE

Phased biological hydrolysis

EH: Solubilization

EEH: Solubilization + Pasteurization

Page 12: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

OPERATION CONDITIONS

Concentrated sludge

No use of chemicals

T: 150-230ºC; time: 20-60 min

THERMAL HYDROLYSIS

TECHNOLOGY DESCRIPTION

- Heating under pressure

- Different process configuration (batch/continuous; heating mechanism)

- Different energy recovery schemes

PROCESS DEVELOPMENT

Most references for Cambi and Veolia

PRE-TREATMENT PRINCIPLE

Thermal pre-treatment

TurboTec ®

Page 13: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Integrating pretreatment in WWTP

Key parameters for a full picture

1. Type of sluge ( 1ary, 2ary, mixed) / Concentration

2. COD and VS removal /Reology (viscosity) / Mixing energy / Foam formation

3. Dewaterability. / Filtrability / Centrifugability

4. Sanitation / PPCP’s removal

5. COD + nutrients / recirculation to WWTP / recovery.

6. Energy to PT (electrical or thermal) and WWTP (electrical)

WWTP PT

A.D

EWWTP EPT

EBG

1

2

3 4

5

6

Page 14: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

1ary

2ary A.D

35ºC.

B

H.W. C.W.

E.E.

CHP E.G

PRETREATMENT ENERGETIC FEASIBILITY

H.W. C.W.

E.E.

CHP

Page 15: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

1ary

2ary PT

A.D

35ºC.

E.PT

Δ B

B

H.W. C.W.

ΔE.E

E.E.

CHP E.G

PRETREATMENT ENERGETIC FEASIBILITY

Type of Pretreatment.

Consuming heat: E.PT ≤ (E.G + ΔE.G)

“ electricity: E.PT ≤ ΔE.E

E.E = Cost, profit

E.G = Waste, free

H.W. C.W.

E.E.

CHP ΔE.G

Page 16: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Pretreatment technologies operating with electricity. EPT ≤ ΔEE

E = (3.77 c ηAD ) kwh/m3 sludge

ΔEE = 0.20 c

0

20

40

60

0 50 100 150c (kg ST/m

3)

AE

E (

kw

h/m

3)

AEE

US

PEF

MS

CTH

0

50

100

150

0 20 40 60c (kg ST/m

3)

AE

E (

kw

h/m

3)

AEE

US

MW

Lab scale ultrasound and microwaves totally out of balance ∆EE < E PT

Lab scale

Full scale

Page 17: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Guidelines for selecting pretreatment.

- Many different and attractive technologies.

BUT …..

- Only a few are realistic.

- Many papers are useless or misleading

(out of energy range and only covering partial parameters)

(remember not always 1 kwh = 1 kwh; 1kwhELEC ≠ 1 kwhHEAT)

YOU NEED …..

- Perform realistic mass and energy balances.

(concentration is a key parameter).

- Completing the puzzle. Quantify all the parameters involved:

Type of sluge ( 1ary, 2ary, mixed) / Concentration

COD and VS removal / Reology (viscosity) / Mixing energy / Foam formation

Dewaterability. / Filtrability / Centrifugability

Sanitation / PPCP’s removal

COD + nutrients / recirculation to WWTP / recovery.

Energy to PT (electrical or thermal) and WWTP (electrical)

Page 18: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

June 25-28, 2013 Santiago de Compostela ● Spain

2. Experimental results on Continuous Thermal Hydrolysis (CTH)

Page 19: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

1

15

13

11

6

5

4

3

2

12

10

9

8

7

14

16

ACTYLIS Conceptual Design

ACTYLIS Prototype

ACTYLIS Characteristics

3,000 kg ST/h. (14% ST). 400,000 P.E.

Reactor

Volume = 1.5 m3;

HRT < 15 min;

T=170ºC

Footprint 20 m2

Steam direct injection (0,17 kg steam 12 bar/kg TS)

CTH Prototype

Page 20: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

A B C

CTH

2ary

1ary

AD experimental set-up

Reactors characteristics

Volume 200 L

Continuous operation

Mixing: biogas recirculation / sludge reirculation

Feed 50% VS 1ary + 50% VS 2ary

HRT A = C = 21 d.

B = 13 d

21 d 21 d 13 d

Page 21: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

A

A B

C

21 d 13 d

21 d

A C B

C

B

A

Biogas productivity

Average Δ biogas (1 year)

A – C → 23%

B - C → 17%

Industrial 32%

Page 22: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Foam destruction

and

Spring 2013

Both collapsed by persistent

foam

1ary + fresh 2ary

1ary + CTH

2ary No

foam

1ary + fresh 2ary

Foam

CHANGE

Sludge (170 ºC, 15 min).

40x . Microthrix parvicella

Fresh sludge

Industrial AD Reactor C

Reactor A & B

Page 23: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Abundance of filamentous bacteria

Eikelboom Criterion Experimental results

Foam destruction

T (ºC)

TH + SE TH

Time (min) Time (min)

5 15 30 5 15 30

120 5 4 4 5 5 5

150 4 4 3 5 4 4

170 3 2 2 4 3 3

Thermal hydrolysis breaks filamentous bacteria

Steam explosion improves filamentous bacteria destruction

No foam formation

Page 24: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Rotational viscosimeter

μF = 4 μTH

Mixing energy

Viscosity

Page 25: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Dewaterability

Centrifugability Cake

Liquid

Page 26: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

1 ary + 2ary sterilized

CTH

A

D Pathogens free

CTH

AD

1ary

2ary (?)

sterilized Pathogens regrowth (?)

Thermal hydrolysis sterilizes secondary sludge.

After AD of mixed sludge 6/7 samples are free of E. coli and 3/7 samples are salmonella free.

Regrowth can be important factor.

Average values for 7 samples. 1 sample / week

Forming Colonies Unit (FCU / g sludge)

Pathogens destruction

and regrowth

Page 27: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Pharmaceutical and Personal Care Products (PPCP’s) Removal

(WAS + PPCP)

(WAS + PPCP) + (TH)

Lyophilization (90 h)

Pressurized Liquid

Extraction PLE

LC-Ms-Ms (QqQ)

Specialized lab

1008210010010010067Ibuprofen

1009610010010010070Diclofenac

100100100100100100100BP-3

100100100100100100100Bezabifrate

99999999999987Clofibric Acid

92888590898636Propyl paraben

3845316229350Methylparaben

************32Salicylic Acid

100901006910010083Naproxen

999599999910068Carbamazepine

78788156826744Propanolol

99999999999945Metropolol

10093100931009596Caffeine

99**99**99**99Acetominophen

TH +ADTHTH +ADTHTH +ADTHAD

AcidBasicNeutralFreshCOMPOUND

1008210010010010067Ibuprofen

1009610010010010070Diclofenac

100100100100100100100BP-3

100100100100100100100Bezabifrate

99999999999987Clofibric Acid

92888590898636Propyl paraben

3845316229350Methylparaben

************32Salicylic Acid

100901006910010083Naproxen

999599999910068Carbamazepine

78788156826744Propanolol

99999999999945Metropolol

10093100931009596Caffeine

99**99**99**99Acetominophen

TH +ADTHTH +ADTHTH +ADTHAD

AcidBasicNeutralFreshCOMPOUND

Page 28: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Centrate characteristics

Page 29: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Conclusions

Page 30: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

Acknowledgements

Page 31: Squeezing the sludge. Thermal hydrolysis to improve WWTP sustainabilitytech4plus.com/wp-content/uploads/2014/07/Uva-Keynote... · 2014-07-09 · June 25-28, 2013 Santiago de Compostela

June 25-28, 2013 Santiago de Compostela ● Spain

Pedro P. Nieto Sara I. Pérez Elvira & Fernando Fdz-Polanco

Squeezing the sludge.

Thermal hydrolysis to improve WWTP sustainability