spider mediation of polychlorinated biphenyl transport and transformation across riparian

149
Clemson University TigerPrints All Dissertations Dissertations 12-2012 Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian Ecotones Diana Delach Clemson University, [email protected] Follow this and additional works at: hps://tigerprints.clemson.edu/all_dissertations Part of the Environmental Sciences Commons is Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Recommended Citation Delach, Diana, "Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian Ecotones" (2012). All Dissertations. 1051. hps://tigerprints.clemson.edu/all_dissertations/1051

Upload: others

Post on 11-Sep-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

Clemson UniversityTigerPrints

All Dissertations Dissertations

12-2012

Spider Mediation of Polychlorinated BiphenylTransport and Transformation Across RiparianEcotonesDiana DelachClemson University, [email protected]

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Environmental Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations byan authorized administrator of TigerPrints. For more information, please contact [email protected].

Recommended CitationDelach, Diana, "Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian Ecotones" (2012). AllDissertations. 1051.https://tigerprints.clemson.edu/all_dissertations/1051

Page 2: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

       

SPIDER  MEDIATION  OF  POLYCHLORINATED  BIPHENYL    TRANSPORT  AND  TRANSFORMATION  ACROSS  RIPARIAN  ECOTONES  

   

A  Dissertation  Presented  to  

the  Graduate  School  of  Clemson  University  

   

In  Partial  Fulfillment  of  the  Requirements  for  the  Degree  

Doctors  of  Philosophy  Environmental  Toxicology  

   by  

Diana  Delach  December  2012  

   

Accepted  by:  Dr.  Cindy  M.  Lee,  Committee  Chair  

Dr.  John  T.  Coates  Dr.  Peter  van  den  Hurk  Dr.  David  M.  Walters  

   

Page 3: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

ii

ABSTRACT      

Polychlorinated   biphenyls   (PCBs)   contaminate   the   sediment   of   the  

Twelvemile  Creek  /  Lake  Hartwell  Superfund  Site,  and  are  known  to  be  transported  

throughout  the  resident  biota  via  trophic  transport.    Riparian  spiders  have  recently  

become  of  interest  because  they  are  terrestrial  organisms  that  have  significant  PCB  

exposures  derived  from  aquatic  sources.    Many  riparian  spiders  primarily  consume  

insects  emerging  from  contaminated  aquatic  systems,  and  these  spiders  can  have  a  

body  burden  as  high  as  2900  ng/g  lipid.    These  emergent  insects  carry  contaminants  

out   of   the   river   and   into   the   riparian   zone   where   they   are   captured   by   spiders,  

which  effectively  directs   the  contamination  towards  arachnivorous  predators  such  

as  lizards,  frogs,  and  birds.      

  The   enantiomeric   fraction   (EF)   was   measured   for   chiral   congeners   to  

investigate   the   role   of   biological   systems   on   transport   of   PCBs   between   trophic  

levels.     The   EF   values   varied   between   spider   species,   and   indicate   that   foraging  

behavior  may   influence   those  parameters.    Tetragnathid  and  basilica  spiders  were  

most   similar,   whereas   both  were   different   from   araneid   spiders   despite   all   three  

spiders  belonging   to   the   same  order  of   spiders.    All   spider   taxa  were   significantly  

different  from  the  aquatic  prey  source  Chironomidae.  

Two   approaches   were   used   to   confirm   that   spiders   have   the   capacity   to  

metabolize   their   PCB  body  burdens.     Tetragnathidae   spiders  were   collected   along  

Twelvemile  Creek,  their  enzymes  isolated,  and  exposed  to  individual  non-­‐planar  and  

co-­‐planar   congeners.  PCBs  88  and  149  were   incubated  with  S9   fractions   (extracts  

Page 4: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

iii

containing  microsomal   and   cytosolic   enzymes)   from   the   spiders   and   qualitatively  

assessed   for   evidence  of  biotransformation.    Tandem  mass   spectroscopy  provided  

evidence   to  support   the  hypothesis   that  spiders  have   the  capacity   to  biotransform  

PCBs.    Additionally,  PCB  61  was  incubated  with  S9  fractions  for  quantitative  analysis  

of  a  planar  congener.    Numerous  compounds  were  detected  after  exposure,  but  OH-­‐

PCB  61  was  measured  at  1.63  (±0.35  SD)  ng/g  lipid  at  the  Reese  Mill  sampling  site  

for   enzymes   obtained   with   liquid   nitrogen,   thus   indicating   that   spiders   have   the  

capacity   to   metabolize   their   PCB   body   burden.     In   the   second   approach   mass  

spectroscopy   of   whole   spider   extracts   of   spiders   obtained   along   the   Twelvemile  

Creek  arm  of  Lake  Hartwell  provided  structural  evidence  that  spiders  can  transform  

their  body  burden  of  PCBs  to  OH-­‐PCBs  for  congeners  with  six  or  fewer  chlorines.    

Lastly,   webs   are   hypothesized   to   play   a   protective   role   in   spider  

ecotoxicology.    Tetragnathid  spiders  are  able  to  recycle  approximately  90%  of  their  

web  material  without  metabolizing  it,  thus  creating  an  opportunity  for  web  material  

to   act   as   a   storage   location   external   to   the   body.     Concentrations   in  webs   ranged  

between   154   and   356   ppm,   whereas   concentrations   for   spiders   at   the   same  

sampling  locations  ranged  from  284  ng/g  lipid  to  2900  ng/g  lipid.    The  enantiomeric  

fraction   was   also   utilized   to   determine   if   storage   in   webs   is   an   enantioselective  

process.    Results  indicate  that  web  storage  is  enantioselective  for  PCB  149,  with  the  

(-­‐)  enantiomer  being  preferentially  retained  in  web  materials.    This  differs  from  that  

seen  in  spider  samples,  where  the  EF  is  approximately  racemic.  

Page 5: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

iv

These   investigations   examined   the   exposure   and   toxicological   model   for  

spiders,  with  the   intent  of  aiding  understanding  the  role  spiders  play   in  mediating  

transport   and   transformation   across   riparian   ecotones.     Results   indicate   that  

spiders  may  use  a  variety  of  strategies  to  manage  their  PCB  body  burdens  ranging  

from   enantioselective   uptake   of   parent   compounds,   metabolism   to   hydroxylated  

metabolites,  and  transfer  to  web  material.    Understanding  spider  mediation  of  PCB  

transport  and  transformation  can  help  development  of  strategies  that  both  manage  

and  mitigate  the  risks  posed  to  the  environment  by  PCBs  at  Twelvemile  Creek  and  

Lake  Hartwell.  

 

Page 6: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

v

DEDICATION      

I  would  be  remiss  if  I  didn’t  note  the  contribution  on  the  part  of  Henry,  

Barbara,  and  Alyssa  Delach  to  this  body  of  work.    Their  emails,  phone  calls,  and  

cards  were  a  constant  source  of  encouragement  and  support,  without  which  the  

completion  of  this  research  would  have  been  far  more  taxing.    They  provided  comic  

relief  when  it  was  most  necessary!      

 

 

   

Page 7: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

vi

ACKNOWLEDGEMENTS    

First   I   must   acknowledge   the   contribution   Dr.   Cindy   Lee   has  made   to   this  

work.    She  took  on  not  only  the  role  of  research  advisor,  but  also  mentor  for  myself,  

my   labmates,   and  many  others   across   the  graduate   school.     I   hope   that  my   future  

endeavors  will  serve  to  support  your  already  superior  reputation.  

My  committee  members  had  a  great  impact  on  this  project  as  well,  being  sure  

to  point  out  not  only  the  points  that  needed  deletion,  repeating,  or  revising,  but  also  

the  successes  along  the  way.    I  learned  much  from  their  expertise  and  kindness.  

My   labmates–   for   teaching   me   everything   from   how   to   order   supplies   to  

sample  preparation  to  winning  strategies  in  the  faculty-­‐student  soccer  games.    The  

rewards  of  working  with  such  fun,  intelligent  people  cannot  be  underestimated.    In  

particular,  Viet  Dang’s   experience  and  patient   teaching  made   this  work  possible.   I  

hope   that  we  all  have  walked  away  with  at   least  some  good  stories   from  our   time  

spent   constructing   spider   habitats,   prowling   the   river   at   night   for   bugs,   and  

spending  long  days/evenings/nights  in  the  lab  together.  

 My   departmental   colleagues   in   both   Environmental   Toxicology   and  

Environmental  Engineering  have  also  enriched  this  work.    Your  support  in  and  out  

of  the  lab  has  served  to  enhance  my  research  experiences.    In  particular,  thank  you  

to   Andrea   Hicks,   Tim   Sattler,   Jessica   Dahle,   Lee   Stevens,   Yogendra   Kanitkar,   Kay  

Millerick,   and   Meric   Selbes.     Anne   Cummings’   dedication   to   maintaining   smooth  

operation   in   the   labs   and   with   the   instruments   facilitated   the   completion   of   this  

work,  as  well  as  the  work  of  the  other  graduate  students  in  the  Rich  Laboratories.    

Page 8: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

vii

TABLE  OF  CONTENTS    

Page    

TITLE  PAGE………………………………………………………………………………………………..  i    ABSTRACT...……………………………………………………………………………………………….   ii    DEDICATION……………………………………………………………………………………………….  v    ACKNOWLEDGMENTS……………………………………………………………………….………..  vi    LIST  OF  TABLES…………………………………………………………………………………………   ix    LIST  OF  FIGURES………………………………………………………………………..……………….    x    CHAPTER  

1. Literature  Review      Introduction…………………………………………………………..………………………...  1  Compound  background………………………………………………………………........  3  Study  area…………………………………………...…………………………………….……..  4  Arachnid  role  at  Twelvemile  Creek  /  Lake  Hartwell    

Superfund  site……..…………………………………………………………………  7  Ecological  role  of  spiders………………………………………...……………………...…  8  The  Spider  Family  Araneidae…………..………………………….……………..….......12  Exposure…………………………………………………………..……………………..............  15  Excretion…………………………………………………………………….……………………  19  Webs…………………………………………………………………..……………………………  21  PCB  Transformation  ……………………………………..…………………………….........  25  PCB  Metabolism  by  Spiders……………………………………………………………....  32  Summary……………………………………………..…………………………………………...  33  References………………………………………………………………………………...……..  34    

2. Chiral  Signatures  of  PCBs  in  Riparian  Spiders    Introduction……………………………………………………………………………………..  47  Materials  and  Methods……………………………………………………………………...  50  Results……………………………………………………………………………………………..  54  Discussion…………………..……………………………………………………………………  60  Conclusions………………………………………………………………………………………  64  References………………………………………………………………………………………..  65  

 

Page 9: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

viii

                                        Page    

3. Spider  Metabolism  of  PCBs:  in  vivo  and  in  vitro  Investigative  Approaches    

Introduction……………………………………………………………………………………..68  Materials  and  Methods……………………………………………………………………..  70  Results……………………………………………………………………………………………..  78  Discussion………………………………………………………………………………………..  90  Conclusions………………………………………………………………………………………  99  References………………………………………………………………………………………..  100  

   

4. Webs  as  Substrate  for  PCB  Partitioning          Introduction……………………………………………………………………………………..  106  Materials  and  Methods……………………………………………………………………...  107  Results……………………………………………………………………………………………..  111  Discussion……………………………………………………………………….……………….  119  Conclusions………………………………………………………………………………………  125  References…………………………………………………………………………………..……  126  

 5. Conclusions  and  Recommendations  

   Conclusions……………………………………………………………………………………..   129  Recommendations  for  future  work……………………………………………………  130  

 APPENDICES  

 A:    Supplemental  Figures  for  Chapter  2……………………………………………...  134  B:    Supplemental  Tables  for  Chapter  2……………………………………………….  136  C:    Supplemental  Table  for  Chapter  3…………………………………………..……..  137  

                     

Page 10: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

ix

LIST  OF  TABLES                          Table                                                                                                          Page     1.1   Comparison  of  spider  species  ecological  roles…………………………  12    

2.1   GPS  coordinates  for  EPA  sampling  sites…………………………………..  52      

4.1   Web  sampling  site  locations  and  distances…...…………………………  108    

4.2   ΣPCB  content  in  spiders  and  webs  at  each    sampling  location………………………………………………….……..  112  

 4.3   Homolog  distributions  in  spiders  and  webs  at  

the  Reese  Mill  sampling  site…………………………………………  113    B.1   Environmentally  stable  chiral  congener    

substitution  patterns  …………………………………………………..  136    

B.2   Spider  pooled-­‐sample  sizes  for  each  sampling  location……………………………………………………………………….136  

 C.1   SIM  paramenters  used  to  screen  for  PCB  metabolites………………  137

   

Page 11: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

x

LIST  OF  FIGURES    

Figure                     Page      

1.1 Map  of  Twelvemile  Creek  /  Lake  Hartwell    Superfund  Site………..……………………………………………………  6  

 1.2   Tetragnathidae  exposure  model……………………………………………..  9    1.3   Spider  anatomy……………………………………………………………………...  20    1.4   Different  types  and  functions  of  silks  produced    

by  orb  weaver  spiders…..……………………………………………..  23    1.5   Metabolism  of  PCBs…………………………………………………………..……  27    1.6   Thyroid  hormone  regulation…………………………………………………..  31  

 2.1   Map  of  sampling  locations………………………………………………………  51    2.2   Measurements  of    EF  for  three  spider  species  and  

Chironomidae  averaged  across  all  analyzed  sites…..………..………………………………………………......................  56    

2.3   NMS  plots  for  both  spiders  and  midges…………………………………...  59    

3.1   Map  of  sampling  locations………………………………………………………  73    3.2   Tetragnathidae  in  vivo  analysis,    

SIM  settings  for  m/z  =  324………………………….………………..  80    3.3   Tetragnathidae  in  vivo  analysis,  

SIM  settings  for  m/z  =  353……..……..……………………………..  81    

3.4   Chromatogram  for  PCB  88  enzyme  incubations……..………………..  83    3.5   Chromatograms  for  enzymes  with  liquid  nitrogen    

and  incubated  with  PCB  88  at  Reese  Mill    and  Robinson  Bridge…………….………………………………..……  85  

   

Page 12: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

xi

Figure                     Page  

3.6   Chromatograms  and  spectra  for  enzyme  incubation    with  PCBs  88  and  149  at  Robinson  Bridge…………………….  86  

 3.7   Chromatogram  for  positive  control…………………………………………  87  

 3.8   Chromatogram  for  incubation  with  PCB  61……………………………..  88  

 3.9   Quantification  of  2-­‐OH-­‐PCB  61  after  incubation    

with  S9  fraction…………………………………………………………...  89    

3.10   PCB  88  and  potential  biotransformation  pathways………………….  92    

3.11   PCB  149  and  potential  biotransformation  pathways  ……………….  94    

3.12   PCB  61  and  potential  biotransformation  pathways………………….  95    

4.1   Map  of  web  sampling  locations……………………………………………….  109    

4.2   Σ  PCB  concentration  for  spiders  and  webs………………………….......  112    

4.3   Homolog  patterns  of  PCB  concentrations  in    spiders  and    webs...……………..........................................................  114  

 4.4   EF  values  for  spiders  and  webs…………………………………………….....  117  

 4.5   NMS  plots  for  spiders  and  webs………………………………………………  118    A.1   Tetragnathidae  EF  by  site  for  all  congeners……………………………..  134    A.2   Araneidae  EF  by  site  for  all  congeners…………………………………….  134  

 A.3   Basilica  EF  by  site  for  all  congeners…………………………………………135  

 A.4   Chironomidae  EF  by  site  for  all  congeners……………………………….  135  

Page 13: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

1

CHAPTER  ONE  

LITERATURE  REVIEW  

 

Introduction  

Polychlorinated   biphenyls   (PCBs)   contaminate   the   sediment   of   the  

Twelvemile  Creek  /  Lake  Hartwell  Superfund  Site  (US  EPA,  2004),  and  are  known  to  

be   transported   throughout   the   resident  biota  via   trophic   transport   (Walters  et   al.,  

2008).     Riparian   spiders   have   recently   become   of   interest   because   they   are  

terrestrial   organisms   that   have   significant   PCB   exposures   derived   from   aquatic  

sources.     Many   riparian   spiders   primarily   consume   insects   emerging   from  

contaminated   aquatic   systems,   and   these   spiders   can   have   body   burdens   greater  

than   5000   ng/g   lipid   (Walters   et   al.,   2010).     These   emergent   insects   carry  

contaminants  out  of  the  river  and  into  the  riparian  zone  where  they  are  captured  by  

spiders,   which   effectively   directs   the   contamination   towards   arachnivorous  

predators  such  as  lizards,  frogs,  and  birds.    

A  better  understanding  of  how  spiders   function  as  biovectors  will  elucidate  

how   exposure   to   PCBs   is   mediated   as   the   contaminants   cross   ecotones,   and   can  

inform   development   of   policies   aimed   at   mitigating   the   risks   from   those  

contaminants   to   humans   and   wildlife.     In   particular,   investigating   PCB   uptake,  

biotransformation,  and  storage  by  spiders  can  clarify  understanding  of  PCB  fate  and  

transport  in  the  riparian  zone  at  Twelvemile  Creek  /  Lake  Hartwell.,  as  well  as  other  

Page 14: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

2

aquatic   systems   contaminated   with   persistent,   bioaccumulative   pollutants,   to  

inform  remediation  strategy  and  policy  decisions.  

Analysis   of   chiral   congeners   can   indicate   biotransformation   of   PCBs   in   the  

food  web.    The  enantiomeric  fraction  (EF)  is  the  parameter  that  is  commonly  used  to  

quantify  chiral  character  (See  Chapter  2  for  a  detailed  explanation  of  how  the  EF  is  

calculated).     The   EF   can   change  when   the   fate   and   transport   parameters   change.    

One  process  that  can  change  EF  is  metabolism,  which  has  been  indicated  as  a  source  

for   enantiomeric   enrichment   in   some   species;   for   example,  Buckman  et   al.   (2006)  

determined  that  metabolism  in  fish  produced  OH-­‐PCBs.  

Biochemical   assays   can   also   help   to   elucidate   any  metabolic   pathways   that  

may  exist.    If  enzymatic  activity  in  PCB-­‐exposed  spider  can  be  quantified,  an  increase  

in   activity   may   indicate   metabolism   of   PCBs.     Similarly,   enzymes   isolated   from  

spider  tissue  and  incubated  with  PCBs  may  yield  metabolites.     If  these  metabolites  

can   be   quantified   and   their   structure   confirmed,   this,   too,   can   provide   the   first  

evidence  of  spider  detoxification  capabilities.  

There   may   be   other   mechanisms   by   which   spiders   regulate   an   increasing  

body  burden.    Spider  webs  may  function  as  an  outer-­‐body  tissue,  providing  a  place  

to   sequester   contaminants   from  sensitive  organs.  Comparing   the  PCB  content   and  

congener   patterns   of   web   material   can   begin   to   describe   molecular   toxin  

management  strategy  by  spiders.  

 

 

Page 15: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

3

Compound  Background  

Polychlorinated  biphenyls  are  synthetic   compounds  with  a  varying  number  

of  chlorines  oriented  about  two  biphenyl  rings.    There  are  209  congeners  that  can  be  

sorted   into   different   homolog   groups,   ranging   from   one   chlorine   (mono)   to   ten  

chlorine   atoms   (deca)   oriented   about   the   biphenyl   rings.     Each   of   the   homolog  

groups  exhibits  different  fate  and  transport  trends,  as  the  physiochemical  properties  

are  affected  by  both  the  chlorine  content  and  orientation.    For  example,  PCB  2,  with  

an  ortho-­‐situated  chlorine  has  a  log  Ciw  of  -­‐4.54;  whereas,  PCB  4  has  a  para-­‐chlorine  

and  a  log  Ciw  value  of  -­‐5.19,  where  Ciw  is  the  solubility  of  the  contaminant  in  water  

(Schwarzenbach  et  al.,  2003).    While  chemical  composition  is  identical,  the  change  in  

substitution   pattern   between   o-­‐Cl   to   p-­‐Cl   decreases   the   solubility   in   water.     As  

chlorine  content  increases,  the  tendency  to  partition  into  lipophilic  media  increases.    

All  PCBs  have  low  aqueous  solubility,  high  thermal  stability,  and  excellent  dielectric  

properties.    Their  prolific  use   led   to  significant  exposure   in   the  environment.    The  

stability   that   makes   PCBs   suitable   in   industrial   processes   is   the   same   that   make  

them   legacy   compounds   in   the   environment   that   experience   both   long-­‐range  

transport  and  large-­‐scale  distribution  (Tanabe  et  al.,  1983).      

Production  of   PCBs  began   in   the  1920s   and   continued   in   the  United   States  

until   public   and   scientific   concern   ceased   their   manufacture   in   the   1970s.     Fifty  

years   of   production   yielded   approximately   150,000  metric   tons   of   PCBs   (deVoogt  

and  Brinkman,   1989).    Discovery   of   their   human  health  hazards   led   to   the  ban  of  

their   use   in  1976  under   the  Toxic   Substances  Control  Act   (U.S.   EPA,   1976).     PCBs  

Page 16: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

4

have  been  detected  in  all  environmental  compartments,  and  matrices  ranging  from  

sediment  to  fish  tissue  to  human  blood.    Trophic  transfer  is  one  of  the  main  routes  of  

PCB  transport,  as  their  high  lipophilicity  creates  a  tendency  to  both  bioaccumulate  

and   biomagnify   through   the   food   chain.     PCB   congeners   can   cause   a   variety   of  

physiological  problems,  ranging  from  thymus,  spleen,  and  liver  hypertrophy,  as  well  

as  increased  liver  lipids  (Safe,  1990).    They  may  also  be  responsible  for  alteration  of  

Ca2+   homeostasis   in   neuronal   transmission   (Kodavanti   et   al.,   1995).     There   is  

evidence   that   ortho-­‐substituted   PCBs   can   influence   dopamine   concentrations   via  

inhibition  of  the  tyrosine  hydroxylase  (Seegal  et  al.,  1990;  Shain  et  al.,  1991).  

 

Study  Area  

The   Sangamo-­‐Weston   Corporation   manufactured   capacitors   using   PCBs   as  

dielectric  fluid  in  Pickens,  SC,  between  1955  and  1977  (Figure  1.1)  (Brenner  et  al.,  

2004).    Production  using  PCBs  was  ceased  because  of  the  impending  1976  ban  on  its  

use   in   the  United   States,   as   it   had   been   linked   to   cancer   and   other   human   health  

risks.     Improper   disposal   of   production   waste   led   to   the   contamination   of   the  

sediment  in  Town  Creek,  a  tributary  of  Twelvemile  Creek  and  then  Lake  Hartwell.    A  

fish  advisory  was  established  by  the  EPA  in  1976,  as  the  concentrations  of  PCBs  in  

fish   greatly   exceeded   the   limit   set   by   the   Food   and   Drug   Administration   for  

commercial  seafood  (U.S.  EPA,  1980;  SCDHEC,  2006).  

The   Lake   Hartwell   /   Twelvemile   Creek   site   was   placed   on   the   National  

Priority  List  in  1991,  and  was  later  named  a  Superfund  site.    The  Record  of  Decision  

Page 17: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

5

designated   two   operational   units:   OU-­‐1   addressed   the   land   sources   of  

contamination,   namely   the   Sangamo-­‐Weston  plant   and   six   satellite  disposal   areas,  

and   OU-­‐2   addressed   the   pollution   starting   with   sediment   and   surface   water  

contamination   up   to   fish   and   other   contaminated   biota   (U.S.   EPA,   1994).   OU-­‐2  

includes   aquatic   habitats   in   Town   Creek,   Twelvemile   Creek,   and   Lake   Hartwell  

(Figure  1.1).    

Page 18: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

6

 

 

Figure  1.1    Map  of  the  Twelvemile  Creek  /  Lake  Hartwell  Superfund  site.      

               Adapted  from  Brenner  et  al.    (2004).  

   

Page 19: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

7

Arachnid  Role  at  Twelvemile  Creek  /  Lake  Hartwell  Superfund  Site    

Recent  efforts  to  monitor  the  site  have  determined  that  the  contamination  is  

moving   from   the   aquatic   compartment   to   the   terrestrial   compartment   of   the  

landscape   (Walters   et   al.,   2008,   2010).     Contaminated   sediments   provide   habitat  

space   for   larval   aquatic   insects.     Upon   maturation,   these   invertebrate  

metamorphose   into   winged   adults   capable   of   transporting   allochthonous   carbon,  

nitrogen,  and  PCBs   from  the  contaminated  sediment   to   the  neighboring   terrestrial  

system.     Such   insects   are  known  as   subsidy   insects.     These   emergent   insects   then  

become  prey   for   terrestrial   predators.    Walters   et   al.   (2010)   calculated   that   avian  

wildlife  in  the  Twelvemile  Creek  watershed,  both  resident  and  transient,  exhibit  PCB  

concentrations   that   exceed   threshold   limits   for   negative   effects.     Spiders   are   of  

particular   interest,   as   they   consume   primarily   insects,   and   some   families   can   be  

considered   to   be   interface   specialists,   consuming   only   aquatic   species.    

Arachnivorous  predators,  such  as   lizards,  amphibians,  and  birds,  consume  spiders.    

It  is  believed  that  spider-­‐mediated  transport  across  the  ecotone  is  a  dominant  route  

into   the   terrestrial   compartment   (Walters   et   al.,   2008,  2010;  Raikow  et   al.,   2011),  

though  the  mechanisms  behind  this  transport  require  further  investigation.  

To   date,   biochemical   pathways   of   contaminant  metabolism   in   spiders   have  

yet  to  be  described  in  the  literature  by  either  entomologists  or  biochemists.    Their  

ecological   function  has  been  described,  as  has   their  physiology  and  diet,  but   there  

are  lingering  questions  about  their  ability  to  detoxify  and  metabolize  toxicant  body  

Page 20: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

8

burden.    Characterization  of  present  metabolites  via  tandem  mass  spectroscopy,  or  

identification   of   enzymatic   pathways   using   biomarker   suites   may   contribute   to   a  

more  complete  understanding  of  how  this  process  may  take  place.  

 

Ecological  Role  of  Spiders  

Understanding   the  ecological   roles   fulfilled  by  spiders  provides   insight   into  

how  they  may  acquire  contaminants,  how  their  body  burden  may  be  transformed,  or  

how  they  facilitate  transport  of  PCBs  to  other  trophic  levels.    Spiders  fulfill  a  variety  

of   roles  dependent  upon  where   they  reside   in   the  ecosystem.    Spider   families  and  

species  are  typically  defined  by  their  predation  type  (Foelix  1982),  but  will  also  be  

classified  by  their  location  within  the  ecosystem  for  the  purposes  of  this  review.  

The   foraging   habits   of   spiders   directly   influence   their   exposure.     Riparian  

spiders  prey  upon  aquatic   insects,  and  consume  only  soft   tissues,  so  capturing   the  

insects  prior   to   the  hardening  of   the   exoskeleton   results   in  more   food   for   spiders  

without  exerting  extra  energy  to  consume  more  prey.    When  prey  is  unavailable  and  

stored   energy   (lipids)   are   utilized   the   concentrations   of   contaminants   will   be  

affected.    Mobilization  of  the  lipid  tissue  re-­‐exposes  the  spider  to  the  contaminants,  

which  may   be   an   important   route   of   exposure   due   to   the   “wait   and   see”   foraging  

strategy.     The   slow   metabolism   of   spiders   coupled   with   a   stationary   predation  

technique  allows   the  spider   to   live   for   long  periods  of   time  without   food.     Spiders  

are  consumed  by  a  variety  of  predators,  including  but  not  limited  to  arachnivorous  

birds  such  as   the  Carolina  wren,   lizards,  and  even  other  spiders   (Figure  1.2).    The  

Page 21: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

9

role   of   webs   in   toxicology   of   spiders   has   not   been   previously   investigated,   but  

further  discussion  of  relevant  hypotheses  is  included  under  the  “Excretion”  heading  

below.  

 

Figure  1.2    Tetragnathidae  exposure  model.    Most  tetragnathids  are  obligate  

riparian  species  and  specialized  predators  of  aquatic  insects.  

 The   competitive  nature  of   spiders  has  been  much  debated.     Tretzel   (1955)  

developed   a   theory   of   “intragenerische   isolation,”   or   niche   partitioning   within  

Page 22: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

10

genera.     He   postulated   that   differences   in   reproductive   seasons,   daily   patterns   of  

activity,  and  horizontal  habitat  utilization  are  the  result  of  evolved  differences.    This  

concept  builds  upon   the  work  of  Bristowe  (1939,  1941),  who  stated   that  different  

habitats   house   different   species   because   they   can   provide   a   variety   of   niches,  

resulting   in   species   that   specialize   by   insect   size,   insect   temporal   patterns   of  

activity,   and   insect   modes   of   transportation.     This   has   been   expanded   upon   by  

Łuczak   (1963)   who   found   that   as   the   weather   patterns   changed   the   niches  

expanded  and   contracted   accordingly,   resulting   in   a   shifted  pattern  of   community  

structure.     This   interspecific   competition   theory   has   been   widely   accepted.     It  

explains  the  evolutionary  activity  that  gave  rise  to  the  differences  between  the  three  

spider  taxa  examined  in  this  dissertation:  Tetragnathidae,  Araneidae,  and  basilica.  

Tetragnathid   spiders   are   specialists   of   aquatic   insects,   so   they   are   an   ideal  

model   taxa   for   investigating   aquatic-­‐to-­‐terrestrial   exposure   and   for   making  

comparisons  to  other  spiders  with  different  predation  tactics.    Spiders  have  evolved  

under   food-­‐limited   conditions   (Foelix,   1982).     Generalist   feeding   patterns   are  

reflective  of  this,  as  are  their  low  metabolic  rates  (Carrel  and  Heathcote,  1976),  and  

food   storage   capacity  within   the   digestive   system   (Foelix,   1982).     As   sit-­‐and-­‐wait  

foragers,   spiders   have   evolved   to   expend   little   energy   seeking   prey,   and   to   most  

efficiently  utilize  the  food  intake  they  do  have.    Spiders  have  evolved  to  fast  for  long  

periods  of  time,  and  are  disinclined  to  change  foraging  behavior  due  to  increases  in  

prey  availability,  (Greenstone,  1979).    Terrestrial  spiders  have  lived  up  to  200  days  

without  feeding  (Kaston,  1970).      

Page 23: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

11

Understanding   of   placement   of   spiders   in   the   food  web   at   the   Twelvemile  

Creek  /  Lake  Hartwell  Superfund  site  has  been  elucidated  in  numerous  ways.    First,  

an   assessment   of   the   prey   captured   by   webs   indicates   that   spiders   predate   on  

aquatic  insects  (Walters  et  al.  2008;  personal  observation).    The  variation  in  insect  

contribution  has  been  confirmed  by  carbon  and  nitrogen   isotope  ratios  due   to   the  

fact  that  gut  contents  are  not  applicable  due  to  their  external  digestion  (Akamatzu  et  

al.,   2004).     Studies   also   demonstrate   that   emergent   insects   constitute   a   large  

proportion   of   the   spider   diet   (Walters   et   al.,   2008).     Walters   et   al.   (2010)  

determined  that  the  PCB  concentration  patterns  of  chironomids  and  other  emergent  

insects  did  not  correlate  well  with  those  seen  in  spiders.    The  poor  correlation  could  

be  due   to   the   fact   that   the   insects  move   too   fluidly  up  and  down  river   to  be  good  

indicator  species  at  each  sampling  site;  or,   they  may  not  represent  a   large  enough  

proportion  of  the  spider’s  diet  to  have  nearly  identical  patterns.    

Spiders   have   not   been   the   subjects   of   toxicology   tests   to   date;   rather   the  

toxins   they   produce   have   been   of   more   interest.     However,   when   spiders   are  

exposed   to   contamination   through   the   food   web   they   become   a   part   of   the  

ecotoxicological  processes  of  the  ecosystem.    Trophic  transfer  of  contaminants  will  

expose   the   spiders   to   both   parent   compounds   and   their   metabolites.     When  

exposure  of  invertebrates  can  be  defined  qualitatively  and  quantitatively  we  can  use  

that  information  to  investigate  the  biovectors  of  the  system  and  to  identify  remedy  

options  to  manage  the  risks  of  contaminants  to  wildlife.  

 

Page 24: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

12

The  Spider  Order  Araneae    

Many  spiders  are  found  in  the  interior  of  forest  patches,  spinning  webs  in  the  

various  trees  and  shrubbery  (Table  1.1).    The  three  spider  types  investigated  herein  

belong   to   the   same   order,   Araneae.     One   of   the   investigated   families   of   spiders   is  

Araneidae,  which   ranges   from  riparian  ecotones   to  upland   terrestrial   areas.    They  

are  solitary  spiders  that  spin  orb  shaped  webs,  which  are  maintained  on  a  near  daily  

basis   (Eisoldt  et  al.,  2011,  2012).    Araneid  spiders  will   consume  the  web   from  the  

previous   day   and   reconstruct   a   new   assembly.     The   angle   of   the   web   is   vertical,  

which  allows  for  the  capture  of  flying  terrestrial  insects.    Araneidae  spiders  emerge  

in  the  spring  and  are  active  through  late  fall  (Foelix,  1982).    During  the  winter  they  

retreat   underground   where   they   suspend   function   until   warmer   temperatures  

facilitate  motility  and  predation.    

 

Table  1.1  Comparison  of  Spider  Ecological  Roles    

 

Tetragnathidae,  which   is   the  main   focus   of   these   investigations,   is   a   family  

separate  from  that  of  Araneidae,  however  they  both  fall  in  the  same  order,  Araneae.    

Tetragnathids  are  obligate  riparian  predators,  and  as  such  are  important  terrestrial  

Feature   Araneidae   Tetragnathidae   Basilica  Habitat  Location   Facultative  riparian   Obligate  riparian   Shoreline  shrubbery  Solitary  or  communal   Solitary   Solitary   Communal  Web  orientation   Vertical   Horizontal   Messy  Web  type   Orb     Orb   Orb  Web  maintenance   Individual,  nightly   Individual,  nightly   Communal  over  year  Invertebrate  types  in  diet  

Terrestrial,  or  mix  of  terrestrial  &  aquatic  

Aquatic   Mix  of  terrestrial  &  aquatic    

Page 25: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

13

predators  of  aquatic  emergent  insects  (Baxter  et  al.,  2005).    This  has  been  confirmed  

at   the   Twelvemile   Creek   Superfund   site   through   use   of   stable   isotope   analysis  

(Walters  et  al.,  2008).    A  variety  of  processes  contribute  to  riparian  spider  exposure,  

including   but   not   limited   to   contaminant   uptake   by   benthic,   larval   insects,  

maturation,  and  predator-­‐prey  interactions  (Walters  et  al.,  2010).    

Tetragnathidae  spiders  begin   to  emerge   in  March  and  are  ubiquitous  along  

Twelvemile  Creek  until  about  September.    They  will  feed  opportunistically  upon  any  

insects  that  entangle  themselves  in  their  orb-­‐shaped  webs.    Their  web  structure  and  

proximity   secures   them   in   this   riparian   niche   (Gillespie,   1987).     Their   webs   are  

angled  so  as  to  capture  the  insects  as  they  emerge  from  the  water  column  as  adults,  

but   also   are   spun   with   silk   that   is   likely   too   weak   to   capture   terrestrial   insects  

(Foelix,  1982).    To  obtain  tangled  insects  the  spider  travels  across  the  web,  subdues  

the  prey  by  wrapping  it  in  silk,  and  then  moves  it  with  the  checliare  (the  outer  jaws)  

to  the  outer  part  of  the  web  where  it  consumes  the  insect.    Wildlife  values  to  assess  

risk   were   calculated   to   gauge   the   importance   of   tetragnathids   in   the   diets   of  

arachnivorous   birds   (Walters   et   al.,   2008,   2010).     The   analysis   indicated   that   the  

spiders  are  a  viable  and  important  pathway  of  contaminant  transfer  to  birds  at  the  

Twelvemile  Creek  /  Lake  Hartwell  Superfund  site.  

  Patterns   in   activity   are   distinctive   and   correlate   with   habitat   type.    

Tetragnathids  have  been  able  to  survive  in  many  habitat  types,  but  they  thrive  near  

open   areas   of   water   with   many   branches   and   twigs.     This   habitat   type   may   be  

present  in  sheltered  stream  areas,  or  open  lake  areas.    Gillespie  and  Caraco  (1987)  

Page 26: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

14

found   that   spiders   around   lakes   were   more   prone   to   relocating   webs,   whereas  

spiders   along   streams   were   more   stationary.     They   attributed   these   patterns   to  

differences   in   risk;   stationary   behavior   is   indicative   of   low   risk,   enhanced   by   the  

amount   of   vegetation   presenting   hiding   places   from   arachnivorous   predators.    

Exposed   lake   areas   also   do   not   have   the   same   amount   of   shade,  which   results   in  

higher   temperatures   and   faster   web   desiccation,   resulting   in   higher   energy  

expenditures  for  the  spiders  to  maintain  the  webs.  

Basilica  spiders  (Mecynogea  lemniscata)  belong  to  the  Araneidae  family,  but  

have   some   unique   characteristics   distinct   from   other   family   members.     Basilica  

weave   communal   webs   that   are   maintained   over   the   course   of   the   year   (Foelix,  

1982).     These   webs   are   usually   constructed   in   shoreline   shrubbery   to   allow  

predation  of  both  aquatic  and  terrestrial  prey.    Over  the  course  of  the  seasons,  the  

web  becomes  messier  and  messier  as  the  commune  continually  patches  any  damage  

done   to   the   web   procuring   prey.     These   spiders   may   exhibit   a   different  

contamination  profile  due  to  their  varied  prey  sources.    Basilica  spiders  are  similar  

to  Tetragnathidae  spiders  in  that  their  diet  is  largely  constituted  of  aquatic  prey  due  

to  their  proximity  and  specialization  to  the  riparian  ecotone.  

PCBs   at   Twelvemile   Creek   are   transfered   between   environmental  

compartments   due   to   biotransportation   by   emerged   aquatic   insects,   and   are  

deposited  across  the  ecotone  by  these  mechanisms.    The  net  flux  is  out  of  the  aquatic  

compartment   and   into   the   terrestrial;   however,   there   is   also   some   transfer   in   the  

opposite   direction  when   spiders   die   and   fall   from   their  webs   back   into   the   river.    

Page 27: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

15

While  the  transfer  to  the  terrestrial  ecosystems  may  reduce  the  PCB  load  in  Twelve  

Mile  Creek  over  time,  the  problem  of  PCB  contamination  is  not  so  much  solved  as  it  

is  distributed  and  diluted  over  a  larger  area.    These  deposits  can  return  to  the  river  

in   time   if   they  percolate   into   the  ground  water,  or  physical   forces  such  as  erosion  

reintroduce   contaminated   soil   and   plant   material   to   the   river.     An   alternate  

transport   pathway   may   see   PCB   toxicity   expressed   in   the   terrestrial   system   by  

oligochetes  and  other  organisms  that  rework  the  soil,  plant  matter,  and  spider  litter.  

     

Exposure  

Riparian  spiders  are  exposed  to  PCB  contamination  at  the  Twelvemile  Creek  

/  Lake  Hartwell  site  via  trophic  transfer.    Spiders  consume  contaminated  emergent  

insects   and   redirect   contaminant   cycling   away   from   the   aquatic   zone.     Biological  

processes   such   as   selective   protein   binding,   tissue   transport,   and  metabolism   can  

affect   and   change   the   contamination   profile   to   which   spiders   are   exposed.     For  

example,  these  processes  can  produce  enantiomeric  enrichment  of  chiral  congeners,  

which  results  in  spiders  having  different  EF  values  than  observed  in  their  prey.  

In  vivo   and   in  vitro   studies   can   be   completed   to  more   fully   understand   the  

mechanisms  and  effects  of  a  given  compound.    Such  studies  must  be  done  so  as  to  

complement  each  other,   too,  rather  than   just  one  or   the  other.     In  vivo  assays  may  

yield  information  about  the  biotransformation  rate,  whereas  in  vitro  parameters  can  

more   fully  describe   the  enzymatic  activity  resulting   from  field  exposure  (U.S.  EPA,  

Page 28: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

16

2004).    Conducting  these  studies  in  tandem  allows  for  collection  of  complementary  

information.  

Life   stage   contributes   to   the   varying   accumulation   of   contaminants   in  

ecosystem  components.    Toxicants  vary  in  their  targets,  but  also  when  those  targets  

are   susceptible   to   exposure.     Organisms   are   typically   most   sensitive   to   toxicant  

exposure   when   in   early   development   stages,   particularly   during   organogenesis  

when  the  organs  develop  while  in  utero,  which  is  when  metabolic  rates  are  high,  and  

all   nutrients   are  utilized   for   either   energy  production  or   growth     (Klassen,   2008).    

Once  an  organism  reaches  full  maturity  and  the  metabolism  slows  and  growth  stops  

the   potential   for   preventative   sequestration   of   toxicants   into   lipophilic   tissues   is  

greater,  which  protects  the  organism  from  toxicant  action.    A  toxicant  body  burden  

is   not   inherently   dangerous   –contaminants   pose   a   threat   only  when   they   interact  

with   target   molecules   (Walker   et   al.,   2006).     It   is   protective   when   toxicants   are  

sequestered  in  lipid  tissue  away  from  the  target  sites.  

The   route   of   uptake   for   spiders   at   Twelvemile   Creek,   is   trophic   transfer    

rather  than  uptake  from  the  environment  (Walters  et  al.,  2008).    The  contamination  

of  the  Lake  Hartwell/Twelve  Mile  Creek  Superfund  site  is  confined  to  the  sediments  

in   the  aquatic   system.    PCBs  are  also  unlikely   to  partition   into   chitin,   the  material  

that   makes   up   the   exoskeleton   of   spiders,   so   exposure   from   contact   with   the  

terrestrial  environment  is  negligible.    Spiders  initiate  digestion  outside  of  the  body  

by  regurgitating  digestive  fluid  onto  the  prey.    The  spider  then  ingests  a  drop  of  the  

predigested  fluid  and  repeats  until   the  prey   is  mostly  consumed.    The  chelicae  are  

Page 29: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

17

used   to   break   apart   the   prey   such   that   the   soft   tissue   may   be   accessed.     After  

feeding,  all  that  remains  is  a  small  ball  of  cuticular  parts  (Foelix,  1982).    Metabolism  

continues  in  the  sucking  stomach.    The  aquatic  insects  they  consume  in  this  manner  

transfer  contamination  from  the  sediments  of  the  river  system  to  the  spiders.  

  Due   to   the   exposure   through   trophic   transfer,   it   is   important   to   first  

determine   the   exposure   on   the   part   of   those   emergent   insects.     Their   life   cycle  

places   them   in   the  sediments   for   the   first   few   instars  of   their  development,  which  

results   in  high  levels  of  exposure  to   lipophilic  contaminants  that  have  sorbed  onto  

the   sediment  during   the  most   susceptible   time  of   their   development.     They  pump  

oxygenated   water   across   their   gills   to   breathe.     They   may   be   exposed   to  

contaminants  in  the  water  column  this  way,  but  can  also  export  contamination  into  

the   water   column   with   each   “exhale.”     We   can   infer   that   the   biotic   contaminant  

concentration   lies   somewhere   between   what   would   be   predicted   by   equilibrium  

with  the  water  and  equilibrium  with  the  sediment;  typically  greater  than  would  be  

predicted   by   water   exposure,   but   less   than   sediment   exposure   predictions.     A  

theoretical   concentration   at   equilibrium   for   PCBs   needs   to   relate   organic   carbon  

content   and   octanol   partitioning   to   each   other,   which,   for   PCBs,   results   in   the  

following  relationship:  

𝐾!"!#$% = 2.3  ×  𝐾!"!.!"       (Equation  1)  

 where  Kilipoc  is  the  partitioning  coefficient  for  lipids  and  organic  carbon,  and  Kow  is  

the  partitioning  constant  for  octanol  and  water  (Schwarzenbach  et  al.,  2003).    While  

these   predictive   equations   for   Kilipoc   and   Kilipw   are   useful,   the   measured   quantity  

Page 30: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

18

known  as  the  biota-­‐sediment  bioaccumulation  factor  (BSAF)  is  defined  in  Equation  

2  as:    

𝐵𝑆𝐴𝐹! =!!"#$!!"

            (Equation  2)  

where  Ciorg  is  the  concentration  in  the  organism,  and  Cis  is  the  concentration  in  the  

sediment.    BSAF  can  be  experimentally  determined  via  field  samples.      BSAF  values  

are  seen  to  increase  with  increasing  Kiow  values  for  the  contaminants,  until  the  Kiow  

increases   above   a   value   of   107,   because   compounds   with   a   log   Kiow   above   7   are  

usually   too   large   and   lipophilic   to   partition   past   the   polar   head   groups   in   a  

membrane.  

Predictions  for  systems  at  equilibrium  prove  challenging  enough;  however,  it  

must   be   noted   that   river   systems   are   open   systems,   and   there  may  be  net   flux   of  

volatile  contaminants  in  or  out  of  the  system.    For  PCBs  this  flux  has  been  proven  to  

be   both   highly   temperature   dependent   and   significant.     It   is   believed   that   PCBs  

volatilize   out   of  warm   systems   and   are   transported   through   the   atmosphere  until  

the   temperatures  are   reduced   such   that  net   flux   is   into  water.     Such  behavior  has  

resulted   in   PCBs   appearing   in   snow   in   Antarctica   despite   the   absence   of   direct  

exposure  on  that  continent  (Tanabe  et  al.,  1983).    At   the  Twelvemile  Creek  /  Lake  

Hartwell  system,  volatilization  may  be  an  important  source  of  PCBs  to  tetragnathid  

webs,   which   are   suspended   directly   over   the   water   column.     If   such   behavior   is  

occurring,  then  spider  exposure  models  need  to  incorporate  this  exposure  pathway.  

 

Page 31: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

19

Excretion  

Excretion  completes  detoxification  of  toxicants.    Lipophilic  contaminants  are  

removed   from   the   organism   via   solid   waste,   whereas   more   hydrophilic  

contaminants  are  excreted  with  liquid  waste.    PCB  excretion  by  spiders  is  complex  

in  part  because  they  only  excrete  solid  waste.    Water  must  be  sourced  from  prey,  so  

waste  is  typically  concentrated  and  dehydrated  in  the  cells  where  the  diverticula  of  

the  midgut  extends  into  the  coaxe  of  the  spider’s  legs  (see  Figure  1.3  for  anatomy),  

though   some   spiders   have   a   developed   midgut   area   that   penetrates   the   area  

between  the  eyes  (Foelix,  1982).    Underlying  interstitial  tissue  may  also  store  waste  

as   crystals   once   the   capacity   for   storage   is   exhausted.     Guanocytes   also   serve   to  

store  metabolites  as  crystals,  and  may  form  a  cell  layer  under  the  hypodermis.    The  

midgut  widens  to   form  the  stercoral  pocket,  or  cloacal  chamber.    On  either  side  of  

the  stercoral  pocket  are  two  thin  evaginations  called  Malpighian  tubes.    Metabolites  

and   substances   to   be   removed   from   the  body   are   concentrated   and   stored  before  

they   are   expelled   into   the   lumen   of   the   Malpighian   tubile.     Guanine,   adenine,  

hypoxanthine,   and   uric   acid   are   the   main   excretory   products,   all   of   which   are  

concentrated   as   crystals.     The   Malpighian   tubules   feed   into   the   stercoral   pocket,  

which  connects  to  the  anus.    Excrement  stored  in  the  stercoral  pocket  periodically  

exits   the   body   via   the   anus.     Evolution   of   orb-­‐weavers   like   Tetragnathidae   and  

Araneidae  has  evolved  such  that  the  coaxe  of  the  walking  legs  no  longer  function  to  

collect  and  then  excrete  waste  through  the  coaxal  gland  duct  (Foelix,  1982).    It  may  

be   possible   for   the   PCBs   to   be   crystallized   as   part   of   this  waste,   and   sequestered  

Page 32: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

20

away  from  the  sites  of  action  due  to  their  low  solubility  in  water.    Spiders  may  also  

be  able  to  further  metabolize  OH-­‐PCBs  and  excrete  them  as  quinones  or  catechols.  

 

Figure  1.3  Spider  Anatomy.    Adapted  from  Foelix  (1982).  

Exoskeleton   molts   are   not   expected   to   influence   these   concentrations   or  

function  as  an  excretion  pathway  due  to  their  high  chitin  concentration.    Chitin  is  a  

biotic  macromolecule  with  functionality  similar  to  both  carbohydrates  and  proteins.    

They   have   high   heteroatom   content,   ring   structures,   and  many   functional   groups.    

The  compound  does  not  have  much  lipophilic  character;  thus,  PCBs  are  unlikely  to  

partition   into   the  medium.    Being  more  hydrophilic,   the  metabolites  may  partition  

into   the   exoskeleton,   but   this   has   yet   to   be   investigated.     Studies   on   other  

invertebrates  found  that  when  insects  shed  their  exoskeletons  the  contaminant  load  

is  not  reduced;  rather,  it  is  concentrated  within  the  soft  body  tissue  (Bartrons  et  al.,  

Page 33: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

21

2007).     When   aquatic   insects   have   just   emerged,   their   exoskeleton   has   not  

hardened.    During  this  so-­‐called  teneral  stage,  spiders  could  have  greater  exposure  

to  PCBs  and  their  metabolites.    The  absence  of  a  thick,  chitin-­‐rich  exoskeleton  makes  

the   soft   tissue   of   those   organisms   more   available   to   spiders,   and   facilitates   the  

trophic  transfer  of  PCBs.  

  Ecdysone   is   the  molting  hormone   in  arthropods  (Chang,  1993)  and  belongs  

to  the  same  gene  family  as   the  vertebrate  thyroid  hormone  (Laudet,  1997).    Crabs  

exposed  to  oil  spills  were  observed  to  exhibit  different  molting  patterns  as  a  result  

of   exposure   to   thyroid   disrupting   compounds   (Oberdörster   et   al.,   1999),   and  

supported   hypotheses   that   PAHs   from   the   oil   may   influence   the   expression   of  

ecdysone.    Additionally,  PCBs  were  investigated  as  they  have  been  demonstrated  to  

interfere  with  the  thyroid  hormone  system  in  vertebrates  (Cheek  et  al.,  1999;Goldey  

et   al.,   1995;Koopman-­‐Esseboom  et   al.,   1994).     In   those   studies   the  PCBs  were  not  

found  to  induce  molting  in  arthropods.    These  studies  indicate  that  species  exposed  

to  PCBs  would  not  molt  more  than  would  be  expected  in  clean  habitats.  

 

Webs  

Another  potential  excretion  pathway  is  web  production.    Web  structure  and  

composition   has   been   extensively   studied   (Herberstein   et   al.,   2000;   Higgins   and  

Rankin,   1999;   Opell,   1998).   Orb-­‐weaving   spiders,   which   are   the   subject   of   this  

dissertation,   rely   heavily   on   silk   throughout   their   entire   life   cycle   (Foelix,   1982).    

Spiderlings   will   send   up   a   small   string   of   silk   and   parachute   on   the   breeze   to  

Page 34: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

22

disperse  from  the  rest  of  the  brood.    Webs  are  used  by  adults  to  both  capture  prey  

and   as   a   location   for   their   mating   habits.     Silk   is   also   used   to   create   a   nest   for  

fertilized  eggs  until  the  spiderlings  emerge.    Additionally,  the  webs  provide  a  surface  

for   pheromone   deposition.     Males   are   attracted   to   females   when   they   come   into  

contact  with  pheromones  that  are  embedded  in  the  lipid  matrix  of  the  web  (Schulz  

and  Toft,  1993).    Orb-­‐weaving  spiders  produce  and  enlist  up  to  seven  different  types  

of  silk  (Figure  1.4),  each  with  unique  properties  and  functions  (Vollrath  and  Selden,  

2007).        Silk  is  composed  of  some  proteins,  carbohydrates,  and  lipids  so  as  to  resist  

degradation  from  ambient  humidity.    In  addition,  the  sticky  substance  on  the  web  is  

acidic,   approximately   pH   4,   such   that   the   web   is   protected   from   bacterial  

degradation  (Foelix,  1982).      

Page 35: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

23

 

Figure  1.4  Different  types  and  functions  of  silks  produced  by  orb  weaver    spiders.        Adapted  from  Eisoldt  et  al.  2011.  

 

Orb-­‐webs  are  constructed  such  that  they  use  a  minimum  of  resources  –  just  

0.1-­‐0.5mg  of  silk,  and  a  maximum  of  thirty  minutes  for  construction  (Foelix,  1982).    

Tetragnathidae   web   orientation   is   slightly   tilted   from   vertical,   allowing   it   to  

efficiently   capture   aquatic   subsidy   insects   (Gillespie,   1987).     Tetragnathidae  webs  

are  orb-­‐shaped  where  there  is  ample  space,  but  silk  tangles  are  present  all  along  the  

bare   branches   wherever   room   is   available,   thus   maximizing   the   opportunity   to  

Page 36: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

24

capture   prey.     The   close   proximity   to   the   water   increases   probability   of   capture  

partly  because  emergent   insects  do  not  need  to   travel   far  before  encountering   the  

webs,  but  also  because  the  insects  that  emerge  are  just  barely  mature.      

Overall,   spider   silk   is   more   hydrophobic   than   hydrophilic   to   help   webs  

withstand  precipitation,  humidity,  and  aridity  (Foelix,  1982).    The  hydrophobicity  is  

accomplished  by  glycoproteins  and  lipids,  which  coat  the  silk  to  prevent  desiccation  

and  enable  prey  capture  (Opell  and  Bond,  2000).    Lipids,  and  perhaps  glycoproteins,  

favor  the  accumulation  of  hydrophobic  contaminants  such  as  PCBs.    The  lipophilicity  

of   PCB   congeners   and   their   metabolites   may   cause   them   to   partition   into   these  

lipids,  effectively  removing  them  from  the  body  cavity.    Out  of  body  sequestration  of  

contaminants   could   serve   a   protective   factor,   as   up   to   90%   of   the   web   making  

materials   are   recycled  without  metabolism   for   creation   of   the   new  web   (Peakall,  

1971).    The  alternative  possibility  is  that  cyclic  exposure  to  the  same  contaminants  

and  metabolites  may  occur.    Female  and  immature  tetragnathids  rebuild  their  webs  

nightly,  consuming  the  silk  material  and  using  it   for  the  next  web  (Gillespie,  1987;  

Opell,  1998).    The  contaminant  concentration  in  the  webs  could  increase  over  time  

as  body  burden  increases  due  to  sustained  predation  of  contaminated  prey.    Webs  

may  also  create  a  new  exposure  pathway  if  they  are  able  to  collect  volatile  PCBs  and  

OH-­‐PCBs.    The  likelihood  of  volatilization  of  OH-­‐PCBs  is  considerably  less  than  that  

of  PCBs  because  their  capability  to  form  hydrogen  bonds  with  water  increases  their  

concentration   in   water,   and   hence   decreases   their   fugacity.     The   contaminant  

concentration  in  the  web  may  then  increase  independently  from  spider  diet.    

Page 37: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

25

PCB  Transformation  

Metabolism   of   toxicants   has   various   toxicological   roles   in   organisms.     It  

primarily   functions   to   make   compounds   more   hydrophilic   such   that   they   can   be  

readily  removed  from  the  body.     In  this  case,  biotransformation  leads  to  enhanced  

elimination,   detoxification,   sequestration,   and   redistribution.     Alternatively,  

metabolism  can  be  problematic   if   the  toxicants  are   instead  activated  to  more  toxic  

forms.    In  the  case  of  hydroxylated  PCBs,  the  new  physio-­‐chemical  properties  of  the  

metabolites  resulted  in  greater  toxicity  than  their  parent  compounds  in  rats  (Purkey  

et  al.,  2004).    Similar  toxicity  trends  have  yet  to  be  confirmed  in  invertebrates,  but  

may   have   similar   behavior.     Our   understanding   of   PCB   metabolism   comes   from  

studies  with  non-­‐spider  organisms;  however,  such  studies  can  guide  investigations  

into  spiders  and  other  invertebrate  predators.  

Biotransformation   of   toxicants   involves   two   phases   of   action.     Phase   I  

includes  reactions  that  serve  to  make  the  toxicant  slightly  more  hydrophilic,  in  that  

they  may  add  or  expose  a  functional  group.    The  first  step  may  be  bypassed  if  there  

are  compounds  that  already  possess  an  exposed  functional  group.    Other  potential  

actions  in  phase  I  include  oxidation,  hydrolysis  or  reduction  of  the  toxicant.    Figure  

1.5  displays  some  of  the  metabolic  pathways  of  PCBs  determined  in  reptiles,  birds,  

and  mammals.     Phase   II   reactions   add   a   hydrophilic   group   through   a   conjugation  

reaction.    These  groups  can  be  sulfate  groups,   sugars,   glutathione,  or  amino  acids.    

Some   reactions   are   meant   to   detoxify   activated   metabolites,   so   acetylation   or  

methylation  may  be  used   to   inactivate   the  products   of   phase   I   reactions.    Overall,  

Page 38: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

26

hydrophilicity  should  increase  by  many  orders  of  magnitude  to  facilitate  excretion.    

Spider   excrement   is   only   via   solids,   so   increasing   hydrophilicity   may   allow   for  

incorporation   of   PCB   metabolites   into   the   crystalline   structure   of   the   excreted  

solids.  

The   biological   half-­‐life   of   PCBs   is   determined   by   their   susceptibility   to  

metabolism,  and  is  roughly  determined  from  their  bioconcentration  rate,  or  rate  of  

accumulation   (ka)   as   compared   to   their   rate   of   elimination   (ke).     If   ka   >   ke,   then  

compounds  bioaccumulate.    These  rates  are  determined  by  the  number  and  position  

of  chlorine  atoms.    Metabolic  resistance  is  great  if  there  are  five  or  more  chlorines,  

especially  if  these  are  para  positioned  chlorines  (Wiberg  et  al.,  1998).    For  example,  

PCB   congener   153   is   highly   resistant   to   metabolism   because   it   lacks   adjacent  

hydrogen  atoms  on   the  biphenyl   system  (Borlakoglu  and  Wilkins,  1993;  Bühler  et  

al.,  1988).    The  result  is  a  half  life  of  approximately  338  days  for  PCB  153  in  humans  

(Letcher   et   al.   2000).     Congeners   with  meta-­‐   and   para-­‐   positioned   hydrogen   are  

more   susceptible   to  metabolism   than   those  with  meta-­‐   and  para-­‐chlorine   (James,  

2001).  

All   exogenous   toxicants   need   to   pass   through   cells   to   enter   systemic  

circulation.     All   PCBs   are   lipophilic   enough   to   be   able   to   pass   through   the   lipid  

bilayer  of   the   cell  membrane  without  becoming   lodged   in  between   the  polar  head  

groups,  but  from  that  point  the  fate  of  the  chemicals  is  more  variable.    Equilibrium  

partitioning  is  not  appropriate  for  use  in  this  instance,  because  biota  are  not  often  at  

equilibrium  with  the  surrounding  environment.  

Page 39: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

27

 

Figure  1.5  Metabolism  of  PCBs.    Adapted  from  Letcher  et  al.  (  2000).    

 

While  PCBs   are   robust,   legacy   compounds,   they   can   still   be   transformed   in  

the   environment.     A   better   understanding   of   these   processes  may   allow   for   their  

more   reliable  use   as   tracers   to  help  understand   ecological   processes,  much   as  we  

have  used  stable  isotopes.    

Page 40: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

28

Hydroxylated   PCBs   are   formed   as   a   result   of   detoxifying   action   by  

cytochrome  P450  (CYP)  1A  and  2B.    Detoxifying  enzymes  typically  have  very  broad  

substrate   specificity,   but   these   isoforms   are   known   to   process  mostly   xenobiotics  

(Klassen,  2008).  CYP  enzymes  are  located  on  the  endoplasmic  reticulum  of  cells,  and  

are  found  in  high  concentrations  in  the  liver,  as  that  organ  typically  encounters  most  

of  the  xenobiotics  introduced  to  an  organism.    CYP  is  found  at  low  basal  expression  

levels   in  all  other  tissues,  too,  because  these  enzymes  are  an  important  part  of  the  

defense  against  toxicants.    As  part  of  phase  I  of  detoxification,  these  enzymes  serve  

to   make   hydrophobic   compounds   slightly   more   hydrophilic   through   addition   of  

polar  functional  groups.    The  most  prevalent  hydroxylated  metabolites  of  PCBs  are  

p-­‐OH  substituted.    The  basic  CYP  reaction  is  a  monooxygenase  reaction,  associated  

with  NADPH-­‐CYP450  reductase.    The  general  reaction  is  written  as:  

RH  +  O2  +  NADPH  +  H+  ↔  ROH  +  H2O  +  NADP+     (Equation  3)  

CYP  epoxidation  may  occur  as  a  result  of  this  reaction,  which  is  typically  not  

problematic;   however,   when   reorganization   does   not   occur   the   ring   can   be  

distorted.     OH-­‐PCBs   can   be   a   result   of   epoxidation   or   direct   insertion   of   the   OH-­‐  

functionality  by  CYP1A/2B.     Some  arene   intermediates  may  be   stable   for  weeks   if  

the   three-­‐membered   ring   experiences   the   stabilizing   effect   of   two   chlorines   on  

either  side  of  the  arene  oxide  (Reich  et  al.,  1978).      

Phase   II   enzymes   may   make   further   modifications   to   the   metabolites.    

Enzymes   such   as   glutathione-­‐s-­‐transferase   (GST)   serve   to  make   the   compound   of  

interest  more  hydrophilic  by  addition  of  additional  polar  groups,  thus  making  them  

Page 41: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

29

likely  to  be  excreted  from  the  organism  typically  through  urine  or  bile.    As  a  result,  

OH-­‐PCBs  are  likely  to  be  present  at  low,  transient  levels.    GST  modifies  electrophilic  

xenobiotics  such  as  PCBs,  and  may  be  able  to  bind  and  store  these  compounds.    GST  

is   abundant   in  mammals,   constituting   up   to   ten   percent   of   liver   protein   (Klaasen,  

2008).    OH-­‐PCBs  can  be  further  processed  to  become  quinines  or  catechols  [(OH)2-­‐

PCB]   (Amaro   et   al.,   1996).     In   the   laboratory,   PCB  metabolites  may   be   oxidized   if  

exposed  to  air  for  prolonged  periods  of  time  (Letcher  et  al.,  2000).  

OH-­‐PCBs   are   hydrophilic   enough   that   they   may   be   excreted,   but   it   is   also  

possible   that   they  may   interact   with   other   proteins   (Kania-­‐Korwel   et   al.,   2008a).    

OH-­‐PCBs   are   typically   found   in   significant   concentrations   in   the   plasma;   however  

they   have   also   been   found   in   the   adipose,   lung,   kidney,   and   liver   tissues   in  

organisms  such  as  mice,  fish,  albatross,  grey  seals,  polar  bears,  and  humans  (Sinjari  

et  al.,  1998;  Klasson-­‐Wehler  et  al.,  1987,  1997,  1998;  Bergman  et  al.,  1994;  Sandau  

and  Norstrom,  1996;  Buckman  et  al.,  2006).    Hydroxylated  PCBs  are  known  to  affect  

the   mitochondrial   membrane,   making   it   more   permeable   and   affecting   ATP  

production  (Stadnicki  and  Allen,  1979;  Ebner  and  Braselton,  1987;  Yamamoto  and  

Yoshimura,   1973;   Narasimhan   et   al.,   1991).     When   ATP   is   not   generated   at   the  

appropriate   levels   cellular   energy   stores   are   affected,   but   also   ionic   and   volume  

regulation,  resulting  in  a  more  acidic  pH  of  the  cytoplasm.      

Endocrine  disrupting  compounds  are  a  class  of  emerging  toxicants  currently  

of   great   interest.     OH-­‐PCBs   have   been   demonstrated   to   be   weakly   estrogenic  

(Kramer   et   al.,   1997;   Moore   et   al.,   1997),   though   the   studied   congeners   that  

Page 42: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

30

exhibited   such   behavior   are   not   environmentally   relevant.     Ortho-­‐chlorinated  

biphenyl   metabolites   are   associated   with   alterations   in   vitamin   A   function   and  

thyroid   hormone   metabolism   (Brouwer,   1991).     The   thyroid   hormone   thyroxine  

(T4)   functions   to   increase   the   metabolic   rate   and   oxygen   consumption   in   an  

individual.    In  invertebrates,  the  molting  hormone  ecdysone  has  a  similar  structure  

as  thyroxine,  so  the  presence  of  OH-­‐PCBs  in  their  systems  may  also  negatively  affect  

spiders.     The   iodine   substitution   pattern   of   T4   (3,3’,4’,5-­‐tetraiodo-­‐L-­‐thyroxine)  

resembles   the   structure   of   many   OH-­‐PCB   metabolites.     Many   of   the   structural  

elements  of  the  metabolites  can  non-­‐covalently  bind  to  transthyretin,  (TTR)  which  

functions  as  a  transporter  for  thyroxine,  causing  the  metabolites  to  mimic  thyroxine  

and  activate   the  hormone’s  receptor  (see  Figure  1.6).    The  metabolites   function  as  

agonists,  and  induce  UDP  –  glucuronosyl  transferase  enzymes  to  glucoronidate  and  

remove  the  thyroxine  more  quickly.    

Page 43: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

31

 

Figure  1.6    A.  T3  and  T4  regulation  by  the  Thyroid;  B.  Structure  of  thyroxine  (T4).  

                                       Source:  <http://www.bio.miami.edu/oreilly/ganser/03-­‐01-­‐05Endo.htm>.  

 

While  the  concentrations  in  tissues  other  than  the  plasma  are  not  significant,  

it   is   important   to   note   that   hormones   in   blood   are   typically   present   at   very   low  

concentrations.     Free   thyroxine   is   typically   present   at   trace   levels,   so   mimic  

compounds   can   be   effective   at   very   low   concentrations.     Typically   mimic  

Page 44: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

32

compounds  do  not  “fit”   the  receptor  as  well  as  the   intended  compound.    However,  

the  affinity  of  OH-­‐PCBs  for  TTR  may  be  ten  times  greater  than  that  of  T4  (Brouwer  

et   al.,   1998;Lans   et   al.,   1993).     Reducing   the   amount   of   thyroxine   present   in   the  

plasma   leads   to   increased   thyroid   stimulating   hormone   (TSH),   which   creates  

hypertrophy   (where   the   volume   of   an   organ   or   tissue   is   increased   due   to   the  

enlargement  of  its  component  cells)  or  neoplasia  (abnormal  growth  of  cells)  of  the  

thyroid.    These  effects  are  less  problematic  in  vivo  than  in  vitro  (Schuur  et  al.,  1996,  

1998,  1999),  though  they  may  have  an  effect  on  fetal  brain  development  (Brouwer  

et  al.,  1998).  

 

PCB  Metabolism  by  Spiders  

The   bulk   of   the   research   on   hydroxylated   PCB  metabolites   (OH-­‐PCBs)   has  

been  on  mammals,   fish,   and  birds.     Since  PCBs  have  been  detected   in   spiders   it   is  

likely  that  both  spiders  and  their  predators  will  possess  metabolites.    Research  may  

expand   in   time   to   include   other   arachnivorous   predators   such   as   reptiles   and  

amphibians.    While  the  number  of  PCB  congeners  detected  in  tissue  is  typically  high,  

fewer  congeners  appear  to  undergo  hydroxylation  (Klasson-­‐Wehler  et  al.,  1998).  

Digestion  begins   in  spiders   in   the  midgut  (Figure  1.4),  which   is  expected  to  

have  the  same  functionality  as  seen   in  the   liver   in  vertebrates  (Foelix,  1982).    The  

muscles  of  this  compartment  will  contract  and  expand  such  that  a  vacuum  is  created  

in  the  digestive  tract,  which  effectively  creates  a  suction  pump  that  draws  the  prey-­‐

fluid  into  the  tract.    The  midgut  is  the  only  section  of  the  digestive  physiology  that  

Page 45: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

33

lacks  the  thin  cuticular  coating,  thus  making  it  the  only  area  designed  for  digestion.    

First   secretory   cells   empty   enzymatic   granules   into   the   gut   lumen,   followed   by  

resorptive   cells   that   process   the   nutrients   further   in   food   vacuoles   before   the  

metabolites  move  into  interstitial  tissue  or  the  hemolymph.    The  secretory  cells  may  

take  up  to  eight  hours  to  empty  all  granules,  and  at   that   time  resorptive  cells  may  

begin   to   contain  excretory  products,   as  well   as   stores  of   glycogen  and   lipids.    The  

hypothesized   process   of   PCB   metabolism   described   herein   is   inferred   from   the  

understanding   of   spider   digestion   and  predation,   as  well   as   empirical   evidence   of  

OH-­‐PCB  generation  and  activity.  

 

Summary  

Ecological  and  exposure  studies  tell  us  that  riparian  spiders  are  an  important  

linkage   between   the   aquatic   and   terrestrial   habitats.     Analyses   of   these  

compartments   indicate   that   spiders   can   act   as   biovectors,   transferring   energy,  

carbon,  and  even  contamination  from  aquatic  to  terrestrial  food  webs.    In  particular,  

Tetragnathidae   spiders   occupy   a   niche   that   makes   them   important   biovectors.    

Their   foraging   tactics   (Table   1.1)   differentiate   them   from   other   spiders   such   as  

Araneidae   and   basilica   spiders.     Less   is   known   about   the   physiology   and  

detoxification  of  organic  contaminants  by  spiders.    Understanding  these  can  inform  

our   interpretation   of   the   spider’s   role   in   contaminant   fate,   transport,   and  

transformation.  

 

Page 46: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

34

References  

Akamatzu,  F.,  Toda,  H.,  Okino,  T.,  2004.  Food  source  of  riparian  spiders  analyzed  by    using  stable  isotope  ratios.  Ecol.  Res.  19,  655-­‐662.    

Amaro,  A.R.,  Oakley,  G.G.,  Bauer,  U.,  Spielmann,  H.P.,  Robertson,  L.W.,  1996.    Metabolic  activation  of  PCBs  to  quinones:  Reactivity  toward  nitrogen  and  sulfur  nucleophiles  and  influence  of  superoxide  dismutase.  Chem.  Res.  Toxicol.  9,  623-­‐629.  

 Bartrons,  M.,  Grimalt,  J.O.,  Catalan,  J.,  2007.  Concentration  changes  of  organochlorine    

compounds  and  polybromodiphenyl  ethers  during  metamorphosis  of  aquatic  insects.  Environ.  Sci.  Technol.  41,  6137-­‐6141.  

 Baxter,  C.V.,  Fausch,  K.D.,  Saunders,  W.C.,  2005.  Tangled  webs:  Reciprocal  flows  of    

invertebrate  prey  link  streams  and  riparian  zones.  Freshwat.  Biol.  50,  201-­‐220.  

 Bergman,  Å,  Klasson-­‐Wehler,  E.,  Kuroki,  H.,  1994.  Selective  retention  of    

hydroxylated  PCB  metabolites  in  blood.  Environ.    Health.    Perspect.  102,  464-­‐469.  

 Blackledge,  T.A.,  Scharff,  N.,  Coddington,  J.A.,  Szuts,  T.,  Wenzel,  J.W.,  Hayashi,  C.Y.,    

Agnarsson,  I.,  2009.  Reconstructing  web  evolution  and  spider  diversification  in  the  molecular  era.  Proc.    Natl  Acad.    Sci.    USA  106,  5229-­‐5234.  

 Borlakoglu,  J.T.,  Wilkins,  J.P.G.,  1993.  Correlations  between  the  molecular  structures    

of  polyhalogenated  biphenyls  and  their  metabolism  by  hepatic-­‐microsomal  monooxygenases.  Comp.    Biochem.    Physiol.  105C,  113-­‐117.  

 Brenner,  R.C.,  Magar,  V.S.,  Ickes,  J.A.,  Foote,  E.A.,  Abbot,  J.E.,  Bingler,  L.S.,  Crecelius,    

E.A.,  2004.  Long-­‐term  recovery  of  PCB-­‐contaminated  surface  sediments  at  the  Sangamo-­‐Weston/Twelvemile  Creek/Lake  Hartwell  Superfund  Site.  Environ.    Sci.    Technol.  ,  2328-­‐2337.  

 Bristowe,  W.S.,  1939,  1941.  The  Comity  of  Spiders.  The  Ray  Society.  Republished    

1968  by  Johnson  Reprint  Corp.  New  York,  London.    Brouwer,  A.,  1991.  Role  of  biotansformation  in  PCB-­‐induced  alterations  in  vitamin  A    

and  thyroid  hormone  metabolism  in  laboratory  and  wildlife  species.  Biochem  Society  Transact  19,  731-­‐737.  

   

Page 47: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

35

Brouwer,  A.,  Morse,  D.,  Lans,  M.,  Schuur,  A.,  Murk,  A.,  Klasson-­‐Wehler,  E.,  Bergman,    A.,  Visser,  T.,  1998.  Interactions  of  persistent  environmental  organohalogens  with  the  thyroid  hormone  system:  Mechanisms  and  possible  consequences  for  animal  and  human  health.  Toxicol.  Ind.  Health  14,  59-­‐84.  

 Buckman,  A.H.,  Brown,  S.B.,  Small,  J.,  Muir,  D.C.G.,  Parrott,  J.,  Solomon,  K.R.,  Fisk,  A.T.,    

2007.  Role  of  temperature  and  enzyme  induction  in  the  biotransformation  of  polychlorinated  biphenyls  and  bioformation  of  hydroxylated  polychlorinated  biphenyls  by  rainbow  trout  (Oncorhynchus  mykiss).  Environ.  Sci.  Technol.  41,  3856-­‐3863.  

 Buckman,  A.H.,  Wong,  C.S.,  Chow,  E.A.,  Brown,  S.B.,  Solomon,  K.R.,  Fisk,  A.T.,  2006.    

Biotransformation  of  polychlorinated  biphenyls  (PCBs)  and  bioformation  of  hydroxylated  PCBs  in  fish.  Aquatic  Toxicology  78,  176-­‐185.  

 Bühler,  F.,  Schmid,  P.,  Schlatter,  C.,  1988.  Kinetics  of  PCB  elimination  in  man.    

Chemosphere  17,  1717-­‐1726.    Calvo,  R.,  Obregon,  M.J.,  Ruiz  de  Ona,  C.,  Escobar  del  Rey,  F.,  Morreale  de  Escobar,  G.,    

1990.  Congenital  hypothyroidism,  as  studied  in  rats:  The  crucial  role  of  maternal  thyroxine  but  not  of  3,5,3'-­‐triiodothyronine  in  the  protection  of  the  fetal  brain.  J.    Clin.    Invest.  86,  889-­‐899.  

 Campfens,  J.,  Mackay,  D.,  1997.  Fugacity-­‐based  odel  of  PCB  bioaccumulation  in    

complex  aquatic  food  webs.  Environ.  Sci.  Technol.  31,  577-­‐583.    Carlson,  D.B.,  Williams,  D.E.,  2001.  4-­‐Hhydroxy-­‐2’,4’,6’-­‐trichlorobiphenyl  and  4-­‐  

hydroxy-­‐2’,3’,4’,5’-­‐tetrachlorobiphenyl  are  estrogenic  in  rainbow  trout.  Environmental  Toxicology  and  Chemistry  20,  351-­‐358.  

 Carrel,  J.E.,  Heathcote,  R.D.,  1976.  Heart  rate  in  spiders:  Influence  of  body  size  and    

foraging  energetics.  Science  193,  148-­‐150.    Chacon,  P.,  Eberhard,  W.G.,  1980.  Factors  affecting  numbers  and  kinds  of  prey    

caught  in  artificial  spider  webs,  with  considerations  of  how  orb  webs  trap  prey.  Bull.    Br.    Arachnol.    Soc.  5,  28-­‐38.  

 Chang,  E.S.,  1993.  Comparitive  endocrinology  of  molting  and  reproduction:  Insects    

and  crustaceans.  Annu.  Rev.  Entomol.  38,  161-­‐180.          

Page 48: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

36

Cheek,  A.O.,  Kow,  K.,  Chen,  J.,  McLachlan,  J.A.,  1999.  Potential  mechanisms  of  thyroid    disruption  in  humans:  Interaction  of  organochlorine  compounds  with  thyroid  receptor,  transthyretin,  and  thyroid-­‐binding  globulin.  Environ.  Health  Perspect.  107,  273-­‐278.  

 Danerud,  P.O.,  Morse,  D.C.,  Klasson-­‐Wehler,  E.,  Brouwer,  A.,  1996.  Binding  of  a    

3,3',4,4'-­‐tetrachlorobibhenyl  (CB-­‐77)  metabolite  to  fetal  transthyretin  and  effects  of  fetal  thyroid  hormone  levels  in  mice.  Toxicology  106,  105-­‐114.    

 de  Haan,  L.H.J.,  van  Dijk,  L.,  Brouwer,  A.,  1994.  Effects  of  hydroxylated  PCB    

metabolites  on  the  gap-­‐junctional  intercellular  communication  between  mouse  Hepa  1c1c7  cells.  Organohalogen  Compounds  20,  491-­‐495.  

 deVoogt,  P.,  Brinkman,  U.A.T.,  1989.  Production,  properties,  and  usage  of    

polychlorinated  biphenyls,  in:  Kimbrough,  R.D.,    Jensen,  A.A.  (Eds.),  Halogenated  Biphenyls,  Terphenyls,  Naphthalenes,  Dibenzodioxin  and  Related  Products,  2nd  ed.  Elsevier,  Amsterdam,  pp.  3-­‐46.  

 Easson,  L.H.,  Stedman,  E.,  1933.  Studies  on  the  relationship  between  chemical    

constitution  and  physiological  action.  V.  Molecular  dyssymmetry  and  physiological  activity.  Biochem  J  27,  1257-­‐1266.  

 Ebner,  K.V.,  Braselton,  W.E.J.,  1987.  Structural  and  chemical  requirements  for    

hydroxychlorobiphenyls  to  uncouple  rat  liver  mitochonria  and  potentiation  of  uncoupling  with  Aroclor  1254.  Chem-­‐Biol  Interact  63,  139-­‐155.  

 Eisoldt,  L.,  Thamm,  C.,  Scheibel,  T.,  2012.  The  role  of  terminal  domains  during    

storage  and  assembly  of  spider  silk  proteins.  Biopolymers  97,  355-­‐361.    Eisoldt,  L.,  Smith,  A.,  Scheibel,  T.,  2011.  Decoding  the  secrets  of  spider  silk.  Materials    

Today  14,  80-­‐86.    Foelix,  R.F.,  1982.  Biology  of  Spiders,  1st  ed.  Harvard  University  Press,  Cambridge,    

Massachusetts.      Gillespie,  R.G.,  Caraco,  T.,  1987.  Risk-­‐sensitive  foraging  strategies  of  two  spider    

populations.  Ecology  68,  887-­‐899.    Gillespie,  R.G.,  1987.  The  mechanism  of  habitat  selection  in  the  long-­‐jawed  orb-­‐  

weaving  spider  Tetragnatha  elongata  (Araneae,  Tetragnathidae).  J.  Arachnol.  15,  81-­‐90.  

   

Page 49: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

37

Goldey,  E.S.,  Kehn,  L.S.,  Lau,  C.,  Rehnberg,  G.L.,  Crofton,  K.M.,  1995.  Developmental    exposure  to  polychlorinated  biphenyls  (Arochlor  1254)  reduces  circulating  thyroid  hormone  concentrations  and  causes  hearing  deficits  in  rats.  Toxicol.  Appl.  Pharmacol.  135,  77-­‐88.  

 Greenstone,  M.H.,  1979.  Spider  feeding  behaviour  optimises  dietary  essential  amino    

acid  composition.  Nature  282,  501-­‐503.    Greim,  H.,  Snyder,  R.,  2008.  Toxicology  and  Risk  Assessment:  A  Comprehensive    

Introduction.  Wiley-­‐Interscience.  1,  387.    Guvenius,  D.M.,  Hassanzadeh,  P.,  Bergman,  A.,  Norent,  K.,  2002.  Metabolites  of    

polychlorinated  biphenyls  in  human  liver  and  adipose  tissue.  Environ.  Toxicol.  Chem.  21,  2264-­‐2269.  

 Haglund,  P.,  Wiberg,  K.,  1996.  Determination  of  the  gas  chromatographic  elution    

sequences  of  the  (+)  and  (-­‐)  enantiomers  of  stable  atropisomeic  PCBs  on  Chirasil-­‐Dex.  J.    High  Resol.    Chrom.  19,  373-­‐376.  

 Harner,  T.,  Wiberg,  K.,  Norstrom,  R.,  2000.  Enantiomer  fractions  are  preferred  to    

enantiomer  ratios  for  describing  chiral  signatures  in  environmental  analysis.  Environ.  Sci.  Technol.  34,  218-­‐220.  

 Heim,  M.,  Romer,  L.,  Scheibel,  T.,  2010.  Hierarchical  structures  made  of  proteins.  The    

complex  architecture  of  spider  webs  and  their  constituent  silk  proteins.  Chem.    Soc.    Rev.  39,  156-­‐164.  

 Heim,  M.,  Keerl,  D.,  Scheibel,  T.,  2009.  Spider  silk:  From  soluble  protein  to    

extraordinary  fiber.  Angewandte  Chemie    48,  3584-­‐3596.    Helgason,  L.B.,  Arukwe,  A.,  Gabrielsen,  G.W.,  Harju,  M.,  Hegseth,  M.N.,  Heimstad,  E.S.,    

Jørgensen,  E.H.,  Mortensen,  A.S.,  Wolkers,  J.,  2010.  Biotransformation  of  PCBs  in  Arctic  seabirds:  Characterization  of  phase  I  and  II  pathways  at  transcriptional,  translational  and  activity  levels.  Comp.  Biochem.  Physio.  C  152,  34-­‐41.  

 Henschel,  J.R.,  Mahsberg,  D.,  Stumpf,  H.,  2001.  Allochthonous  aquatic  insects    

increase  predation  and  decrease  herbivory  in  river  shore  food  webs.  Oikos  93,  429-­‐438.  

 Herberstein,  M.E.,  Craig,  C.L.,  Coddington,  J.A.,  Elgar,  M.A.,  2000.  The  functional    

significance  of  silk  decorations  of  orb-­‐web  spiders:  A  critical  review  of  the  empirical  evidence.  Bio.    Rev.  75,  649-­‐669.  

Page 50: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

38

Higgins,  L.,  Rankin,  M.A.,  1999.  Nutritional  requirements  for  web  synthesis  in  the    tetragnathid  spiderNephila  clavipes.  Physiol.  Entomol.  24,  263-­‐270.  

 Hoekstra,  P.F.,  Letcher,  R.J.,  O'Hara,  T.M.,  Backus,  S.M.,  Solomon,  K.R.,  Muir,  D.C.G.,    

2003.  Hydroxylated  and  methylsulfone-­‐containing  metabolites  of  polychlorinated  biphenyls  in  the  plasma  and  blubber  of  bowhead  whales  (Balaena  mysticetus).  Environ.  Toxicol.  Chem.  22,  2650-­‐2658.  

 Holling,  C.S.,  1959.  The  components  of  predation  as  revealed  by  a  study  of  small    

mammal  predation  of  the  European  sawfly.  Can.    Entomol.  91,  293-­‐320.    Hühnerfuss,  H.,  Kallenborn,  R.,  Konig,  W.A.,  Rimkus,  G.,  1992.  Preferential    

enrichment  of  the  (+)-­‐α-­‐hexachlorocylcohexane  in  cerebral  matter  of  harbour  seals.  Organohal.  Compds.  10,  97-­‐100.  

 Ishida,  C.,  Koga,  N.,  Hanioka,  N.,  Saeki,  H.K.,  Yoshimura,  H.,  1991.  Metabolism  in  vitro    

of  3,4,3',4'-­‐  and  2,5,2',5'-­‐tetrachlorobiphenyl  by  rat  liver  microsomes  and  highly  purified  cytochrome  P450.  J.    Pharmacobiodyn.  14,  276-­‐284.  

 James,  M.O.,  2001.  Polychlorinated  biphenyls:  Metabolism  and  metabolites,  in:  PCBs:    

Advances  in  Environmental  Toxicology  and  Health  Effects.    Robertson,  L.,    Hansen,  L.  (Eds.).  The  University  Press  of  Kentucky,  pp.  35-­‐46.  

 Jaspers,  V.L.B.,  Dirtu,  A.C.,  Eens,  M.,  Neels,  H.,  Covaci,  A.,  2008.  Predatory  bird  species    

show  different  patterns  of  hydroxylated  polychlorinated  biphenyls  (OH-­‐PCBs)  and  polychlorinated  biphenyls  (PCBs).  Environ.    Sci.    Technol.  42,  3465-­‐3471.  

 Johnson,  D.M.,  Akre,  B.G.,  Crowley,  P.H.,  1975.  Modeling  arthropod  predation:    

Wasteful  killing  by  damselfly  naiads.  Ecology  56,  1081-­‐1093.    Kallenborn,  R.,  Hühnerfuss,  H.,  2001.  Chiral  Environmental  Pollutants:  Trace    

Analysis  and  Ecotoxicology.  Springer.    Kania-­‐Korwel,  I.,  Xie,  W.,  Hornbuckle,  K.C.,  Robertson,  L.W.,  Lehmler,  H.,  2008a.    

Enantiomeric  enrichment  of  2,2′,3,3′,6,6′-­‐hexachlorobiphenyl  (PCB  136)  in  ice  after  induction  of  CYP  enzymes.  Arch.  Environ.  Contam.  Toxicol.  55,  510-­‐517.  

 Kania-­‐Korwel,  I.,  Zhao,  H.,  Norstrom,  K.,  Li,  X.,  Hornbuckle,  K.C.,  Lehmler,  H.,  2008b.    

Simultaneous  extraction  and  clean-­‐up  of  polychlorinated  biphenyls  and  their  metabolites  from  small  tissue  samples  using  pressurized  liquid  extraction.  Journal  of  Chromatography  A  1214,  37-­‐46.  

Page 51: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

39

Kaston,  B.J.,  1970.  Comparative  biology  of  the  American  Black  Widow  spiders.    Tansact.    San  Diego  Soc.    Nat.    Hist.  16,  33.  

 Klassen,  C.D.,  2008.  Toxicology:  The  Basic  Science  of  Poisons.  ,  7th  ed.    McGraw    

Hill,1309.    Klasson-­‐Wehler,  E.,  Hovander,  L.,  Bergman,  Å,  1997.  New  organohalogens  in  human    

plasma  –  identification  and  quantification.  In:  17th  Symposium  on  Halogenated  Environmental  Organic  Pollutants,  Dioxin’97.  Organohalogen  Compounds  33,  420-­‐425.  

 Klasson-­‐Wehler,  E.,  Bergman,  Å,  Kowalski,  B.,  Brandt,  I.,  1987.  Metabolism  of    

2,3,4',6-­‐tetrachlorobiphenyl  -­‐  formation  and  tissue  localization  of  mercapturic  acid  pathway  metabolites  in  mice.  Xenobiotica  17,  477-­‐486.  

 Klasson-­‐Wehler,  E.,  Bergman,  Å,  Athanasiadou,  M.,  Ludwig,  J.P.,  Auman,  H.J.,  Kannan,    

K.,  Van  Den  Berg,  M.,  Murk,  A.J.,  Feyk,  L.A.,  Giesy,  J.P.,  1998.  Hydroxylated  and  methylsulfonyl  polychlorinated  biphenyl  metabolites  in  albatrosses  from  Midway  Atoll,  North  Pacific  Ocean.  Environ.  Toxicol.  Chem.  17,  1620-­‐1625.  

 Kodavanti,  P.R.S.,  Ward,  T.R.,  Mckinney,  J.D.,  Tilson,  H.A.,  1995.  Increased  (3H)    

phorbol  ester  binding  in  rat  cerebellar  granule  cells  by  polychlorinated  biphenyl  mixtures  and  congeners:  Structure-­‐activity  relationships.  Toxicol.  Appl.  Pharmacol.  130,  140-­‐148.  

 Koopman-­‐Esseboom,  C.,  Morse,  D.C.,  Weisglas-­‐Kuperus,  N.,  Lutkeschipholt,  I.J.,    

VanDerPaauw,  C.G.,  Tuinstra,  L.G.M.T.,  Brouwer,  A.,  Sauer,  P.J.J.,  1994.  Effects  of  dioxin  and  polychlorinated  biphenyls  on  thyroid  hormone  status  of  pregnant  women  and  their  infants.  Pediatr.  Res.  36,  468-­‐473.  

 Kramer,  V.J.,  Helferich,  W.G.,  Bergman,  Å,  Klasson-­‐Wehler,  E.,  Giesy,  J.P.,  1997.    

Hydroxylated  polychlorinated  biphenyl  metabolites  are  anti-­‐estrogenic  in  a  stably  transfected  human  breast  adenocarcinoma  (MCF7)  cell  line.  Toxicol.  Appl.  Pharmacol.  144,  363-­‐376.  

 Lans,  M.C.,  Brouwer,  A.,  Koppe,  J.G.,  van  den  Berg,  M.,  1990.  Enzyme-­‐Induction  and    

alterations  in  thyroid-­‐hormone,  vitamin-­‐A  and  vitamin-­‐K  levels  by  TCDD  in  neonatal  and  maternal  rats.  Chemosphere  20,  1129-­‐1134.  

 Lans,  M.C.,  1995.  Thyroid  hormone  binding  proteins  as  novel  targets  for    

hydroxylated  polyhalogenated  aromatic  hydrocarbons  (PHAHs):  Possible  implications  for  toxicity.  Agricultural  University  Wageningen  .  

 

Page 52: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

40

Lans,  M.C.,  Klasson-­‐Wehler,  E.,  Willemsen,  M.,  Meussen,  E.,  Safe,  S.,  Brouwer,  A.,    1993.  Structure-­‐dependent,  competitive  interaction  of  hydroxy-­‐polychlorobiphenyls,  -­‐dibenzo-­‐p-­‐dioxins  and  -­‐dibenzofurans  with  human  transthyretin.  Chem.  Biol.  Interact.  88,  7-­‐21.  

 Laudet,  V.,  1997.  Evolution  of  the  nuclear  receptor  superfamily:  Early    

diversificiation  from  an  ancestral  orphan  receptor.  J.  Mol.  Endocrinol.  19,  207-­‐226.  

 Lehmler,  H.J.,  Harrad,  S.J.,  Huhnerfuss,  H.,  Kania-­‐Korwel,  I.,  Lee,  C.M.,  Lu,  Z.,  Wong,    

C.S.,  2009.  Chiral  polychlorinated  biphenyl  transport,  metabolism,  and  distribution:  A  review.  Environ.    Sci.    Technol.  44,  2757-­‐2766.  

 Letcher,  R.J.,  Klasson-­‐Wehler,  E.,  Bergman,  Å,  2000.  Methyl  sulfone  and  hydroxylated    

metabolites  of  polychlorinated  biphenyls,  in:  New  Types  of  Persistent  Halogenated  Compounds.    Hutzinger,  O.  (Ed.).  Springer,  pp.  315.  

 Letcher,  R.J.,  Bustnes,  J.O.,  Dietz,  R.,  Jenssen,  B.M.,  Jørgensen,  E.H.,  Sonne,  C.,    

Verreault,  J.,  Vijayan,  M.M.,  Gabrielsen,  G.W.,  2010.  Exposure  and  effects  assessment  of  persistent  organohalogen  contaminants  in  arctic  wildlife  and  fish.  Sci.  Total  Environ.  408,  2995-­‐3043.  

 Łuczak,  J.,  1963.  Differences  in  the  structure  of  communities  of  web  spiders  in  one    

type  of  environment  (young  pine  forest).  Ekologia  Polska  11,  160-­‐221.    Mackay,  D.,  Fraser,  A.,  2000.  Bioaccumulation  of  persistent  organic  chemicals:    

mechanisms  and  models.  Environ.  Pollut.  110,  375-­‐391.    Mackay,  D.,  Shiu,  W.Y.,  Ma,  K.C.,  1992.  Illustrated  Handbook  of  Physical-­‐Chemical    

Properties  and  Environmental  Fate  for  Organic  Chemicals,  Vol.  I:  Monoaromatice  Hydrocarbons,  Chlorobenzenes,  and  PCBs.  CRC  Press,  Boca  Raton,  FL.  I.  

 McCune,  B.,  Grace,  J.B.,  Urban,  D.L.,  2002.      Analysis  of  Ecological  Communities.  MjM    

Software  Design,  Gleneden  Beach,  OR.    McCune,  B.,  Mefford,  M.J.,  1999.  PC-­‐ORD.  Multivariate  Analysis  of  Ecological  Data,    

Version  4.  MjM  Software  Design,  Gleneden  Beach,  OR.    McKinney,  M.A.,  Guise,  S.D.,  Martineau,  D.,  Béland,  P.,  Lebeuf,  M.,  Letcher,  R.J.,  2006.    

Organohalogen  contaminants  and  metabolites  in  beluga  whale  (Delphinapterus  leucas)  liver  from  two  Canadian  populations.  Environ.  Toxicol.  Chem.  25,  1246-­‐1257.  

Page 53: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

41

 Moore,  M.,  Mustain,  M.,  Daniel,  K.,  Chen,  I.,  Safe,  S.,  Zacharewski,  T.,  Gillesby,  B.,    

Joyeux,  A.,  Balaguer,  P.,  1997.  Antiestrogenic  activity  of  hydroxylated  polychlorinated  biphenyl  congeners  identified  in  human  serum.  Toxicol.  Appl.  Pharmacol.  142,  160-­‐168.  

 Morse,  D.C.,  Klasson-­‐Wehler,  E.,  Wesseling,  W.,  Koeman,  J.H.,  Brouwer,  A.,  1996.    

Alterations  in  rat  brain  thyroid  hormone  status  following  pre-­‐  and  post-­‐natal  exposure  to  polychlorinated  biphenyls  (Aroclor  1254).  Toxicol.    App.    Pharmacol  136,  269-­‐279.  

 Morse,  D.C.,  van  Bladeren,  P.J.,  Klasson-­‐Wehler,  E.,  Brouwer,  A.,  1995.  β-­‐  

Naphthoflavone-­‐  and  self-­‐induced  metabolism  of  3,3',4,4'-­‐tetrachlorobuiphenyl  in  hepatic  microsomes  of  the  male,  pregnant  female,  and  foetal  rat.  Xenobiotica  25,  245-­‐260.  

 Murdoch,  W.W.,  1977.  Stabilizing  effects  of  spatial  heterogeneity  in  predator-­‐prey    

systems.  Theor.  Popul.  Biol.  11,  252-­‐273.    Narasimhan,  T.R.,  Kim,  H.L.,  Safe,  S.,  1991.  Effects  of  hydroxylated  polychlorinated    

biphenyls  on  mouse  liver  mitochondrial  oxidative  phosphorylation.  J  Biochem  Toxicol  6,  229-­‐236.  

 Nomiyama,  K.,  Nomura,  Y.,  Takahashi,  T.,  Uchiyama,  Y.,  Arizono,  K.,  Shinohara,  R.,    

2010.  Hydroxylated  polychlorinated  biphenyls  (OH-­‐PCBs)  induce  vitellogenin  through  estrogenic  activity  in  primary-­‐cultured  hepatocytes  of  the  Xenopus  laevis.  Chemosphere  78,  800-­‐806.  

 Oberdörster,  E.,  Cottam,  D.M.,  Wilmot,  F.A.,  Milner,  M.J.,  McLachlan,  J.A.,  1999.    

Interaction  of  PAHs  and  PCBs  with  ecdysone-­‐dependent  gene  expression  and  cell  proliferation.  Toxicol.  Appl.  Pharmacol.  160,  101-­‐108.  

 Opell,  B.D.,  Markley,  B.J.,  Hannum,  C.D.,  Hendricks,  M.L.,  2008.  The  contribution  of    

axial  fiber  extensibility  to  the  adhesion  of  viscous  capture  threads  spun  by  orb-­‐weaving  spiders.  J.    Exp.    Biol.  211,  2243-­‐2251.  

 Opell,  B.D.,  Bond,  J.E.,  2000.  Capture  thread  extensibility  of  orb-­‐weaving  spiders:    

testing  punctuated  and  associative  explanations  of  character  evolution.  Biol.    J.    Linn.    Soc.  70,  120-­‐120.  

 Opell,  B.D.,  1998.  Economics  of  spider  orb-­‐webs:  The  benefits  of  producing  adhesive    

capture  thread  and  of  recycling  silk.  Funct.  Ecol.  12,  613-­‐624.    

Page 54: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

42

Pakdeesusuk,  U.,  Lee,  C.M.,  Coates,  J.T.,  Freedman,  D.L.,  2005.  Assessment  of  natural    attenuation  via  in  situ  reductive  dechlorination  of  polychlorinated  biphenyls  in  sediments  of  the  Twelve  Mile  Creek  Arm  of  Lake  Hartwell,  SC.  Environ.  Sci.  Technol.  39,  945-­‐952.  

 Pakdeesusuk,  U.,  Freedman,  D.L.,  Lee,  C.M.,  Coates,  J.T.,  2003a.  Reductive    

dechlorination  of  polychlorinated  biphenyls  in  sediment  from  the  Twelve  Mile  Creek  arm  of  Lake  Hartwell,  South  Carolina,  USA.  Environ.  Toxicol.  Chem.  22,  1214-­‐1220.  

 Pakdeesusuk,  U.,  Jones,  W.J.,  Lee,  C.M.,  Garrison,  A.W.,  O'Niell,  W.L.,  Freedman,  D.L.,    

Coates,  J.T.,  Wong,  C.S.,  2003b.  Changes  in  enantiomeric  fractions  during  microbial  reductive  dechlorination  of  PCB132,  PCB149,  and  Aroclor  1254  in  Lake  Hartwell  sediment  microcosms.  Environ.  Sci.  Technol.  37,  1100-­‐1107.  

 Park,  J.,  Kalantzi,  O.I.,  Kopec,  D.,  Petreas,  M.,  2009.  Polychlorinated  biphenyls  (PCBs)    

and  their  hydroxylated  metabolites  (OH-­‐PCBs)  in  livers  of  harbor  seals  (Phoca  vitulina)  from  San  Francisco  Bay,  California  and  Gulf  of  Maine.  Mar.  Environ.  Res.  67,  129-­‐135.  

 Peakall,  D.B.,  1971.  Conservation  of  web  proteins  in  the  spiderAraneus  diadematus.    

J.    Exp.    Zool.  176,  257.    Prouvost,  O.,  Trabalon,  M.,  Papke,  M.,  Schulz,  S.,  1999.  Contact  sex  signals  on  web    

and  cuticle  of  Tegenaria  atrica  (Araneae,  Agelenidae).  Arch.  Insect  Biochem.  Physiol.  40,  194-­‐202.  

 Purkey,  H.E.,  Palaninathan,  S.K.,  Kent,  K.C.,  Smith,  C.,  Safe,  S.H.,  Sacchettini,  J.C.,  Kelly,    

J.W.,  2004.  Hydroxylated  polychlorinated  biphenyls  selectively  bind  transthyretin  in  blood  and  inhibit  amyloidogenesis:  Rationalizing  rodent  PCB  toxicity.  Chem.  Biol.  11,  1719-­‐1728.  

 Raikow,  D.,  Walters,  D.,  Fritz,  K.,  Mills,  M.,  2011.  The  distance  that  contaminated    

aquatic  subsidies  extend  into  lake  riparian  zones.  Ecol.  Appl.  21,  983-­‐990.    Reich,  H.J.,  Reich,  I.L.,  Wollowitz,  S.,  1978.Conversion  of  allyl  alcohols  to  dienes  by    

sulfoxide  and  selenoxide  syn-­‐elimination—Synthesis  of  PCB  arene  oxides.  J  Am  Chem  Soc  100,  5981-­‐5982.  

 Riechert,  S.E.,  Lockley,  T.,  1984.  Spiders  as  biological  control  agents.  Annu.  Rev.    

Entomol.  29,  299-­‐320.      

Page 55: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

43

Riechert,  S.E.,  1981.  The  consequences  of  being  territorial:  Spiders,  a  case  study.  Am.    Nat.  117,  871-­‐892.  

 Safe,  S.,  1993.  Toxicology,  structure–function  relationship,  and  human  and    

environmental  health  impacts  of  polychlorinated  biphenyls:  Progress  and  problems.  Environ.    Health.    Perspect.  100,  259-­‐268.  

 Safe,  S.H.,  1990.  Polychlorinated  aromatics:  Uptake,  disposition  and  metabolism,  in:    

Halogenated  biphenyls,  terphenyls,  naphthalenes,  dibenzodioxins,  and  related  products.    Kimbrough,  R.D.,    Jensen,  A.A.  (Eds.),  2nd  ed.  Nature,  London,  pp.  131.  

 Safe,  S.H.,  1994.  Polychlorinated-­‐biphenyls  (PCBs)  -­‐  Environmental-­‐impact,    

biochemical  and  toxic  responses,  and  implications  for  risk  assessment.  Crit.  Rev.  Toxicol.  24,  87-­‐149.  

 Sandau,  C.D.,  Ayotte,  P.,  Dewailly,  E.,  Duffe,  J.,  Norstrom,  R.J.,  2000.  Analysis  of    

hydroxylated  metabolites  of  PCBs  (OH-­‐PCBs)  and  other  chlorinated  phenolic  compounds  in  whole  blood  from  Canadian  Inuit.  Environ.    Health.    Perspect.  108,  611-­‐616.  

 Sandau,  C.D.,  Norstrom,  R.J.,  1996.  Comparison  of  methylation  methods  for  the    

determination  of  hydroxy-­‐PCBs  and  preliminary  results  for  polar  bear  blood  plasma.  Organohal.  Compds.  29,  412-­‐417.  

 SCDHEC,  2006.  Lake  Hartwell  Restoration  and  Compensation  Determination  Plan.      Schulz,  S.,  Toft,  S.,  1993.  Branched  long  chain  alkyl  methyl  ethers:  A  new  class  of    

lipids  from  spider  silk.  Tetrahedron  49,  6805-­‐6820.    Schurig,  V.,  Glausch,  A.,  Fluck,  M.,  1995.  On  the  enantiomerization  barrier  of    

atropisomeric  2,2’,3,3’,4,6’-­‐hexachlorobiphenyl  (PCB  132).  Tetrahed.  Asym.  6,  2161-­‐2164.  

 Schuur,  A.G.,  van  Meeteren,  M.E.,  Jong,  W.M.C.,  Bergman,  Å,  Visser,  T.J.,  Brouwer,  A.,    

1996.  Organohal.  Compds.  28,  509.    Schuur,  A.G.,  Bergman,  Å,  Brouwer,  A.,  Visser,  T.J.,  1999.  Effects  of    

pentachlorophenol  and  hydroxylated  polychlorinated  biphenyls  on  thyroid  hormone  conjugation  in  a  rat  and  a  human  hepatoma  cell  line.  Toxicology  in  Vitro  13,  417-­‐425.  

   

Page 56: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

44

Schuur,  A.G.,  Legger,  F.F.,  van  Meeteren,  M.E.,  Moonen,  M.J.H.,  van  Leeuwen-­‐Bol,  I.,    Bergman,  A.,  Visser,  T.J.,  Brouwer,  A.,  1998.  In  vitro  inhibition  of  thyroid  hormone  sulfation  by  hydroxylated  metabolites  of  halogenated  aromatic  hydrocarbons.  Chem.  Res.  Toxicol.  11,  1075-­‐1081.  

 Schwarzenbach,  R.P.,  Gschwend,  P.M.,  Imboden,  D.M.,  2003.  Environmental  Organic    

Chemistry.  John  Wiley  &  Sons.    Seegal,  R.F.,  Bush,  B.,  Shain,  W.,  1990.  Lightly  chlorinated  ortho-­‐substituted  PCB    

congeners  decrease  dopamine  in  nonhuman  primate  brain  and  in  tissue  culture.  Toxicol.    Appl.    Pharmacol.  106,  134-­‐136.  

 Selden,  P.A.,  Shear,  W.A.,  Sutton,  M.D.,  2008.  Fossil  evidence  for  the  origin  of  spider    

spinnerets,  and  a  proposed  arachnid  order.  Proc.    Natl  Acad.    Sci.    USA  105,  20781-­‐20785.  

 Society  of  Environmental  Toxicology  and  Chemistry  (SETAC).    Biotransformation  in    

Environmental  Risk  Assessment,  2004.    2  ed.  Society  of  Environmental  Toxicology  and  Chemistry  (SETAC),  Pensacola  FL,  USA.  

 Shain,  W.,  Bush,  B.,  Seegal,  R.F.,  1991.  Neurotoxicity  of  polychlorinated  biphenyls:    

Structure-­‐activitye  relationships  of  individual  congeners.  Toxicol.    Appl.    Pharmacol.  111,  33-­‐42.  

 Sinjari,  T.,  Klasson-­‐Wehler,  E.,  Hovander,  L.,  Darnerud,  P.O.,  1998.  Hydroxylated    

polychlorinated  biphenyls:  distribution  in  the  pregnant  mouse.  Xenobiotica  1,  31-­‐40.  

 Southwell,  B.R.,  Duan,  W.,  Alcorn,  D.,  Brack,  C.,  Richardson,  S.J.,  Kohrle,  J.,  Schreiber,    

G.,  1993.  Thyroxine  transport  to  the  brain:  Role  of  protein  synthesis  by  the  choroid  plexus.  Endocrinology  133,  2116-­‐2126.  

 Stadnicki,  S.S.,  Allen,  J.R.,  1979.  Toxicity  of  2,2’,5,5’-­‐tetrachlorobiphenyl  and  its    

metabolites,  2,2’,5,5’-­‐tetrachlorobiphenyl-­‐3,4-­‐oxide  and  2,2’,5,5’-­‐tetrachlorobiphenyl-­‐4-­‐ol  to  cultured  cells  in  vitro.  Bull.  Environ.  Contam.  Toxicol.  23,  788-­‐796.  

 Tanabe,  S.,  Hidaka,  H.,  Tatsukawa,  R.,  1983.  PCBs  and  chlorinated-­‐hydrocarbon    

pesticides  in  Antarctic  atmosphere  and  hydrosphere.  Chemosphere  12,  277-­‐288.  

 Tretzel,  E.,  1955.  Intragenerische  Isolation  und  interspezifische  Konkurrenz  bei    

Spinnen.  Zeitschrift  fur  Morphologie  und  Okologie  Tierre  44,  43-­‐162.  

Page 57: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

45

Truman,  P.,  van  den  Hurk,  P.,  2010.  Xenoestrogen  exposure  and  effects  in  bluegill    from  the  Reedy  River,  South  Carolina,  USA.  Arch.  Environ.  Contam.Toxicol.  58,  165-­‐175.  

 U.S.  EPA,  2005.  Method  3545:  Standard  Operating  Procedure  for  Accelerated  Solvent    

Extraction  (ASE-­‐200)  of  Organics.  EPS,  Washington,  DC.    U.S.  EPA,  2004.  The  Incidence  and  Severity  of  Sediment  Contamination  in  Surface    

Waters  of  the  United  States,  National  Sediment  Quality  Survey.      U.S.  EPA,  1994.  Final  Record  of  Decision  for  the  Sangamo  Weston/Twelve  Mile    

Creek/Lake  Hartwell  PCB  Contamination  Superfund  Site-­‐Operable  Unit  Two,  Pickens,  Pickens  County,  South  Carolina.  Atlanta,  GA:  U.  S.    Environmental  Protection  Agency,  Region  IV.    

 U.S.  EPA,  1980.  Ambient  Water  Quality  Criteria  for  PCBs.  U.  S.    EPA,  Criteria  and    

Standards  Division,  Washington,  D.  C.      U.S.  EPA,  1976.  Toxic  Substances  Control  Act  (TSCA).  Public  Law  94-­‐469,  90  Stat.    

2003.      Verreault,  J.,  Maisonneuve,  F.,  Dietz,  R.,  Sonne,  C.,  Letcher,  R.J.,  2009.  Comparative    

hepatic  activity  of  xenobiotic-­‐metabolizing  enzymes  and  concentrations  of  organohalogens  and  their  hydroxylated  analogues  in  captive  Greenland  sledge  dogs  (Canis  familiaris).  Environ.  Toxicol.  Chem.  28,  162-­‐172.  

 Verreault,  J.,  Letcher,  R.J.,  Ropstad,  E.,  Dahl,  E.,  Gabrielsen,  G.W.,  2006.    

Organohalogen  contaminants  and  reproductive  hormones  in  incubating  glaucous  gulls  (Larus  hyperboreus)  from  the  Norwegian  Arctic.  Environ.  Toxicol.    Chem.  25,  2990-­‐2996.  

 Vollrath,  F.,  Selden,  P.A.,  2007.  The  role  of  behavior  in  the  evolution  of  spiders,  silks,    

and  webs.  Ann.    Rev.    Ecol.    Svol.    Syst.  38,  819-­‐846.    Walker,  C.H.,  Hopkin,  S.P.,  Sibly,  R.M.,  and  Peakall,  D.B.    2006.    Principles  of    

Ecotoxicology.  Taylor  and  Francis  Group.      Walters,  D.M.,  Fritz,  K.M.,  Otter,  R.R.,  2008.  The  dark  side  of  subsidies:  Adult  stream    

insects  export  organic  contaminants  to  riparian  predators.  Ecol.  Appl.  18,  1835-­‐1841.  

     

Page 58: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

46

Walters,  D.M.,  Mills,  M.A.,  Fritz,  K.M.,  Raikow,  D.F.,  2010.  Spider-­‐mediated  flux  of    PCBs  from  contaminated  sediments  to  terrestrial  ecosystems  and  potential  risks  to  arachnivorous  birds.  Environ.  Sci.  Technol.  44,  2849-­‐2856.  

 Wiberg,  K.,  Letcher,  R.,  Sandau,  C.,  Duffe,  J.,  Norstrom,  R.,  Haglund,  P.,  Bidleman,  T.,    

1998.  Enantioselective  gas  chromatography  mass  spectrometry  of  methylsulfonyl  PCBs  with  application  to  arctic  marine  mammals.  Anal.  Chem.  70,  3845-­‐3852.  

 Wong,  C.S.,  Garrison,  A.W.,  Smith,  P.D.,  Foreman,  W.T.,  2001.  Enantiomeric    

composition  of  chiral  polychlorinated  biphenyl  atropisomers  in  aquatic  and  riparian  biota.  Environ.  Sci.  Technol.  35,  2448-­‐2454.  

 Yamamoto,  H.,  Yoshimura,  H.,  1973.  Metabolic  studies  on  polychlorinated    

biphenyls—3.  Complete  structure  and  acute  toxicity  metabolites  of  2,4,3’,4’-­‐tetrachlorbiphenyl.  Chem  Pharma  Bull  21,  2237-­‐2242.  

   

Page 59: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

47

CHAPTER  TWO  

CHIRAL  SIGNATURES  OF  PCBS  IN  RIPARIAN  SPIDERS  

 

Introduction  

Spiders  along  Twelvemile  Creek  and  at  Lake  Hartwell  have  a  PCB  body  

burden,  and  they  redirect  transport  of  these  contaminants  from  the  aquatic  to  the  

terrestrial  ecosystems  (Walters  et  al.,  2008;  Walters  et  al.,  2010;  Raikow  et  al.,  

2011).    Their  body  burden  is  sufficient  to  pose  significant  threat  to  predators  

(Walters  et  al.,  2010);  however,  biotransformation  of  PCBs  within  spiders  has  not  

been  investigated.    Using  enantioselective  chromatography  as  a  tool,  it  may  be  

possible  to  discern  if  the  changes  between  trophic  levels  (in  our  study,  between  

emergent  insects  and  spiders)  is  reflected  only  by  changes  in  concentration,  or  if  

there  are  also  enantioselective  changes  in  specific  congeners  that  are  transferred.    

Spiders  may  be  able  to  regulate  their  exposure  via  enantioselective  uptake  or  

retention  of  PCB  congeners.  

  Seventy-­‐eight  of  the  209  PCB  congeners  are  chiral  (Lehmler  et  al.,  2009).    

That  is,  their  asymmetric  substitution  patterns  of  chlorines  about  the  biphenyl  rings  

creates  non-­‐planar  conformations,  and  generates  two  molecules  with  the  same  

elemental  composition  that  cannot  be  superimposed  upon  each  other.    These  

atropisomers,  called  enantiomers,  were  released  into  the  environment  in  equal  

parts,  known  as  racemic  mixtures.    Enantiomers  possess  the  same  physical  and  

chemical  properties,  but  differ  in  their  interactions  with  biological  molecules  such  

Page 60: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

48

as  enzymes  and  the  direction  they  orient  polarized  light.    Biological  interactions  

such  as  enzymatic  degradation,  enantioselective  uptake,  and  enantiospecific  

metabolism  can  change  the  ratios  and  provide  insight  as  to  the  mechanisms  of  PCB  

fate  and  transport.    Such  interactions  can  yield  different  adverse  and  toxicological  

effects  for  individual  enantiomers.    Enantiomers  have  different  activities,  affinities  

and  efficacies  for    interacting  with  receptors  and  enzymes,  resulting  in  different  

effects  and  even  varying  toxicities  (Kallenborn  and  Hühnerfuss,  2001).    The  Three-­‐

Point-­‐Attachment  model  finds  that  enantiomeric  specificity  on  the  part  of  enzymes  

or  receptors  occurs  only  when  there  are  three  nonequivalent  binding  sites  to  

discriminate  between  the  enantiomers  (Easson  and  Stedman,  1933),  causing  

enantioselective  toxicities.    Diastereomers  may  have  agonist  or  antagonist  

functionality,  or  participate  in  enantioselective  active  transport,  such  as  is  seen  with  

α-­‐hexachlorocyclohexane  (α-­‐HCH)  and  the  blood-­‐brain  barrier  (Hühnerfuss  et  al.,  

1992).      

Nineteen  chiral  PCBs  are  environmentally  stable  and  feature  three  or  four  

ortho-­‐chlorine  atoms  that  create  the  non-­‐planar  conformation  (Lehmler  et  al.,  

2009).    Twelve  of  those  were  commonly  used  in  commercial  mixtures  and  are  

frequently  detected  in  various  environmental  media:    PCB  45,  84,  88,  91,  95,  132,  

136,  144,  149,  171,  174,  and  183  (see  Table  B.1  for  substitution  patterns)  (Frame  et  

al.,  1996;  Dang,  2007;  Dang  et  al.,  2010).    A  few  of  these  twelve  chiral  congeners  

have  been  investigated  in  various  aquatic  food  webs,  where  fish  predators  such  as  

bass  and  salmon  were  found  to  have  non-­‐racemic  EF  values  (EF≠0.5)  although  the  

Page 61: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

49

compounds  were  released  as  racemic  mixtures  (EF=0.5)  (Dang  2007;  Dang  et  al.  

2010;  Wong  et  al.  2001;  Buckman  et  al.  2006).    

Ratios   of   chiral   diastereomers   are   quantified   by   the   enantiomeric   fraction  

(EF),  defined  by  Harner  at  al.  (2000)  as:  

𝐸𝐹 =   !!!!

=   (!)! !  (!)

        (Equation  4)  

where   A   represents   the   first   eluting   enantiomer   and   B   the   second   eluting  

enantiomer,   or   where   (+)   represents   the   clockwise   optically   directed   enantiomer  

and   (-­‐)   the   counterclockwise   orientation.     An   equal   concentration   of   both  

enantiomers  yields  an  EF  value  of  0.5,  and  is  called  racemic.    Nonracemic  EF  values  

are  those  that  differ  from  0.5  in  either  the  positive  or  negative  direction.  

PCB  chirality  has  yet  to  be  investigated  in  terrestrial  predators  linked  to  aquatic  

food   webs.     The   Twelvemile   Creek   /   Lake   Hartwell   Superfund   site   has   been   the  

location  of  many  monitoring  and  research  efforts.      Walters  et  al.  (2010)  were  able  

to  use  isotopic  analysis  of  carbon  and  nitrogen  to  determine  the  trophic  placement  

of  Tetragnathidae,  Araneidae,  and  basilica  spiders   in   the  Twelvemile  Creek  /  Lake  

Hartwell  riparian  ecosystem.    Tetragnathid  and  shoreline  spiders  consumed  mainly  

aquatic   insects,   and   upland   araneid   spiders   consume   primarily   terrestrial   prey  

(Table   1.1).     Assessment   of   how   distance   from   the   shoreline   affected   spider   PCB  

body  burdens   indicated  that  with   increasing  distance   the  concentration  decreases,  

falling  below  detection  limits  at  30m  (Raikow  et  al.,  2011).    The  resultant  annals  of  

data   cover   sediment,   benthic   organisms,   aquatic   insects,   and   fish   PCB  

Page 62: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

50

concentrations   and   chirality;   however,   only   the   most   recent   investigations   have  

begun   to   describe   how   terrestrial   predators   are   influenced   by   aquatic  

contamination  (Walters  et  al.,  2008;  Walters  et  al.,  2010).      

The  goal  of  this  study  was  to  investigate  patterns  in  chirality  among  three  spider  

taxa  and  their  prey.    The  hypothesis  tested  was  that  the  three  spider  species  show  

distinct  EF  values  based  on  their  consumption  of  aquatic  insects.    The  three  spider  

taxa  have  distinct  ecological  roles  that  may  influence  their  prey,  and  as  a  result,  their  

EF   values.     Different   values  may   also   be   influenced   by   differences   among   taxa   in  

metabolism  of  chiral  congeners.    Additionally,  it  was  hypothesized  that  comparison  

with  prey  species  EF  values  would  demonstrate  that  Tetragnathidae  samples  would  

be  distinct  from  their  prey  sources.    Biotransforming  processes  may  differ  between  

prey  and  predator,  and  may  manifest  as  changes  in  EF  value.    Additionally,  changes  

in  bacterial   colonies   along   the   exposure   gradient  may  affect   the   concentrations  of  

each  enantiomer  available  to  be  transported  through  the  food  web.  

 

Materials  and  Methods  

Sample  Collection  

Spiders   were   obtained   from   along   the   Twelvemile   Creek   arm   of   Lake   Hartwell  

between  June  and  August  2007  as  described  by  Walters  et  al.  (2010).    Samples  were  

composites  of  individuals  collected  at  night  from  either  vegetation  suspended  over  

the   water   column   or   within   two   meters   of   shoreline.     Riparian   spider   taxa  

Tetragnathidae,  Araneidae,  and  basilica  were  collected,  and  extracted  by  the  EPA  lab  

Page 63: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

51

in  Cinncinati,  OH.    Adult  chironomids  were  also  collected  at  night  from  boats  trolled  

across  the  width  of  the  lake  using  florescent  lights  and  sweep  nets.    Sample  sizes  are  

listed   in  Appendix  B,  Table  B.2.  Sampling   locations  are  depicted   in  Figure  2.1,  and  

their  GPS  coordinates  are  listed  in  Table  2.1.      

Extractions  were  performed  by   the  EPA.     Samples  were  mixed  with  25g   of  

baked  sodium  sulfate,  dried  for  one  hour,  and  transferred  into  Accelerated  Solvent  

Extractor   (ASE)   cells   (Dionex,   Sunnyvale,   CA).     The   extraction   was   done   using  

methylene  chloride  and  hexanes.  

   

 

Figure  2.1    EPA  Sampling  Locations.    Gradient  map    from  Walters  et  al.  (2010).      Color  gradient  indicates  contamination  of  sediment  (center)  and  Tetragnathidae  spiders  (ribbons  at  either  side,  indicating  banks  of  lake).    

Page 64: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

52

Table  2.1  GPS  coordinates  for  EPA  sampling  sites  

Site  Label   Coordinates   Site  Label   Coordinates  

T12   N  34.734°,  W  82.811°   I   N  34.709°,  W  82.835°  

O   N  34.728°,  W  82.813°   H   N  34.703°,  W  82.841°  

N   N  34.725°,  W  82.819°   T6   N  34.697°,  W  82.842°  

K   N  34.714°,  W  82.829°   G   N  34.688°,  W  82.851°  

Hexanes   and   isooctane   were   obtained   as   pesticide   grade   from   Fisher  

Scientific,  as  well  as  sulfuric  acid.    Standards  to  confirm  the  identity  of  field  samples  

for   chiral   analysis   were   obtained   from   AccuStandards   (New   Haven,   CT):   PCB   91  

(2,2’,3,4’,6-­‐pentaCB),   PCB   95   (2,2’,3,5’,6-­‐pentaCB),   PCB   136   (2,2’,3,3’,6,6’-­‐hexaCB),  

PCB   149   (2,2’,3,4’,5’,6-­‐hexaCB),   and   PCB   174   (2,2’,3,3’,4,5,6’-­‐heptaCB).     Additional  

standards  were  obtained  for  use  in  achiral  analysis:    Aroclor  mixtures  1016,  1242,  

and  1260  for  instrument  calibration;  PCBs  14  (3,5-­‐diCB)  and  PCB  169  (3,3’,4,4’,5,5’-­‐

hexaCB)   for   use   as   recovery   standards;   and   aldrin   and   PCB   204   (2,2’,3,4,4’,5,6,6’-­‐

octaCB)  for  use  as  internal  standards.  

Lipid  content  in  extracts  was  measured  in  our  lab  by  a  gravimetric  method.    

Extracts   were   treated   with   4mL   of   an   ethanolic   KOH   solution   to   extract   any  

metabolites  present  in  the  extracts  (Kania-­‐Korwel  et  al.,  2008b).    The  KOH  solution  

was  removed  and  used  for  metabolite  analysis,  which  is  described  in  Chapter  3.    

 

 

Page 65: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

53

Sample  Clean-­‐up  

Organic   materials   that   can   cause   interference   in   the   chromatograms   were  

removed  through  use  of  cleanup  columns.    Alumina  –  sodium  sulfate  columns  (2.5g  

and   1.5g   respectively)   were   conditioned  with   pesticide   grade   hexanes   to   remove  

any  interfering  polar  compounds.    Alumina  was  6%  deactivated.    Extracts  received  

from  the  EPA  were  added  to  the  columns,  and  eluted  with  hexanes.    Extracts  were  

further  cleaned  by  centrifugation  with  sulfuric  acid  to  remove  any  remaining  lipids  

in  the  sample,  then  solvent  exchanged  for  isooctane  (U.S.  EPA,  2005).    

 

Chiral  Analysis  

Enantioselective   analysis   of   five   chiral   congeners   was   conducted   with   an  

Agilent   6850-­‐GC   equipped  with   a   Chirasil-­‐dex  DB   column   (25m   x   0.25mm)   and   a  

63Ni   electron   detector.     The   temperature   program   began   at   100˚C   for   2min,   then  

ramped  at  10˚C/min  to  170  and  held   for  10min,   then  ramped  at  8˚C/min  to  180˚C  

and   held   for   20min,   and   finally   ramped   at   1˚C/min   to   190˚   and   held   for   5min.    

Quality  of  assessment  was  maintained  through  use  of  procedural  blanks,  laboratory  

control   samples   in   duplicate,   matrix   spikes   in   duplicate   (aldrin   and   PCB   204,  

Accustandard),   blank   tissue   samples,   and   check   standards   with   each   batch   of   10  

samples.    Concentrations  were  not  corrected  for  recovery.    The  detection   limit  did  

vary   somewhat   by   congener,   but   was   approximately   25ng/L   for   chiral   PCB  

congeners.     The   EFs   for   the   racemic   standards   (PCBs   91,   95,   136,   149,   and   174)  

were  between  0.492  (±  0.003  SD)  and  0.504  (±0.006  SD).  

Page 66: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

54

Statistical  Analysis  

Differences  in  EF  values  among  different  species  were  assessed  by  one-­‐way  

analysis  of  variance  (ANOVA)  using  Tukey’s  test  to  determine  significance  (p<0.05).    

This  assessed  the  significance  of  evidence  gathered  for  the  hypothesis  that  EF  values  

would  differ  among  spider  taxa.    Analysis  of  co-­‐variance  (ANCOVA)  was  enlisted  to  

determine  if  there  were  changes  in  spider  EF  among  sampling  locations.    EF  values  

were   considered   to   be   significantly   non-­‐racemic   if   their   95%   confidence   intervals  

did  not  encapsulate  a  racemic  value  of  0.5.  

Nonmetric-­‐multidimensional  scaling  statistical  analysis  (NMS)  was  

completed  using  PC-­‐ORD  4.0  software  (MjM  software).  NMS  is  best  utilized  when  

data  are  not  normally  distributed,  or  have  discontinuous  and  unequal  scales.  The  

autopilot  mode  was  utilized  such  that  the  program  would  choose  the  best  solution  

at  each  dimensionality  (McCune  and  Mefford,  1999).  The  chi  squared  coefficient  was  

used  as  the  distance  measure  in  the  analysis,  as  it  is  the  most  appropriate  measure  

enlisted  when  the  domain  of  data  inputted  is  x  ≥  0  and  the  range  of  distance  

measures  is  d  ≥  0  when  d  =  f(x)  (McCune  et  al.,  2002).

 

Results  

EF  Differences  among  Spider  Taxa  

Four  chiral  congeners  (PCBs  91,  95,  149,  and  174)  were  above  the  detection  limit  

for  entantioselective  analysis  in  the  three  spider  taxa  (Figure  2.2).    Chiral  signatures  

for  congener  91  were  significantly  non-­‐racemic  in  favor  of  the  first  eluting  congener.    

Page 67: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

55

The  average  EF  (±  1  SD)  for  Tetragnathidae  spiders  was  1.0  (±  0.0);  no  

Tetragnathidae  samples  contained  the  second-­‐eluting  enantiomer  above  the  

detection  limit.    Araneidae  spiders  were  also  significantly  non-­‐racemic  with  an  

average  EF  value  of  0.90  (±  0.22  SD),  and  basilica  samples  also  had  an  average  EF  of  

0.90  (±0.17  SD).    These  EF  values  were  significantly  non-­‐racemic  across  all  taxa  

(confidence  interval,  α=0.05).    Enantiomeric  fractions  for  PCB  91  did  not  vary  

significantly  among  taxa  (ANOVA,  p  =  0.16)  when  data  were  averaged  across  all  

sample  sites.    An  ANCOVA  analysis  for  PCB  91  enantiomeric  fractions  along  the  

exposure  gradient  among  sites  for  each  taxa  indicated  that  the  EF  did  not  change  

significantly  (α=0.05,  F=0.1,  p-­‐value  =  0.905;  Figure  2.2A).  

   

Page 68: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

56

 

Figure  2.2  EF  measurements  averaged  across  sites.    Error  bars  represent    95%  confidence  interval.  Data  for  spider  taxa  represent  congeners  (A)  PCB  91,  (B)  PCB  95,  (C)  PCB  149,  and  (D)  PCB  174.    Panel  (E)  displays  Midge  EF  data  averaged  across  all  sampling  locations.  

 

Samples  containing  PCB  95  had  detectable  concentrations  of  both  

enantiomers  (Figure  2.2B),  in  contrast  to  PCB  91  which  was  skewed  in  favor  of  one  

enantiomer.    Mean  (±  1  SD)  EFs  were  0.23  (±  0.12),  0.20  (±  0.08),  and  0.31  (±  0.14)  

for  tetragnathid,  areaneid,  and  basilica  spiders  respectively.    These  values  were  

Page 69: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

57

clearly  non-­‐racemic,  but  were  not  different  from  one  another.    (ANOVA,  p-­‐value  =  

0.06)    Likewise,  EFs  did  not  vary  spatially  along  the  exposure  gradient  (ANCOVA,  

α=0.05,  F=1.24,  p  =  0.301;    Figure  2.2B).    

Samples  containing  congener  149  had  approximately  equal  concentrations  of  

both  congeners.    Tetragnathidae  spiders  had  an  EF  value  of  0.55  (±  0.14  );  whereas,  

Araneidae  spiders  had  a  value  of  0.49  (±  0.18  ),  and  basilica  spiders  had  an  EF  value  

of  0.44  (±  0.05).    Only  for  basilica  spiders  was  this  value  significantly  different  from  

racemic  values  (95%  confidence  interval  0.46  ±  0.03,  Figure  2.2C).    It  is  important  to  

note  that  the  concentration  of  PCB  149  in  basilica  spiders  fell  below  detection  limits  

for  enantioselective  analysis  for  all  but  two  sampling  sites.  EF  values  did  not  differ  

among  taxa  (ANOVA,  p-­‐value  =  0.33),  or  among  sampling  locations  (ANCOVA,  

α=0.05,  α=0.05,  F=0.58,  p-­‐value=.567;  Figure  2.2C).  

Congener  174  had  an  average  EF  value  of  0.92  (±  0.05),  0.85  (±  0.09),  and  

0.83  (±0.24)  for  Tetragnathidae,  Araneidae,  and  basilica  spiders,  respectively.    

Confidence  intervals  indicate  that  all  three  species  were  significantly  non-­‐racemic  in  

favor  of  the  first  eluting  enantiomer.    No  significant  differences  existed  among  the  

species  (ANOVA,  p-­‐value  =  0.14).    ANCOVA  analysis  did  not  reveal  any  significant  

differences  in  EF  along  the  exposure  gradient  for  PCB  174  (α=0.05,  F=0.56,  p-­‐

value=.577;  Figure  2.2D).  

 

 

 

Page 70: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

58

EF  Differences  between  Prey  and  Spiders  

Differences  between  the  EFs  of  the  spider  taxa  and  aquatic  insects  that  serve  

as   prey   for   the   spiders   were   measured   by   considering   Chironomidae   (midges).    

Midges   were   collected   from   the   same   sites,   and   represent   potential   prey   for   the  

spiders;  however,  only  three  of  the  congeners  investigated  were  above  the  detection  

limit.    Midge  samples  had   fairly   consistent  EF  values  across  all   sampling   locations  

(Figure  2.2E)  that  were  distinct  from  those  for  spiders,  except  for  PCB  95  which  is  

enriched  in  the  same  enantiomer  (second-­‐eluting)  as  the  midge  sample.    EF  values  

had   a  wide   range   for  different   congeners.     PCB  91  had   an  EF  of   0.27   (±  0.05   SD),  

whereas  PCB  95  was  close  to  racemic  with  an  EF  of  0.43  (±0.04  SD).    PCB  149  has  

the   greatest   EF   value,   0.74   (±   0.07   SD),   and   was   the   only   congener   with   higher  

concentrations   of   the   second   eluting   enantiomer.     A   Student’s   T   test   comparing  

midges   to   each   spider   taxa   determined   that   midge   EF   values   for   PCB   95   were  

significantly  different  from  Tetragnathidae,  Araneidae,  and  basilica  spiders  (α=0.05,  

p-­‐valuetetragnathid  =  4.0e-­‐6,  p-­‐valuearaneid  =  2.0e-­‐8,  p-­‐valuebasilica  =  0.02).  

Use  of  NMS  to  discern  trends  in  the  data  revealed  that  for  PCB  95  and  149  

spider  EF  values  are  distinct  from  those  of  Midges.    For  the  plot  shown,  spider  and  

midge  samples  from  all  species  and  locations  were  incorporated  (Figure  2.3).    

Within  the  groups  the  relationships  were  less  clear.    Midge  samples,  while  grouped  

together,  did  not  indicate  any  spatial  trends.      Points  that  fall  outside  of  the  circles  all  

represent  spider  samples.    Many  of  the  spider  samples  were  difficult  to  assess  using  

Page 71: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

59

this  analysis  because  of  their  retention  of  only  one  enantiomer,  thus  they  fell  outside  

of  the  general  area  where  the  majority  of  spider  samples  clustered.  

 

 Figure  2.3    Nonmetric  Multidimensional  Scaling  (NMS)  plots  of  EFs  for  PCBs    

95  and  149  for  both  spiders  and  midges.    Spiders  and  midges  are  clearly  grouped  for  these  two  congeners.    Points  that  fall  outside  of  the  circles  represent  spiders.  

 

 

 

 

 

   

Page 72: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

60

Discussion  

The  EF  results  did  not  support  the  hypothesis  that  the  three  spider  taxa  

would  differ  due  to  differences  in  their  consumption  of  aquatic  insects.    ANOVA  

analysis  showed  that  average  EF  values  for  the  three  spider  taxa  were  not  

statistically  distinct  from  each  other.    Isotopic  analysis  by  Walters  et  al.  (2010)  

indicated  that  riparian  spiders  consumed  aquatic  insects.    In  particular,  the  

tetragnathid  and  araneid  spiders  consumed  mostly  aquatic  prey;  whereas,  basilica  

spiders  consumed  approximately  half  aquatic  prey  and  half  terrestrial  prey.    All  of  

the  samples  analyzed  were  obtained  within  2m  from  the  shoreline,  and  so  all  would  

opportunistically  prey  upon  emergent  aquatic  insects.    Terrestrial  insects  were  

observed  to  have  low  PCB  concentrations  and  are  not  likely  to  contribute  to  EF.      

Spider  enantiomeric  fractions  are  likely  very  similar  because  their  prey  source  that  

contains  PCBs  is  very  similar.    Using  this  theory  as  a  guide  to  interpret  the  data  

presented  here,  these  spiders  may  have  similar  enzymatic  capabilities  and  different  

habitat  spaces;  therefore,  the  greatest  influence  on  contaminant  profile  is  prey  

consumption,  not  biotransformation.  

Chironomidae  were  selected  for  comparison  with  spiders  because  they  

commonly  dominate  the  aquatic  insect  assemblages  (Fairchild et al., 1992; Menzie,

198; Maul et al., 2006).    They  also  are  capable  of  transporting  significant  quantities  

of  carbon,  nitrogen,and  PCBs  in  the  Twelvemile  Creek  watershed  (Walters  et  al.,  

2010).    They  are  a  good  representative  of  prey  because  spiders  are  opportunistic  

predators  that  feed  upon  what  their  webs  can  capture.    Additional  enantioselective  

Page 73: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

61

analyses  could  be  performed  on  other  aquatic  insect  prey  to  corroborate  the  

comparisons  discussed  here.    Midges  are  compared  to  Tetragnathidae  spiders  

because  those  spiders  are  obligate  aquatic  predators,  so  their  EF  values  should  most  

closely  reflect  the  influence  of  aquatic  emergent  insects.  

Prey   (midge)   EFs   and   predator   (spider)   EFs   were   proven   significantly  

different  for  all  three  PCB  congeners  –  91,  95,  and  149  –  via  Student’s  T  test.    Midge  

samples  were  nonracemic  favoring  the  second  eluting  enantiomer  for  PCBs  91  and  

95.     Congener   149   was   non-­‐racemic   favoring   the   first   eluting   enantiomer.    

Tetragnathidae   spiders  were  nonracemic   favoring   the   first   eluting   enantiomer   for  

PCB  91.     The   change   for   PCB  91   between   chironomids   and   tetragnathids,   shifting  

towards   favoring   the   first   eluting   enantiomer,   could   be   due   in   part   to   selective  

uptake  or  excretion  by  spiders.    If  the  spiders  do  not  uptake  a  great  amount  of  the  

second  eluting  enantiomer,  or   if   they  can  excrete   it  efficiently,   the  EF  value  would  

subsequently   be   greater   than   0.5.     Metabolism   could   also   yield   these   results.     If  

spiders  are  able  to  more  easily  metabolize,  and  therefore,  preferentially  excrete  the  

second   eluting   enantiomer   the   EF   value   would   shift   in   favor   of   the   first   eluting  

enantiomer.     PCB   95  was   nonracemic   in   both   organisms,  with   prey   and   predator  

both  retaining  the  second  eluting  enantiomer  in  greater  concentration  than  the  first  

enantiomer.    The  EF  became  more  enriched  in  the  second-­‐eluting  enantiomer  with  

the  change  in  trophic  level  from  prey  to  predator.  For  PCB  149,  midge  samples  were  

nonracemic  favoring  the  first  eluting  enantiomer  and  Tetragnathidae  samples  were  

racemic.    These  data  for  PCB  95  and  149  indicate  that  enantioselective  metabolism  

Page 74: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

62

by   spiders   is   likely   not   occurring   as   it   may   for   PCB   91.     PCB   149   may   also   be  

experiencing   enantioselective   metabolism   as   the   value   changes   from   prey   to  

predator.  

Walters   et   al.   (2008)   determined   that   midges   and   other   emergent   insects  

were   not   good   indicator   species  when   compared   to   local   sediment   contamination  

concentrations.    It  was  proposed  that  due  to  the  insects’  low  mass  prevailing  winds  

could   force   the   populations   upstream   or   downstream   at   any   given   time,   which  

allows   for   mixing   of   the   populations.     Even   if   the   midge   populations   do   vary   in  

enantiomeric  body  burden,   it  would  be  difficult  to  discern  from  field  sampling  due  

to   population   mixing.     The   lack   of   statistical   significance   in   EF   values   for   Midge  

samples   along   the   contamination   gradient   supports   the   ideas   that   mixing   of  

emergent   insect   populations   is   occurring.     Confirmation   that   the   system   has   not  

changed  such  that  sediment  EF  is  identical  along  what  was  previously  considered  to  

be  a  gradient  would  need  to  be  obtained  in  order  to  assert  that  population  mixing  is  

occurring.     Assuming   this   to   be   true,   all   spider   species   consuming   those   mixed  

populations   would   receive   the   same   average   enantiomeric   mixtures.     It   can   be  

concluded,  therefore,  that  because  the  enantiomeric  fractions  do  not  vary  among  the  

spider   species   that   there   is   no   significant   difference   in   contaminant   processing  

among  these  three  riparian  species  for  PCB  congeners  91,  95,  149,  and  174.  

Dang  et  al.  (2010)  investigated  the  riparian  food  web  in  the  Lake  Hartwell  

tributary  of  Twelvemile  Creek.    Analysis  of  the  mayfly  did  not  show  any  statistical  

differences  among  site,  providing  further  evidence  for  the  “mixing”  theory  proposed  

Page 75: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

63

by  Walters  et  al.  (2010)  and  supported  by  midge  data  herein.    EF  values  were  

reported  for  PCB  91  (0.51  ±  0.03),  PCB  95  (0.24  ±  0.03),  and  PCB  149  (0.35  ±  0.04).    

These  differ  from  the  data  obtained  for  midges  in  Lake  Hartwell.    Such  differences  

could  be  a  result  of  the  locations  having  a  somewhat  different  contamination  profile.  

The   EFs   for   the   spider   taxa   examined   in   this   study   do   differ   from   data  

reported   for   aqueous   predators   in   the   same   watershed.     Yellowfin   shiner   were  

analyzed  for  EF  in  Twelvemile  Creek    by  Dang  et  al.  (2010)  assuming  that  they  were  

predators  of  mayflies.    Yellowfin  were  found  to  have  EF  values  for  PCB  91  and  149  

that  were  also  nonracemic  in  favor  of  the  second  eluting  enantiomer;  whereas,  PCB  

95  was  not  above  the  detection  limit.    Spider  concentrations  can  be  as  many  as  three  

times  higher  than  those  reported  for  fish  (Walters  et  al.  2010),  so  they  may  have  a  

sufficient  concentration  of  PCB  95   for  enantioselective  analysis  when  yellowfin  do  

not.    Spider  and  fish  EF  values  were  skewed  in  different  directions  for  PCB  91,  but  

values  for  PCB  149  were  much  more  similar.    This  again  may  indicate  that  spiders  

experience   enantioselection   for   the   first   eluting   enantiomer   of   PCB   91.     A   more  

detailed  comparison  of  diet  for  spiders  and  yellowfin  would  need  to  be  completed  to  

determine  the  difference  in  values  is  not  a  result  of  different  dietary  composition.  

It   was   concluded   by   Dang   et   al.   (2010)   that   the   nonracemic   values   for  

Yellowfin  were  due  to  consumption  of  nonracemic  residues.    This  same  conclusion  

holds   for  Tetragnathidae.     The  difference   in   the  EF   values  between   the   terrestrial  

and  aquatic  predators   could   also  be  attributed   to  diet.     Spiders   can  only   consume  

insects   that   emerge   from   the  water   column,  whereas   fish   can   consume   the   larval  

Page 76: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

64

instars,  too.     Insects  that  emerge  will  not  acquire  more  PCB  mass,  but  growth  may  

dilute  the  concentration,  or  metabolism  affect  the  EF.    If  metabolism  of  the  residues  

on  the  part  of  the  insects  changes  over  the  course  of  their  life,  the  spiders  would  be  a  

better  representation  of  the  EF  for  adult  insects  after  they  emerge,  and  shiner  values  

would  reflect  an  averaging  of  EF  over  the  life  of  the  insects  prior  to  emersion  from  

the  water  column.    

The  lack  of  spatial  trends  for  Midge  EFs  is  in  accordance  with  previously  

published  work  (Walters  et  al.,  2010).    It  has  been  theorized  that  their  low  mass  

causes  these  insects  to  be  easily  blown  up  and  downstream,  causing  them  to  be  poor  

indicators  of  local  PCB  sediment  and  food  web  concentrations.    The  NMS  data  

supports  this  claim,  as  well  as  indicates  clear  differences  in  the  values  for  spiders  

and  midges  (Figure  2.3).    Enantioselective  processes  that  change  the  EF  as  PCBs  

move  up  the  food  chain  would  yield  such  a  plot.  

 

 

Conclusions  

    The  hypothesis  that  each  spider  taxa  would  be  distinct  from  the  others  was  

not  supported  by  the  data  collection.    Tetragnathids,  araneids,  and  basilica  spiders  

had  essentially  the  same  EF  for  each  of  the  congeners;  therefore,  difference  in  niche  

does  not  appear  to  influence  the  EF  profile  in  spiders.    Additionally,  we  can  conclude  

that  if  the  spiders  are  capable  of  metabolism,  the  three  taxa  use  the  same  

mechanism.    

Page 77: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

65

Comparison  of  EF  values  between  spider  samples  and  midge  samples  also  

supported  the  hypothesis  that  predator  EF  values  would  be  distinct  from  prey  EF  

values.    Spider  values  shifted  in  the  direction  favoring  retention  of  the  second  

eluting  enantiomer  for  PCB  91.    The  EF  data  for  PCBs  95  and  149  are  not  as  clear.    

The  change  in  EF  could  be  a  product  of  metabolism  on  the  part  of  the  spider.    If  one  

enantiomer  is  preferentially  detoxified  the  EF  value  would  shift  to  favor  the  more  

recalcitrant  enantiomer.      

 

 

References  

Buckman,  A.H.,  Wong,  C.S.,  Chow,  E.A.,  Brown,  S.B.,  Solomon,  K.R.,  Fisk,  A.T.,  2006.    Biotransformation  of  polychlorinated  biphenyls  (PCBs)  and  bioformation  of  hydroxylated  PCBs  in  fish.  Aquatic  Toxicology  78,  176-­‐185.  

 Dang,  V.D.,  Walters,  D.M.,  Lee,  C.M.,  2010.  Transformation  of  chiral  polychlorinated    

biphenyls  (PCBs)  in  a  stream  food  web.  Environ.  Sci.  Technol.  44,  2836-­‐2841.    Dang,  V.D.,  2007.  Achiral  and  chiral  analysis  of  polychlorinated  biphenyls  (PCBs)  in    

the  aquatic  and  riparian  food  webs  in  Twevle  Mile  Creek,  South  Carolina.  MS  Thesis.  Clemson  University.  

 Easson,  L.H.,  Stedman,  E.,  1933.  Studies  on  the  relationship  between  chemical    

constitution  and  physiological  action.  V.  Molecular  dyssymmetry  and  physiological  activity.  Biochem  J  27,  1257-­‐1266.  

Fairchild, W.L.; Muir, D.C.G.; Curries, R.S.; Yarechewski, A.L. 1992. Emerging

insects as a biotic pathway for movement of 2,3,7,8-tetrachlorodibenzofuran from lake sediments. Environ. Toxicol. Chem. 11, 867-872

 Frame,  G.M.,  Cochran,  J.W.,  Boewadt,  S.S.,  1996.  Complete  PCB  congener    

distributions  for  17  Aroclor  mixtures  determined  by  3  HRGC  systems  optimized  for  comprehensive,  quantitative,  congener-­‐specific  analysis.  J.    High  Resol.    Chrom.  19,  657-­‐668.  

Page 78: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

66

Harner,  T.,  Wiberg,  K.,  Norstrom,  R.,  2000.  Enantiomer  fractions  are  preferred  to    enantiomer  ratios  for  describing  chiral  signatures  in  environmental  analysis.  Environ.  Sci.  Technol.  34,  218-­‐220.  

 Hühnerfuss,  H.,  Kallenborn,  R.,  Konig,  W.A.,  Rimkus,  G.,  1992.  Preferential    

enrichment  of  the  (+)-­‐α-­‐hexachlorocylcohexane  in  cerebral  matter  of  harbour  seals.  Organohal.  Compds.  10,  97-­‐100.  

 Kallenborn,  R.,  Hühnerfuss,  H.,  2001.  Chiral  Environmental  Pollutants:  Trace    

Analysis  and  Ecotoxicology.  Springer.    Kania-­‐Korwel,  I.,  Hrycay,  E.G.,  Bandiera,  S.M.,  Lehmler,  H.,  2008a.  2,2  ',3,3  ',6,6  '-­‐  

hexachlorobiphenyl  (PCB  136)  atropisomers  interact  enantioselectively  with  hepatic  microsomal  cytochrome  P450  enzymes.  Chem.  Res.  Toxicol.  21,  1295-­‐1303.  

 Kania-­‐Korwel,  I.,  Zhao,  H.,  Norstrom,  K.,  Li,  X.,  Hornbuckle,  K.C.,  Lehmler,  H.,  2008b.    

Simultaneous  extraction  and  clean-­‐up  of  polychlorinated  biphenyls  and  their  metabolites  from  small  tissue  samples  using  pressurized  liquid  extraction.  Journal  of  Chromatography  A  1214,  37-­‐46.  

 Lehmler,  H.J.,  Harrad,  S.J.,  Huhnerfuss,  H.,  Kania-­‐Korwel,  I.,  Lee,  C.M.,  Lu,  Z.,  Wong,    

C.S.,  2009.  Chiral  polychlorinated  biphenyl  transport,  metabolism,  and  distribution:  A  review.  Environ.    Sci.    Technol.  44,  2757-­‐2766.  

 Letcher,  R.J.,  Klasson-­‐Wehler,  E.,  Bergman,  Å,  2000.  Methyl  Sulfone  and    

Hydroxylated  Metabolites  of  Polychlorinated  Biphenyls,  in:  The  Handbook  of  Environmental  Chemistry  Vol.  3  Part  K  New  Types  of  Persistent  Halogenated  Compounds.  Paasivirta,  J.  (Ed.).  Springer-­‐Verlag,  pp.  315  -­‐  359.  

Maul, J.D.; Belden, J.B.; Schwab, B.A.; Whiles, M.R.; Spears, B.; Farries, J.L.;

Lydy, M.J. 2006. Bioaccumulation and trophic transfer of polychlorinated biphenyls by aquatic and terrestrial insects to tree swallows (Tachycineta bicolor). Environ. Toxicol. Chem. 25, 1017-1025.

 McCune,  B.,  Grace,  J.B.,  Urban,  D.L.,  2002.  Analysis  of  Ecological  Communities.  MjM    

Software  Design,  Gleneden  Beach,  OR.    McCune,  B.,  Mefford,  M.J.,  1999.  PC-­‐ORD.  Multivariate  Analysis  of  Ecological  Data,    

Version  4.  MjM  Software  Design,  Gleneden  Beach,  OR.   Menzie, C.A. 1980. Potential significance of insects in the removal of contaminants

from aquatic systms. Water, Air Soil Pollut. 13, 473-479.

Page 79: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

67

Raikow,  D.,  Walters,  D.,  Fritz,  K.,  Mills,  M.,  2011.  The  distance  that  contaminated    aquatic  subsidies  extend  into  lake  riparian  zones.  Ecol.  Appl.  21,  983-­‐990.  

 Riechert,  S.E.,  1981.  The  consequences  of  being  territorial:  Spiders,  a  case  study.  Am.    

Nat.  117,  871-­‐892.    Safe,  S.H.,  1994.  Polychlorinated-­‐biphenyls  (PCBs)  -­‐  Environmental-­‐impact,    

biochemical  and  toxic  responses,  and  implications  for  risk  assessment.  Crit.  Rev.  Toxicol.  24,  87-­‐149.  

 U.S.  EPA,  2005.  Method  3545:  Standard  Operating  Procedure  for  Accelerated  Solvent    

Extraction  (ASE-­‐200)  of  Organics.  EPS,  Washington,  DC.    Walters,  D.M.,  Fritz,  K.M.,  Otter,  R.R.,  2008.  The  dark  side  of  subsidies:  Adult  stream    

insects  export  organic  contaminants  to  riparian  predators.  Ecol.  Appl.  18,  1835-­‐1841.  

 Walters,  D.M.,  Mills,  M.A.,  Fritz,  K.M.,  Raikow,  D.F.,  2010.  Spider-­‐mediated  flux  of    

PCBs  from  contaminated  sediments  to  terrestrial  ecosystems  and  potential  risks  to  arachnivorous  birds.  Environ.  Sci.  Technol.  44,  2849-­‐2856.  

 Warner,  N.A.,  Martin,  J.W.,  Wong,  C.S.,  2009.  Chiral  polychlorinated  biphenyls  are    

biotransformed  enantioselectively  by  mammalian  cytochrome  P-­‐450  isozymes  to  form  hydroxylated  metabolites.  Environ.  Sci.  Technol.  43,  114-­‐121.  

 Wong,  C.S.,  Hoekstra,  P.F.,  Karlsson,  H.,  Backus,  S.M.,  Mabury,  S.A.,  Muir,  D.C.G.,  2002.    

Enantiomer  fractions  of  chiral  organochlorine  pesticides  and  polychlorinated  biphenyls  in  standard  and  certified  reference  materials.  Chemosphere  49,  1339-­‐1347.  

 Wong,  C.S.,  Garrison,  A.W.,  Smith,  P.D.,  Foreman,  W.T.,  2001.  Enantiomeric    

composition  of  chiral  polychlorinated  biphenyl  atropisomers  in  aquatic  and  riparian  biota.  Environ.  Sci.  Technol.  35,  2448-­‐2454.  

 Wu,  X.,  Pramanik,  A.,  Duffel,  M.W.,  Hrycay,  E.G.,  Bandiera,  S.M.,  Lehmler,  H.J.,  Kania-­‐  

Korwel,  I.,  2011.  2,2′,3,3′,6,6′-­‐Hexachlorobiphenyl  (PCB  136)  is  enantioselectively  oxidized  to  hydroxylated  metabolites  by  rat  liver  microsomes.  Chem.    Res.    Toxicol.  24,  2249-­‐2257.  

Page 80: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

68

CHAPTER  3  

SPIDER  METABOLISM  OF  PCBS:  IN  VIVO  AND  IN  VITRO    

INVESTIGATIVE  APPROACHES  

 

Introduction  

Toxicants,  or  parent  compounds,  are  metabolized  in  an  effort  to  make  them  

easier   to  excrete;  however,  even  at   low  concentrations  metabolites  have  a  marked  

effect.  Hydroxylated  PCBs  (OH-­‐PCBs)  in  particular  are  more  toxic  than  their  parent  

compounds,   especially  with   respect   to   endocrine   disruption   (Purkey   et   al.,   2004).    

OH-­‐PCBs  have  a  structure  similar  to  that  of  thyroxine  (T4),  a  thyroid  hormone  that  

is  transported  by  transthyretin  (TTR).    The  metabolite  has  a  higher  affinity  for  TTR  

than  does  T4,  which  alters  response  by  the  endocrine  system  function  (Brouwer  et  

al.,  1998).    T4   is  effective  at   concentrations  of  approximately  10pM   in  humans,   so  

even  at  low  concentrations  OH-­‐PCBs  can  be  potent  toxicants  (Lans  et  al.,  1990).      

Different  chlorination  patterns  of  PCBs  lead  to  different  volatilities  (Mackay  

et  al.,  1992a),  potentials  for  biomagnification  (Campfens  and  Mackay,  1997;Mackay  

and  Fraser,  2000;Letcher  et  al.,  2010),  and  potentials  for  metabolism  (Schurig  et  al.,  

1995).     Congeners   that   feature   chlorine   with   adjacent   hydrogens   are   easier   to  

metabolize,  and  chlorines  in  meta-­‐  or  para-­‐positions  are  easier  to  remove  or  replace  

with  hydroxyl  groups  than  are  ortho-­‐Cl  (Letcher  et  al.,  2000).    Some  congeners  are  

vulnerable   to   biotransformation   to   lower   chlorinated   congeners   via   reductive  

dechlorination   by   bacteria   (Pakdeesusuk   et   al.,   2003b;Pakdeesusuk   et   al.,  

Page 81: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

69

2003a;Pakdeesusuk   et   al.,   2005),   or   can   be  metabolized   into   compounds   such   as  

methlysulfonyl-­‐PCBS   (MeSO-­‐PCBs),   methoxy-­‐PCBs   (MeO-­‐PCBs),   and   hydroxylated  

PCBS  (OH-­‐PCBs)  (Letcher  et  al.,  2000;Lehmler  et  al.,  2009).  

While  accumulation  of  OH-­‐PCBs  has  been  demonstrated  in  fish  (Buckman  et  

al.,  2006;Carlson  and  Williams,  2001),  birds  (Klasson-­‐Wehler  et  al.,  1998;Verreault  

et   al.,   2006;Helgason   et   al.,   2010;Jaspers   et   al.,   2008),   frogs   (Nomiyama   et   al.,  

2010),and   mammals   (Park   et   al.,   2009;Verreault   et   al.,   2009;McKinney   et   al.,  

2006;Hoekstra  et  al.,  2003;Sandau  et  al.,  2000;Guvenius  et  al.,  2002),  there  has  been  

little  research  on  invertebrate  predators.    For  example,  the  Twelvemile  Creek  /  Lake  

Hartwell   ecosystem   has   been   the   focus   of   many   sediment   (Pakdeesusuk   et   al.,  

2003b;Pakdeesusuk  et   al.,   2003a;Pakdeesusuk  et   al.,   2005)  and   fish   investigations  

(Wong   et   al.,   2001);   however,   recent   analyses   have   identified   that   non-­‐fish  

predators  in  the  riparian  zone  also  participate  in  contaminant  transport  (Walters  et  

al.,  2008;Walters  et  al.,  2010).    Spiders  that  consume  aquatic  emergent  insects  have  

PCB  concentrations  greater  than  5.5ppm  (Walters  et  al.  2010).    If  other  predators  in  

the  food  web  accumulate  and  metabolize  their  PCB  body  burden  it   is  possible  that  

spiders  can  do  the  same.  

It  is  valuable  to  know  if  spiders  have  the  metabolic  capacity  to  metabolize  

their  PCB  body  burden  because  they  can  transfer  those  metabolites  alongside  the  

carbon,  nitrogen,  and  PCBs  to  their  predators,  namely  frogs,  lizards,  and  birds  

(Walters  et  al.,  2010).    If  this  is  so,  then  ecological  risk  assessments  may  need  to  be  

expanded  to  incorporate  OH-­‐PCBs  and  invertebrates.  

Page 82: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

70

  The  goal  of  this  work  is  to  test  two  hypotheses.    First,    spiders  have  the  

capacity  to  metabolize  PCBs  to  produce  OH-­‐PCBs.    Second,  metabolism  of  co-­‐planar  

PCB  61  will  differ  from  metabolism  of  the  non-­‐planar  congeners.  

The  metabolism  study  had  four  objectives  to  explore  the  hypotheses:  

• Screening  for  OH-­‐PCB  metabolites  generated  in  vivo  by  spiders  

• An  in  vitro  exposure  of  spider  enzymes  to  non-­‐planar  PCBs  88  and  149  

• An  in  vitro  exposure  of  spider  enzymes  to  co-­‐planar  PCB  61  

• Use  of  biomarker  assays  to  determine  the  metabolic  pathway  for  PCB  

detoxification  

 

Materials  and  Methods  

Sample  Collection  

Extracts   from   samples   collected   along   the   Twelvemile   Creek   arm   of   Lake  

Hartwell  were   provided   to   the   lab   by   the   US   EPA   and   used   for   the   in   vivo   study.    

These  samples  have  previously  been  analyzed  for  PCB  concentration  (see  Walters  et  

al.  2010)  and  for  enantiomeric  fraction  trends  (see  Chapter  2  of  this  dissertation  for  

EF  data  and  more  detail  about  collection).    The  extracts  were  treated  to  remove  OH-­‐

PCBs  prior   to   the  chiral  analysis   in  Chapter  2,   and   the  metabolite   fraction  used   to  

screen  for  presence  of  metabolites  in  spiders  from  the  field.  

The   in  vitro   study  utilized  an  enzyme   fraction   isolated   from  Tetragnathidae  

spiders  obtained  from  two  sites  along  Twelvemile  Creek  (Figure  3.1).  The  collection  

sites   are   contaminated   by   PCBs   from   the   Sangamo-­‐Weston   point   source,   and   are  

Page 83: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

71

locations   where   enzymatic   activities   are   hypothesized   to   be   elevated   because   of  

exposure   to   contamination.     Spiders  were   collected   in   jars   and   frozen  with   liquid  

nitrogen   before   transport   back   to   the   lab.     Each   site   had   one   pooled   sample   of  

approximately   15   spiders,   and   each   sample   had   a   total   organism   mass   of   1.2g.    

Additionally,   one   pooled   sample   was   collected   from   the   Reese   Mill   site   without  

liquid  nitrogen,  which  was  analyzed  separately  than  the  sample  obtained  with  liquid  

nitrogen.    Samples  were  stored  in  a  -­‐80˚F  freezer  until  preparation  for  analysis.  

 

 

   

Page 84: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

72

 Figure  3.1  Sampling  locations.    RM  =  Reese  Mill,  RB  =  Robinson  Bridge.    Note  that    

two   types   of   samples   were   collected   at   Reese   Mill:   spiders   collected   with  liquid  nitrogen,  and  spiders  collected  without  nitrogen.  

 

Sample  preparation  for  in  vivo  study  

Extractions  were  performed  by  the  US  EPA.    Samples  were  mixed  with  25g  of  

baked  sodium  sulfate,  dried  for  one  hour,  and  transferred  into  Accelerated  Solvent  

Extractor   (ASE)   cells   (Dionex,   Sunnyvale,   CA).     The   extraction   was   done   using  

methylene   chloride   and   hexanes.     Analysis   of   these   extracts   for   enantiomeric  

fraction  values   is  discussed   in  Chapter  2.      Hydroxylated   recovery  standards  were  

not   used   for   the   in  vivo  experiments   due   to   uncertainty   about   elution   patterns   of  

metabolites.  

These  extracts  were  treated  with  an  ethanol:KOH  solution  (1:1,  v/v)  to  

deprotonate  hydroxylated  metabolites  such  that  they  would  partition  from  the  

neutral  organic  phase.    The  aqueous  layer  was  drawn  off,  and  treated  with  HCl  to  pH  

Page 85: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

73

4  in  order  to  reprotonate  the  metabolites  that  partitioned  into  the  aqueous  layer.    A  

hexanes:methyl-­‐tert-­‐butyl-­‐ether  solution  (9:1,  v/v)  was  used  to  extract  metabolites  

from  the  aqueous  phase.    The  organic  phase  was  derivitized  with  diazomethane  that  

was  synthesized  in  our  lab.      Sample  clean-­‐up  columns  are  described  below.  

 

S9  fraction  preparation  

The  in  vitro  studies  used  post-­‐mitochondrial,  or  S9,  fractions.    An  S9  fraction  

is  the  supernatant  obtained  after  centrifuging  organ  homogenant,  and  contains  both  

microsomes   and   cytosol   (Greim   and   Snyder,   2008).     The   microsomal   portion  

contains  the  cytochrome  P-­‐450  enzymes  (CYP)  responsible  for  phase  I  metabolism,  

and   the   cytosolic   portion   contains   various   other   enzymes   involved   in   phase   II  

metabolism.     For   all   components   the   samples   were   derivitized   and   analyzed   in  

identical  manners,  though  sample  preparation  differed.  

Homogenization  buffer  was  prepared  to  maintain  pH,   to  prevent   ice  crystal  

damage,   to   inhibit   proteases   that   would   destroy   target   enzymes,   and   to   prevent  

oxidation   (0.25M   sucrose,   0.05M   Tris-­‐base   at   pH   7.4,   1mM  

ethylenediaminetetraacetic   acid   [EDTA,   to   chelate   metal   proteases],   1mM  

dithiothreitol  [DTT,  to  prevent  oxidation],  0.2mM  α-­‐toluene  sulfonyl  fluoride  [PMSF,  

to   inhibit   proteases]).     Whole   body   samples   of   Tetragnathidae   spiders   were  

homogenized  with  5mL  of  buffer.    A  manual  tissue  tearer  was  used  to  homogenate  

the   sample,   taking   care   to   avoid   any   foaming   or   bubbles,  which   could   oxidize   the  

sample.    Fifteen  spiders  were  combined  to  create  a  sample  weight  of  approximately  

Page 86: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

74

1.2g.         Samples   were   adjusted   to   identical   volume   and   spun   down   at   9000   rpm  

(10,000  g)  at  4˚C  for  20min  on  a  Beckman  J2021M/E  centrifuge  with  JA-­‐20.1  rotor.    

The  fat  layer  was  aspirated  from  the  top  of  the  extract,  and  the  supernatant  stored  

at  -­‐80˚C  until  analysis.    This  protocol  was  adapted  from  biomarker  assays  performed  

by  Truman  and  van  den  Hurk  (2010).  

 

Enzymatic  incubations  

S9  fractions  from  each  site  were  treated  with  200µL  of  a  2ppm  concentration  

of  an  individual  PCB  congener  in  acetone    –  PCB  61  (2,3,4,5-­‐tetraCB),  88  (2,2;,3,4,6-­‐

pentaCB),   or   149   (2,2;,3,4;,5;,6-­‐hexaCB).     Individual   neat   standards   of   PCB  

congeners  were   obtained   from   Accustandard   (New  Haven,   CT).     The   S9   fractions  

were   incubated   for  24hrs   in  a  34˚C  water  bath.    NADPH  was  added  to  provide  the  

energy  necessary   to   fuel  metabolism.     Samples  were   then   removed   from   the  bath  

and  extracted.  

  The   enzyme   incubations   used   a   negative   control,   created   by   boiling   a  

composite  S9  fraction,  consisting  of  equal  parts  from  the  two  sampling  sites.    Boiling  

effectively  quenches  enzymatic  activity,  and  combining  enzymes  from  both  locations  

removes   site   bias.     Rat   microsomes   enriched   in   CYP2B   was   used   as   a   positive  

control,  and  a  reagent  blank  was  prepared  to  confirm  that  positive  results  were  due  

to   compound   transformation   and   were   not   artifacts   from   the   reagents.     Reagent  

blanks   consisted   of   PCBs   with   magnesium   chloride,   bovine   serum   albumin,   Tris  

buffer  at  pH  7.4,  and  NADPH.    Enzyme  incubations  were  completed  in  triplicate.  

Page 87: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

75

Incubation  extraction  

The   post-­‐incubation   samples   were   extracted   via   accelerated   solvent  

extraction  on  a  Dionex  200  Accelerated  Solvent  Extractor  (ASE).    Cells  were  packed  

with   diatomaceous   earth   and   sand.     The   in  vitro   experiment   used   a   2-­‐OH-­‐tetraCB  

recovery  standard  obtained  from  Accustandard  (New  Haven,  CT)  with  recoveries  of  

34%  (±  4  SD).    These  recoveries  are  similar  to  those  obtained  in  other  laboratories  

(Kania-­‐Korwell   et   al.,   2008).     Results   were   not   corrected   based   upon   percent  

recovery.    A  9:1  hexanes:acetone  solution  (v/v)  was  used  for  the  extraction.    Heating  

time   was   5min   followed   by   two   2min   static   cycles.     Cells   were   heated   to   100˚C  

temperature  at  a  pressure  of  1500  psi,  followed  by  a  60%  volume  flush.    Extraction  

methods  were  adopted  from  Kania-­‐Korwell  et  al.  (2008b)  and  Garcia  et  al.  (2008).      

 

Derivitization  of  in  vivo  and  in  vitro  samples  

To   detect  metabolites   in   a   GC-­‐MS   system,   the   hydroxyl   group   needs   to   be  

derivitized   to   a   methoxylated   compound.     All   in   vivo   samples,   S9   extracts,   and  

hydroxylated  standards  were  derivitized  in  the   laboratory  with  diazomethane  that  

was   synthesized   immediately   before   use,   and   concurrent   with   extraction  

procedures.    Diazomethane  was   collected   in  methyl-­‐tert-­‐butyl   ether,   from  carbitol  

(diethylene   glycol   ethyl   ether)   and   diazald   (N-­‐methyl-­‐N-­‐nitroso-­‐p-­‐toluene  

sulfonamide)  under  alkaline  conditions  in  a  glass  diazomethane  generator.  After  one  

hour  of  synthesis  on  ice,  the  ether  from  the  outer  compartment  was  collected,  and  

Page 88: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

76

400μL   added   to   each   sample.     All   samples   were   then   stored   overnight   at   -­‐20˚C  

before  clean-­‐up.  

 

Sample  clean-­‐up  for  in  vivo  and  in  vitro  studies  

A  clean-­‐up  column  was  prepared  with  3.5g  of  alumina  (6%  deactivated)  and  

2.5g  anhydrous  sodium  sulfate.    Both   in  vivo  and   in  vitro  samples  were  cleaned  up  

on  these  columns.    The  samples  were  eluted  with  hexanes  to  a  final  volume  of  10mL.    

The   solvent  was   exchanged   for   isooctane,   and   samples  were   condensed   to   a   final  

volume  of  2mL.  

 

Sample  Analysis  by  GC-­‐MS-­‐MS  

Tandem   mass   spectroscopy   was   used   for   analysis   of   in   vivo   and   in   vitro  

samples  to  determine  the  structures  of  the  compounds  detected.  Use  of  standards  to  

identify  and  quantify  these  compounds  would  have  been  ideal;  however,  obtaining  

standards  for  each  potential  metabolite  was  not  feasible  due  to  both  unavailability  

and   cost.     Instead,  mass   spectra  were   used   to   determine   presence   and   degree   of  

chlorination   for   the   compounds   detected.     Different   SIM   settings   were   used   to  

screen  for  metabolites  by  homolog  series  (Appendix  C).  

Aliquots   of   the   samples   with   aldrin   and   PCB   209   as   internal   standards  

(Accustandard)  were  run  on  a  Varian  4000  GC-­‐MS-­‐MS  with  ion-­‐trap  detection  using  

electron  impact  ionization  (70  eV)  with  selected  ion  monitoring  (m/z  306,  308,  310  

Page 89: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

77

for  PCB  61;  m/z  324,  326,  328  for  PCB  88;  m/z  358,  360,  362  for  149).    An  RTX-­‐5  

column  was  used  for  separation  (30m×0.25mm×0.25µm,  Restek).  

Samples  were  injected  in  splitless  mode  at  215˚C  with  helium  as  a  carrier  gas  

at   a   constant   flow   rate   of   50.6   cm/s.     Injected   volumes  were  high   at   7µL  because  

sample   concentration   fell   below   detection   limits  with   1µL   injections.     Initial   oven  

temperature  was  90˚C  and  held  for  2min,  then  ramped  to  180˚C  at  an  8˚C/min  rate,  

held  for  10min,  and  then  ramped  at  5˚C/min  to  200˚C  and  held  for  10min.  

Standards   for   PCB   61,   OH-­‐PCB   61,   and   MeO-­‐PCB   61   were   obtained   from  

Accustandard   (New  Haven,   CT).     PCB   and  MeO-­‐PCB   61  were   used   to   develop   the  

quantification  method  and  to  externally  calibrate  enzyme  samples.    OH-­‐PCB  61  was  

used   to  optimize   the  derivitization  of  metabolites.     2-­‐MeO-­‐3,4-­‐diCB  was  used  as   a  

recovery   standard   for   these   incubations,   and   recovery   averaged   72.0%   (±2.3)  

among  samples.    Qualitative  data  about  metabolite  structure  were  obtained  for  PCBs  

88   and   149,   as   no   metabolite   standards   for   these   congeners   are   available   from  

commercial  sources  at  this  time.  

 

Biomarker  assays  

  S9   fractions   were   used   in   biomarker   assays   enlisted   to   help   detail   the  

metabolic   pathway   for   PCB   detoxification.     The   EROD   and   PROD   assays   work  

identically,  and  differ  only  in  their  target  enzyme:  the  EROD  assay  targets  the  CYP1A  

isoform;  whereas,  the  PROD  assay  targets  CYP2B.  

Page 90: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

78

  For  the  EROD  assay,  a  starting  solution  of  Tris  buffer  (to  maintain  pH  at  7.4),  

bovine   serum   albumin   (to   keep   exthoxyresorufin   in   solution),   MgCl2  (to  maintain  

ionic  strength),  water,  and  ethoxyresorufin  (the  substrate)  is  prepared.    Each  well  of  

the  plate  has  100uL  of  S9  fraction  added  to  100uL  of  starting  solution.    Addition  of  

50uL  of  a  2.5mM  NADPH  solution  starts  the  reaction.    A  plate  reader  set  at  530nm  

excitation  and  585nm  emission  measures  the  fluorescence  generated  when  CYP1A  

deethylates  ethoxyresorufin.    The  PROD  assay  uses  the  same  protocol,  replacing  the  

exthoxyresorufin   with   pentoxyresorufin,   thus   requiring   the   use   of   CYP2B   to  

complete  depentylation  of   the   substrate.    The  same  plate   reader   settings  are  used  

because  the  same  end  product,  resorufin,  is  measured  in  both  arrays.  

 

 

Results  

Field  study  for  in  vivo  metabolism  

The   chromatograms   for   the   field   samples   indicate   that   many   different  

compounds   are   present.   The   extraction   and   derivitization   procedures   ensure   that  

only   OH-­‐PCBs   are   being   detected   (Kania-­‐Korwell   et   al.   2004);   however,   many  

different   congeners   could   be   metabolized   to   yield   multiple   metabolites   for   each  

congener.     Incidence   of   chlorine   containing   compounds   was   confirmed   by   the  

presence   of   isotopic   ratios   for   chlorine   (Figure   3.2).     Such   compounds   are   not  

naturally   occurring.     Screening   the   same   samples   under   different   SIM   settings  

allows   for   structure   specificity.     There   is   evidence   to   suggest   that  more   than   one  

Page 91: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

79

homolog  class   is   transformed  (Figure  3.3).    SIM  settings   for  hepta,  octa,  and  nona-­‐

chlorinated   compounds   did   not   detect   any   compounds,   suggesting   that   highly  

chlorinated  congeners  are  not  metabolized.      

 

 

Figure  3.2    Tetragnathidae  sample  for  in  vivo    analysis.    The  spectra  corresponds  to    the   peak   indicated   in   the   chromatogram.     The   scan   using   SIM   settings   for  m/z=324   for  penta-­‐chlorinated  metoxylated   compounds   indicates  presence  of  metabolites.     Structure   could   not   be   discerned,   but   presence   of   isotopic  ratios  for  chlorine  (100:30  isotopic  peaks)  indicate  that  these  compounds  are  not  naturally  occurring.  

Page 92: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

80

Figure 3.3 The same Tetragnathidae sample indicated in the previous figure under

different SIM settings, shown here for m/z=353 to screen for hexachlorinated congeners. Spectral results for the peak indicated in the chromatogram confirm that compounds with six chlorines can be metabolized.  

Qualitative  description  of  PCB  88  and  149  in  vitro  metabolism  

The  incubation  results  indicated  enzyme  activity.    An  identical  experimental  design  

was  used   for  PCBs  88  and  149.    The  reagent  blanks  were   identical   to   the  negative  

controls,   and   both  were   significantly   different   from   the   samples   (see   Figure   3.4).      

Panel   A   is   the   chromatogram   for   the   negative   control,   and   panels   B,   and   C   are  

chromatograms   for   the   two  sample  sites  where  spiders  were  obtained  with   liquid  

nitrogen.    All  panels  reflect  a  treatment  with  PCB  88.    In  the  negative  control  (Figure  

3.4A)   there   is  a  peak  that  elutes  at  38min,  whereas   the  samples  (Figures  3.4b  and  

Page 93: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

81

3.4C)   yielded   a   peak   at   26min.     The   negative   control   samples   showed   peaks   that  

were  dissimilar  from  both  the  reagent  blanks  and  the  samples  obtained  with  liquid  

nitrogen.     The   samples   obtained   with   liquid   nitrogen   have   chromatograms   with  

peaks   that   were   not   present   in   the   negative   controls   or   the   samples   obtained  

without  liquid  nitrogen.    These  peaks  in  the  samples  collected  with  liquid  nitrogen  

are  well  defined,  and  feature  unique  mass  spectra  patterns.  

Page 94: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

82

 

Figure  3.4  Chromatograms  for  PCB  88  enzyme  incubations.    (A)  negative  control,    

(B)  Reese  Mill,  and  (C)  Robinson  Bridge.  

 

 

Page 95: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

83

Additionally,   there   was   good   repeatability   of   results   between   samples.    

Figure   3.5   shows   chromatograms   for   samples   incubated   with   PCB   88.     Panels   A  

through   E   indicate   that   each   sample   had   the   peak   appear   at   identical   retention  

times.     It   is   important   to   note   that   where   the   magnitude   of   the   transformation  

appears  to  vary  between  replicate  samples  obtained  at  Reese  Mill  (Panels  C,  D,  and  

E)  the  experiment  had  to  be  modified  for  the  last  two  replicates  to  account  for  low  

S9   fraction   supplies.     For   the   replicates   pictured   in   panels   D   and   E   all   reagent  

volumes  were  halved  so  as  to  allow  for  triplicate  analysis.    Panel  F  features  the  mass  

spectra  that  was  common  to  all  samples  and  replicates  for  incubations  with  PCB  88,  

providing   additional   evidence   that   the   transformation   occurring   in   the   samples   is  

not  only  different  from  the  peak  seen  for  PCB  88,  featuring  a  retention  time  nearly  

two  minutes  after  PCB  88,  but  also  that  there  is  a  common  metabolite  generated  by  

the  tetragnathid  samples  at  both  sites.  

 

Page 96: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

84

 Figure  3.5    Chromatograms  for  enzymes  obtained  with  liquid  nitrogen  and    incubated  with  PCB  88  at  Robinson  Bridge  (A  &  B)  and  Reese  Mill  (C,  D,  &  E);    and  (F)  a  representative  mass  spectra.    All  samples  were  run  in  triplicate;    however,  for  aesthetic  clarity  only  five  are  shown  here.  

   

 

 

Page 97: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

85

The  chromatographic  signal  for  PCB  149  was  distinct  from  that  of  PCB  88.    In  

Figure  3.6,  Panel  A1  shows  a  chromatogram  with  a  peak  eluting  at  26min   for  PCB  

88,  and  Panel  B1  shows  a  peak  at  a  different  time  (29min)  for  PCB  149.    The  samples  

from  the  same  site  were  treated  in  the  same  manner.    These  peaks  also  possess  two  

different  spectra,  which   is  not  surprising  due  to   the  differences   in  structure  of   the  

parent  compounds.      

Page 98: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

86

 Figure  3.6    Chromatograms(1)  and  mass  spectra(2)  for  enzyme  incubations  at  

Robinson  Bridge  location  for  PCB  88(A)  and  PCB  149(B).  

       

 

 

Page 99: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

87

Quantification  of  PCB  61  metabolism  

Isooctane  blanks  displayed  no  peaks,  and  both  acetone  control  and  negative  

controls  were   identical   to   those  runs  (data  not  shown).    Positive  controls  with  rat  

microsomes  enriched  with  CYP2B  showed  multiple  peaks  with  metabolites  at  high  

concentrations(Figure  3.7).  

 

 

Figure  3.7    Chromatogram  for  positive  control.    Note  that  no  solvent  peak  is  present    because  filament  was  off  for  first  10min.  

 

Chromatograms  indicated  significant  metabolism  of  PCB  61  (Figure  3.8)  with  

multiple   peaks   exhibited   in   addition   to   those   expected   at   29min   for   the   recovery  

standard   and   at   31min   for   2-­‐MeO-­‐PCB   61.   The   standard   used  was   for   the   ortho-­‐

Page 100: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

88

hydroxylated  metabolite,  which  was   the   only   standard   available   at   the   time.     It   is  

likely   that   the   other   peaks   represent   the   3-­‐MeO-­‐   and   4-­‐MeO-­‐2’,3’,4’,5’-­‐tetraCB  

metabolites  or  cofactors.      

 

 Figure  3.8  Chromatogram  for  Reese  Mill  S9  fraction  incubation  with  PCB  61,  SIM    

m/z  =  310.    Peak  at  31min  is  for  MeO-­‐PCB  61  (indicated  by  thick  arrow).    The  recovery  standard  elutes  at  29min  (indicated  by  thin  arrow).  

 The   quantitative   data   from   incubations   with   PCB   61   indicate   that   spider  

enzymes  do  have   the   capacity   to   generate  OH-­‐PCB  metabolites,   and  potentially   at  

significant  concentrations.    The  sample  from  the  Robinson  Bridge  site  did  not  differ  

from   the   negative   control,   whereas   the   enzyme   fraction   obtained   without   liquid  

Page 101: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

89

nitrogen   from   Reece   Mill   did   show   low   activity   (Figure   3.9).   An   OH-­‐PCB   61  

concentration  of   0.03ppm   (±0.01   SD)  was  detected   for   enzymes  obtained  without  

liquid   nitrogen   from   Reese   Mill   (labeled   as   “no   N2”),   whereas   enzymes   obtained  

with   liquid   nitrogen   (labeled   as   “Reese  Mill”)   yielded   a   concentration   of   1.63ppm  

(±0.35).    Robinson  Bridge  samples  did  not  generate  a  detectable  quantity  of  2-­‐MeO-­‐

PCB61;  however,   this  could  be  a   result  of  halving   the  reagent  volumes   in  order   to  

obtain  results  in  triplicate.    

 

 Figure  3.9    Measured  2-­‐MeO-­‐PCB  61  after  incubation  with  spider  S9  fractions.  

 

Metabolic  Pathway  

Biomarker   analyses   for   CYP1A   and   CYP2B   shed   little   light   on   metabolic  

processes,   as   they   were   unable   to   detect   any   enzymatic   activity   in   the   spider  

samples.     It   appeared   that   even   for   pooled   samples,   the   enzyme   concentrations  

0  

0.5  

1  

1.5  

2  

2.5  

Negative  Control  

RM  -­‐  no  N2   RM  -­‐  N2   Robinson  Bridge  

Concentration  (ppm

)  

Page 102: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

90

might   not   have   been   high   enough   to   yield   a   measurable   signal,   as   the   only  

measureable   signals   came   from   the   positive   control   (rat   microsomes   enriched   in  

CYP2B)  for  the  PROD  assay.  

 

Discussion  

In vivo anaylsis

In  vivo  results  indicate  that  metabolites  for  PCBs  with  six  or  fewer  chlorines  

are  present  in  spiders  at  the  Twelvemile  Creek  arm  of  Lake  Hartwell.    Expectations  

were  confirmed  when  metabolites  for  congeners  with  seven  or  more  chlorines  were  

not   detected,   as   such   congeners   are   highly   persistent   in   the   environment   due   to  

their   recalcitrance   to   metabolism   (Lehmler   et   al.   2000).     If   spiders   are   able   to  

metabolize   their   body  burden,   it   is   not   surprising   that   the  higher   chlorinated   and  

thus  more  bioaccumulative  congeners  fail  to  be  detoxified.    These  analyses  provided  

data  that  confirmed  the  presence  of  chlorine  containing  compounds,  and  while  they  

could  not  all  be  identified,  it  did  indicate  that  in  vitro  studies  could  yield  results  that  

could  confirm  the  enzymatic  capabilities  of  spiders.  

Qualitative  evidence  of  metabolism  is  an  important  contribution  at  this  time  

given   the   lack  of  commercially  available  standards   for   the  selected  PCB  congeners  

(88   and  149).    While   it  was   not   possible   to   identify   specific   compounds  with   this  

analysis,   these   qualitative   results   provide   compelling   evidence   that   chlorine-­‐

containing   metabolites   are   present   in   spiders   –   the   first   evidence   of   this   kind.  

Page 103: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

91

Selected   ion   monitoring   indicate   what   PCBs   can   be   metabolized   and   which  

structures  are  present.  

In vitro analyses

The incubation results only had one sample for each site, however the

composite of 15 individuals and the same results from each site indicate a certain

robustness to the findings. Obtaining good recoveries because of the numerous

extractions and derivatization lends validity to the process. Use of diazomethane to

derivitize samples was 80% effective, but recoveries for individual extraction steps

are unknown. Initial samples collected were obtained without liquid nitrogen, and

did not indicate any metabolism. Use   of   liquid   nitrogen   allows   the   enzymes   to  

remain   in   their   active   conformations,   whereas   samples   obtained   without   it   lose  

enzymatic  activity  as  the  enzymes  may  denature  or  change  upon  death.    The  sample  

collection   method   was   revised,   and   samples   collected   with   liquid   nitrogen   were  

used   to   obtained   the   results   presented   here.     Time   constraints   prevented   the  

collection   of   additional   samples;   however,   all   samples   had   three   separate  

incubations  to  assess  reproducibility  of  results,  which  was  good  (see  Figure  3.5).

Results for PCB 88 incubations indicate that there  is  enzymatic  capacity  for  

spiders   to  metabolize  PCB  88.     In  vitro   studies   investigating  PCB  metabolism  have  

been  completed,  but  mainly  in  mammalian  systems  (McKinney  et  al.,  2006;  Verrault  

et   al.,   2009).     The   metabolism   measured   here   represents   the   capacity   of   spider  

enzymes  for  metabolism,  but  may  not  be  representative  of  what  occurs  in  the  living  

Page 104: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

92

organisms.    Enzymes  that  were  able  to  transform  the  PCBs  may  not  be  the  primary  

enzymes  used   in  detoxification,  or  may  generate  different  metabolites   than  would  

be  generated  in  the  living  organism.      

The  metabolites  most  likely  generated  for  PCB  88  are  pictured  in  Figure  3.10.    

These   compounds   are   formed  when   adjacent   hydrogenated  positions   are   present,  

and   a   hydroxyl   group   can   replace   a   hydrogen.     These   are   the   most   favorable  

conditions   for  hydroxylation  (James,  2001).    While  other  metabolites  are  possible,  

steric   hindrance   may   bar   the   generation   of   3’-­‐OH-­‐   and   6’-­‐OH-­‐2,2’,3,4,6-­‐CB  

metabolites.  

 

 

Figure  3.10  PCB  88  and  potential  metabolite  structures.  

 

Results   were   expected   to   differ   between   PCBs   88   and   149   due   to   their  

different  chlorination  substitution.      PCB  88  is  penta-­‐chlorinated;  whereas,  PCB  149  

Page 105: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

93

is  hexa-­‐chlorinated.    Both  PCBs  88  and  149  are  non-­‐planar  congeners.      Incubations  

with   PCB   149   yielded   a   unique   chromatographic   signal   and   spectrum   from   those  

obtained   for   PCB   88.     The   potential   hydroxylated   metabolites   for   PCB   149   are  

shown  in  Figure  3.11.    Compared  to  PCB  88,  PCB  149  has  an  additional  chlorine  and  

just   one   location  where   there   are   two   adjacent   hydrogenated   positions   on   a   ring.    

The   high   level   of   chlorination   for   this   PCB   (six   chlorines)   makes   it   a   more  

recalcitrant  compound,  so  it  is  possible  that  only  one  metabolite  for  PCB  149  can  be  

generated.     The   4-­‐OH-­‐   and   5-­‐OH-­‐2,2’,3,4’,5’,6’-­‐CB  metabolites   are   the   more   likely  

compounds  to  be  generated  because  of  the  adjacent  hydrogens  (James,  2001).    The  

3’-­‐hydroxy  structure  is  not  likely  to  be  generated  due  to  steric  hindrance.    Similar  to  

the  previous  incubation,  there  was  just  one  peak  generated  for  the  transformed  PCB  

149.    This  could  also  be  due  to  just  one  metabolite  being  generated,  or  co-­‐elution  of  

the  4-­‐hydroxy  and  5-­‐hydroxy  compounds.    

Page 106: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

94

 

 

Figure  3.11  PCB  149  and  potential  metabolite  structures  

PCB   61   is   a   planar   congener,  which   are   known   to   have   higher  metabolism  

rates   than   reported   for   non-­‐planar   congeners   such   as   PCBs   88   and   149   (James,  

2001).    The  chlorination  pattern  for  PCB  61  allows  for  easier  hydroxylation  because  

one   ring   is   completely   devoid   of   chlorines;   which   allows   for   many   potential  

pathways   for   hydroxylation   since   there   are   several   adjacent   ring   positions   with  

hydrogens,  not  chlorines  (Figure  3.12).    Hydroxylated  PCB  61  is  also  noted  to  be  an  

endocrine   disrupting   compound,   causing   estrogenic   effects   in   fish   and   wildlife  

(Carlson   and   Williams,   2001).     Most   importantly,   standards   were   available   for  

hydroxylated  and  methoxylated  compounds,  so  quantification  could  be  completed.  

Page 107: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

95

 

Figure  3.12            Structure  of  PCB  61  and  potential  metabolites.  

Quantification  of  metabolism  indicated  higher  concentrations  of  MeO-­‐PCB  61  

generated   with   enzymes   from   Reese   Mill   than   for   those   obtained   at   Robinson  

Bridge,  which  were   not   different   from   the   negative   control.     Detoxifying   enzymes  

may   occur   at   a   higher   concentration   in   spiders   at   Reese   Mill,   resulting   in   higher  

activity   and   greater   concentrations   of   metabolites,   as   compared   to   spiders   at  

Robinson  Bridge  due  to  their  history  of  exposure.    Spiders  at  Reese  Mill  are  located  

very   close   to   the   point   source   of   contamination,   and   have   possibly   up-­‐regulated  

their   detoxifying   enzymes   to   handle   their   PCB   body   burden.     These   evolutionary  

stresses  were  not  as  severe  down  river  at  Robinson  Bridge,  so  this  same  activity  is  

not  seen  in  that  population.    The  concentration  data  for  spiders  at  both  locations  are  

Page 108: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

96

reported  in  Chapter  4  (see  Table  4.2  and  Figure  4.2),  which  confirms  that  Reese  Mill  

spiders  have  a  higher  body  burden  than  spiders  at  Robinson  Bridge.  

Many  peaks  other  than  those  identified  as  2-­‐MeO-­‐PCB61  were  present  in  the  

chromatogram  for  the  Reese  Mill  incubation  with  PCB  61.    For  some  peaks,  the  mass  

spectra  did  not   indicate  presence  of   chlorine  containing  compounds,   so   it   is   likely  

that  the  other  compounds  were  cofactors  generated  by  the  S9  fraction  in  response  

to  exposure   to  PCB  61,  not  metabolites.    The  S9   fraction  contains  not   just   the  CYP  

isoforms   likely   responsible   for   the   biotransformation   of   PCBs,   but   the   entire  

enzymatic  library  available  to  spiders.    Enzymes  that  have  the  materials  and  energy  

available  to  them  in  the  S9  fraction  can  complete  their  functions,  and  subsequently  

result  in  additional  peaks  in  the  chromatogram.  

  Co-­‐elution  proved  to  be  a  challenge  to  successful  identification  of  metabolite  

structure.    A  single  peak  yields  two  possible  interpretations:  1)  one  metabolite  was  

generated,  or  2)  multiple  metabolites  are  present  but   they  co-­‐elute.    Use  of  ortho-­‐  

and   para-­‐substituted   metabolite   standards   confirmed   that   the   method   utilized   is  

capable  of  separating  methoxylated  isomers.    Commercially  obtained  standards  for  

isomers   with   identical   chlorination   and   different   methoxylation   patterns   were  

shown   to   elute   at   different   times.     This   check   is   representative   of   just   two  

metabolites  for  a  single  PCB  congener,  as  standards  for  all  isomers  for  PCBs  88  and  

149   were   not   available.     The   lack   of   available   metabolite   standards   for   these  

congeners  precluded  both  quantification  and  resolution  of  this  question.  

Page 109: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

97

Spiders  are  likely  to  be  the  organism  responsible  for  metabolizing  the  parent  

compounds.     The   focus  of   the   investigations   to  date  have  been   fish   and  mammals  

(Buckman  et  al.,  2006;  McKinney  et  al.  2006;  Verrault  et  al.  2009);  however,   these  

results   indicate   that   spiders   may   have   evolved   the   capacity   to   metabolize   their  

contamination   body   burden.       It   is   unlikely   that   spiders   are   receiving   these  

compounds  from  prey.    When  spiders  liquefy  and  consume  insects  the  OH-­‐PCBs  are  

exposed   to   the   oxygenated   environment.     Extended   exposure   to   oxygen   in   the  

laboratory  can  result   in  OH-­‐PCBs  transforming  to  catechols  (Lehmler  et  al.,  2009).    

Lag   time   between   expelling   digestive   enzymes   onto   the   prey   and   consumption   of  

liquefied   tissue  may   be   long   enough   for   catechols   and   other   compounds   to   form.    

Experiments   to   measure   the   catechol   load   in   spiders   and   the   OH-­‐PCB   content   in  

prey  species  would  be  good  complementary  studies.  

Comparison  of  in  vivo  and  in  vitro  results  

The   retention   times   and  mass   spectra   obtained   for   PCBs   88   and   149  were  

cross   referenced   with   the   data   obtained   for   the   in   vivo   study.     There   were   no  

incidences  where  peaks  at  the  retention  times  of  the  in  vitro  study  featured  the  same  

mass  spectra,  which  could  be  due  to  co-­‐elution  in  the  in  vivo  samples.    Alternatively,  

these  two  highly  chlorinated  PCBs  may  not  be  metabolized  in  the  field.    If  there  are  

other  PCBs  that  are  more  amenable  to  metabolism  and  less  recalcitrant  they  could  

be  preferentially  metabolized  (James,  2001).    Continuing  input  of  such  PCBs  to  the  

metabolic  system  of  the  spider  would  result  in  lower  concentrations  for  more  easily  

Page 110: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

98

metabolized   compounds,   and   greater   concentrations   of   the   more   recalcitrant  

congeners.    

Likewise,   the   results   obtained   for   PCB   61   were   not   present   in   the   field  

samples.    This  was  expected,  as  PCB  61  is  not  present  in  the  Aroclor  mixtures  known  

to  have  contaminated  the  Twelvemile  Creek  /  Lake  Hartwell  system.    The  procedure  

used  in  Chapter  4  to  analyze  spider  PCB  concentrations  did  not  detect  PCB  61.  

Pathway description

  Biomarker  assays  were  attempted  to  indicate  the  metabolic  pathway  for  

PCBs  in  spiders.    EROD  and  PROD  assays  would  have  been  able  to  describe  the  

enzymatic  activity  of  CYP1A  and  2B,  respectively,  as  well  as  indicate  the  PCB  

detoxification  pathway  (Yang  et  al.,  2008).    There  was  no  detection  of  enzymatic  

activity  for  spider  samples  obtained  with  liquid  nitrogen.    It  is  likely  that  there  was  

not  enough  protein  in  the  S9  fractions  to  generate  a  detectable  signal.  

To   try   to   elucidate   the   pathway,   rat   microsomes   with   enriched   CYP2B  

concentrations  were  used  as  positive  controls  for  the  incubation  experiments.    They  

were  exposed  to  PCBs  61,  88,  and  149  at  the  same  time  and  in  the  same  way  as  the  

spider  samples.    The  results  from  this  positive  control  were  identical  to  the  results  

from  Reese  Mill  and  Robinson  Bridge  samples  obtained  with  liquid  nitrogen,  which  

supports   the  hypothesis   that  spiders  have   the  ability   to  metabolize.    These  results  

support  the  idea  that  the  same  metabolites  yielded  by  CYP2B  in  rats  are  generated  

by  spider  S9  fractions.    The  enzymes  in  spiders  have  yet  to  be  determined,  and  may  

Page 111: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

99

be  deserving   of   future   research;   however,   the   results   of   these   experiments  would  

direct  investigations  towards  the  cytochrome  P450  suite  of  detoxifying  enzymes,  in  

particular  CYP2B.  

 

Conclusions  The  first  hypothesis  that  spiders  can  metabolize  PCBs  was  supported  by  both  

the   in  vivo  and   in  vitro  studies.    The  screening  of  field  samples  for  presence  of  PCB  

metabolites   indicated   that   PCBs   with   six   or   fewer   chlorines   can   be   metabolized.    

PCB   metabolites   with   seven   or   more   chlorines   were   not   present   in   the   samples  

analyzed.    Their   recalcitrance   to  metabolism   is  a  key  driver  behind   their  potential  

for   bioaccumulation,   in   conjunction   with   their   increased   chlorine   character.    

Metabolites   generated   in  vitro   for   PCBs   61,   88,   and   149  were   not   detected   in   the  

field  extracts,  which  could  be  due  to  their  absence  in  the  environment  (PCB  61)  or  to  

a  lack  of  metabolism  by  spiders  in  the  field  (PCBs  88  and  149).  

The   laboratory   studies   provide   evidence   that   spiders   have   the   potential   to  

metabolize  PCB  congeners.  PCBs  88  and  149  were  demonstrated  to  be  metabolized  

by  spider  enzymes.    Screening  with  unique  SIM  parameters  for  PCB  88  allowed  for  

detection  of  a  single  peak  with  a  retention  time  and  mass  spectra  different  from  that  

of   the   parent  material.       Results   for   incubations  with   PCB   149   also   had   retention  

times  and  mass  spectra  different  from  those  for  the  parent  material.    These  results  

indicate  that  spider  enzymes  do  have  the  potential  to  metabolize  PCBs  with  as  many  

as  six  chlorines.      

Page 112: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

100

Transformation  of  PCB  61  to  2-­‐OH-­‐PCB  61  was  quantified,  and  also  supports  

the   hypothesis   that   spiders   have   the   potential   to   metabolize   their   PCB   body  

burdens.    Chromatograms  for  PCB  61  incubations  differed  from  those  with  PCBs  88  

and   149   in   that   there   were   many   detected   peaks,   which   supported   the   second  

hypothesis   that  metabolism   of   PCB   61  would   produce  multiple   OH-­‐PCBs.     This   is  

likely  due  to  the  multiple  pathways  that  are  available  for  OH  substitution  onto  the  

second  ring  of  PCB  61;  whereas  a  single  likely  pathway  exists  for  PCBs  88  and  149.    

The   peaks   that   did   not   indicate   presence   of   chlorine   containing   compounds  may  

represent   cofactors   and   other   compounds   associated   with   metabolism   that   were  

generated  by  the  S9  fraction.  

       

References    Bergman,  Å,  Klasson-­‐Wehler,  E.,  Kuroki,  H.,  1994.  Selective  retention  of    

hydroxylated  PCB  metabolites  in  blood.    Environ.  Health.  Perspect.  102,  464-­‐469.  

 Brouwer,  A.,  Morse,  D.,  Lans,  M.,  Schuur,  A.,  Murk,  A.,  Klasson-­‐Wehler,  E.,  Bergman,    

A.,  Visser,  T.,  1998.  Interactions  of  persistent  environmental  organohalogens  with  the  thyroid  hormone  system:  Mechanisms  and  possible  consequences  for  animal  and  human  health.  Toxicol.  Ind.  Health  14,  59-­‐84.  

 Buckman,  A.H.,  Brown,  S.B.,  Small,  J.,  Muir,  D.C.G.,  Parrott,  J.,  Solomon,  K.R.,  Fisk,  A.T.,    

2007.  Role  of  temperature  and  enzyme  induction  in  the  biotransformation  of  polychlorinated  biphenyls  and  bioformation  of  hydroxylated  polychlorinated  biphenyls  by  Rainbow  Trout  (Oncorhynchus  mykiss).  Environ.  Sci.  Technol.  41,  3856-­‐3863.  

     

Page 113: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

101

Buckman,  A.H.,  Wong,  C.S.,  Chow,  E.A.,  Brown,  S.B.,  Solomon,  K.R.,  Fisk,  A.T.,  2006.    Biotransformation  of  polychlorinated  biphenyls  (PCBs)  and  bioformation  of  hydroxylated  PCBs  in  fish.  Aquat.  Tox.  78,  176-­‐185.  

 Calvo,  R.,  Obregon,  M.J.,  Ruiz  de  Ona,  C.,  Escobar  del  Rey,  F.,  Morreale  de  Escobar,  G.,    

1990.  Congenital  hypothyroidism,  as  studied  in  rats:  the  crucial  role  of  maternal  thyroxine  but  not  of  3,5,3'-­‐triiodothyronine  in  the  protection  of  the  fetal  brain.  J.    Clin.    Invest.  86,  889-­‐899.  

 Campfens,  J.,  Mackay,  D.,  1997.  Fugacity-­‐based  model  of  PCB  bioaccumulation  in    

complex  aquatic  food  webs.  Environ.  Sci.  Technol.  31,  577-­‐583  d.    Carlson,  D.B.,  Williams,  D.E.,  2001.  4-­‐hydroxy-­‐2',4',6'-­‐trichlorobiphenyl  and  4-­‐  

hydroxy-­‐2',3',4',5'-­‐tetrachlorobiphenyl  are  estrogenic  in  rainbow  trout.  Environ.  Tox.  Chem.  20,  351-­‐358.  

 Danerud,  P.O.,  Morse,  D.C.,  Klasson-­‐Wehler,  E.,  Brouwer,  A.,  1996.  Binding  of  a    

3,3',4,4'-­‐tetrachlorobibhenyl  (CB-­‐77)  metabolite  to  fetal  transthyretin  and  effects  of  fetal  thyroid  hormone  levels  in  mice.  Tox.  106,  105-­‐114.  

 Dang,  V.D.,  Walters,  D.M.,  Lee,  C.M.,  2010.  Transformation  of  chiral  polychlorinated    

biphenyls  (PCBs)  in  a  stream  food  web.  Environ.  Sci.  Technol.  44,  2836-­‐2841    Dang,  V.D.,  2007.  Achiral  and  chiral  analysis  of  polychlorinated  biphenyls  (PCBs)  in    

the  aquatic  and  riparian  food  webs  in  Twevle  Mile  Creek,  South  Carolina.      de  Haan,  L.H.J.,  van  Dijk,  L.,  Brouwer,  A.,  1994.  Effects  of  hydroxylated  PCB    

metabolites  on  the  Gap-­‐Junctional  Intercellular  Communication  between  mouse  Hepa  1c1c7  cells.  Organohal.  Cmpds.  20,  491-­‐495.  

 Denomme,  M.A.,  Bandiera,  S.,  Lambert,  I.,  Copp,  L.,  Safe,  S.,  1983.  Polychlorinated    

biphenyls  as  phenobarbitone-­‐type  inducers  of  microsomal  enzymes.  Structure-­‐activity  relationships  for  a  series  of  2,4-­‐dichloro-­‐substituted  congeners.  Biochem.    Pharmacol.  32,  2955-­‐2963.  

 García,  I.,  Ignacio,  M.,  Mouteira,  A.,  Cobas,  J.,  Carro,  N.,  2008.  Assisted  solvent    

extraction  and  ion-­‐trap  tandem  mass  spectrometry  for  the  determination  of  ploychlorinated  biphenyls  in  mussels.  Comparison  with  other  extraction  techniques.  Anal.    Bioanal.    Chem.  390,  729-­‐737.  

 Greim,  H.,  Snyder,  R.,  2008.  Toxicology  and  Risk  Assessment:  A  Comprehensive    

Introduction.  Wiley-­‐Interscience.  1,  387.    

Page 114: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

102

Guvenius,  D.M.,  Hassanzadeh,  P.,  Bergman,  A.,  Norent,  K.,  2002.  Metabolites  of    polychlorinated  biphenyls  in  human  liver  and  adipose  tissue.  Environ.  Tox.  Chem.  21,  2264-­‐2269.  

 Helgason,  L.B.,  Arukwe,  A.,  Gabrielsen,  G.W.,  Harju,  M.,  Hegseth,  M.N.,  Heimstad,  E.S.,    

Jørgensen,  E.H.,  Mortensen,  A.S.,  Wolkers,  J.,  2010.  Biotransformation  of  PCBs  in  arctic  seabirds:  characterization  of  phase  I  and  II  pathways  at  transcriptional,  translational  and  activity  levels.  Comp.  Biochem.  Physiol.  C  152,  34-­‐41.  

 Hoekstra,  P.F.,  Letcher,  R.J.,  O'Hara,  T.M.,  Backus,  S.M.,  Solomon,  K.R.,  Muir,  D.C.G.,    

2003.  Hydroxylated  and  methylsulfone-­‐containing  metabolites  of  polychlorinated  biphenyls  in  the  plasma  and  blubber  of  bowhead  whales  (Balaena  mysticetus).  Environ.  Tox.  Chem.  22,  2650-­‐2658.  

 Ishida,  C.,  Koga,  N.,  Hanioka,  N.,  Saeki,  H.K.,  Yoshimura,  H.,  1991.  Metabolism  in  vitro    

of  3,4,3',4'-­‐  and  2,5,2',5'-­‐tetrachlorobiphenyl  by  rat  liver  microsomes  and  highly  purified  cytochrome  P450.  J.    Pharmacobiodyn.  14,  276-­‐284.  

 James,  M.O.,  2001.  Polychlorinated  biphenyls:  Metabolism  and  metabolites,  in:  PCBs:    

Advances  in  Environmental  Toxicology  and  Health  Effects.    Robertson,  L.,    Hansen,  L.  (Eds.).  The  University  Press  of  Kentucky,  pp.  35-­‐46.  

 Jaspers,  V.L.B.,  Dirtu,  A.C.,  Eens,  M.,  Neels,  H.,  Covaci,  A.,  2008.  Predatory  bird  species    

show  different  patterns  of  ydroxylated  polychlorinated  biphenyls  (OH-­‐PCBs)  and  polychlorinated  biphenyls  (PCBs).  Environ.    Sci.    Technol.  42,  3465-­‐3471.  

 Kania-­‐Korwel,  I.,  Zhao,  H.,  Norstrom,  K.,  Li,  X.,  Hornbuckle,  K.C.,  Lehmler,  H.,  2008.    

Simultaneous  extraction  and  clean-­‐up  of  polychlorinated  biphenyls  and  their  metabolites  from  small  tissue  samples  using  pressurized  liquid  extraction.  J.  Chroma.  A  1214,  37-­‐46.  

 Klasson-­‐Wehler,  E.,  Bergman,  Å,  Athanasiadou,  M.,  Ludwig,  J.P.,  Auman,  H.J.,  Kannan,    

K.,  Van  Den  Berg,  M.,  Murk,  A.J.,  Feyk,  L.A.,  Giesy,  J.P.,  1998.  Hydroxylated  and  methylsulfonyl  polychlorinated  biphenyl  metabolites  in  albatrosses  from  Midway  Atoll,  North  Pacific  Ocean.  Environ.  Tox.  Chem.  17,  1620-­‐1625  

 Lans,  M.C.,  Brouwer,  A.,  Koppe,  J.G.,  van  den  Berg,  M.,  1990.  Enzyme-­‐Induction  and    

Alterations  in  Thyroid-­‐Hormone,  Vitamin-­‐a  and  Vitamin-­‐K  Levels  by  Tcdd  in  Neonatal  and  Maternal  Rats.  Chemosph.  20,  1129-­‐1134.  

     

Page 115: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

103

Lans,  M.C.,  1995.  Thyroid  hormone  binding  proteins  as  novel  targets  for    hydroxylated  polyhalogenated  aromatic  hydrocarbons  (PHAHs):  Possible  implications  for  toxicity.  Agricultural  University  Wageningen.  

 Lehmler,  H.J.,  Harrad,  S.J.,  Huhnerfuss,  H.,  Kania-­‐Korwel,  I.,  Lee,  C.M.,  Lu,  Z.,  Wong,    

C.S.,  2009.  Chiral  polychlorinated  biphenyl  transport,  metabolism,  and  distribution:  a  review.  Environ.    Sci.    Technol.  44,  2757-­‐2766.  

 Letcher,  R.J.,  Klasson-­‐Wehler,  E.,  Bergman,  Å,  2000.  Methyl  sulfone  and  hydroxylated    

metabolites  of  polychlorinated  biphenyls,  in:  The  Handbook  of  Environmental  Chemistry  Vol.  3  Part  K  New  Types  of  Persistent  Halogenated  Compounds.  Paasivirta,  J.  (Ed.).  Springer-­‐Verlag,  pp.  315  -­‐  359.  

 Letcher,  R.J.,  Bustnes,  J.O.,  Dietz,  R.,  Jenssen,  B.M.,  Jørgensen,  E.H.,  Sonne,  C.,    

Verreault,  J.,  Vijayan,  M.M.,  Gabrielsen,  G.W.,  2010.  Exposure  and  effects  assessment  of  persistent  organohalogen  contaminants  in  arctic  wildlife  and  fish.  Sci.  Tot.  Environ.  408,  2995-­‐3043.  

 Mackay,  D.,  Fraser,  A.,  2000.  Bioaccumulation  of  persistent  organic  chemicals:    

mechanisms  and  models.  Environ.  Poll.  110,  375-­‐391    Mackay,  D.,  Shiu,  W.Y.,  Ma,  K.C.,  1992a.  Illustrated  handbook  of  Physical-­‐chemical    

properties  and  environmental  fate  for  organic  chemicals,  vol.  I:  monoaromatice  hydrocarbons,  chlorobenzenes,  and  PCBs.  CRC  Press,  Boca  Raton,  FL.  I.  

 McKinney,  M.A.,  Guise,  S.D.,  Martineau,  D.,  Béland,  P.,  Lebeuf,  M.,  Letcher,  R.J.,  2006.    

Organohalogen  contaminants  and  metabolites  in  beluga  whale  (Delphinapterus  leucas)  liver  from  two  Canadian  populations.  Environ.  Tox.  Chem.  25,  1246-­‐1257.  

 Morse,  D.C.,  Klasson-­‐Wehler,  E.,  Wesseling,  W.,  Koeman,  J.H.,  Brouwer,  A.,  1996.    

Alterations  in  rat  brain  thyroid  hormone  status  following  pre-­‐  and  post-­‐natal  exposure  to  polychlorinated  biphenyls  (Aroclor  1254).  Toxicol.    App.    Pharmacol  136,  269-­‐279.  

 Morse,  D.C.,  van  Bladeren,  P.J.,  Klasson-­‐Wehler,  E.,  Brouwer,  A.,  1995.  β-­‐  

Naphthoflavone-­‐  and  self-­‐induced  metabolism  of  3,3',4,4'-­‐tetrachlorobuiphenyl  in  hepatic  microsomes  of  the  male,  pregnant  female,  and  foetal  rat.  Xenobiot.  25,  245-­‐260.  

     

Page 116: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

104

Narasimhan,  T.R.,  Kim,  H.L.,  Safe,  S.,  1991.  Effects  of  hydroxylated  polychlorinated    biphenyls  on  mouse  liver  mitochondrial  oxidative  phosphorylation.  J.  Biochem.  Toxicol.  6,  229-­‐236.  

 Nomiyama,  K.,  Nomura,  Y.,  Takahashi,  T.,  Uchiyama,  Y.,  Arizono,  K.,  Shinohara,  R.,    

2010.  Hydroxylated  polychlorinated  biphenyls  (OH-­‐PCBs)  induce  vitellogenin  through  estrogenic  activity  in  primary-­‐cultured  hepatocytes  of  the  Xenopus  laevis.  Chemosph.  78,  800-­‐806.  

 Pakdeesusuk,  U.,  Lee,  C.M.,  Coates,  J.T.,  Freedman,  D.L.,  2005.  Assessment  of  Natural    

Attenuation  via  in  Situ  Reductive  Dechlorination  of  Polychlorinated  Biphenyls  in  Sediments  of  the  Twelve  Mile  Creek  Arm  of  Lake  Hartwell,  SC.  Environ.  Sci.  Technol.  39,  945-­‐952  

 Pakdeesusuk,  U.,  Freedman,  D.L.,  Lee,  C.M.,  Coates,  J.T.,  2003a.  Reductive    

dechlorination  of  polychlorinated  biphenyls  in  sediment  from  the  Twelve  Mile  Creek  arm  of  Lake  Hartwell,  South  Carolina,  USA.  Environ.  Tox.  Chem.  22,  1214-­‐1220.  

 Pakdeesusuk,  U.,  Jones,  W.J.,  Lee,  C.M.,  Garrison,  A.W.,  O'Niell,  W.L.,  Freedman,  D.L.,    

Coates,  J.T.,  Wong,  C.S.,  2003b.  Changes  in  enantiomeric  fractions  during  microbial  reductive  dechlorination  of  PCB132,  PCB149,  and  Aroclor  1254  in  Lake  Hartwell  sediment  microcosms.  Environ.  Sci.  Technol.  37,  1100-­‐1107.  

 Park,  J.,  Kalantzi,  O.I.,  Kopec,  D.,  Petreas,  M.,  2009.  Polychlorinated  biphenyls  (PCBs)    

and  their  hydroxylated  metabolites  (OH-­‐PCBs)  in  livers  of  harbor  seals  (Phoca  vitulina)  from  San  Francisco  Bay,  California  and  Gulf  of  Maine.  Mar.  Environ.  Res.  67,  129-­‐135.  

 Purkey,  H.E.,  Palaninathan,  S.K.,  Kent,  K.C.,  Smith,  C.,  Safe,  S.H.,  Sacchettini,  J.C.,  Kelly,    

J.W.,  2004.  Hydroxylated  polychlorinated  biphenyls  selectively  bind  transthyretin  in  blood  and  inhibit  amyloidogenesis:  rationalizing  rodent  PCB  toxicity.  Chem.  Biol.  11,  1719-­‐1728.  

 Safe,  S.,  1993.  Toxicology,  structure–function  relationship,  and  human  and    

environmental  health  impacts  of  polychlorinated  biphenyls:  progress  and  problems.  Environ.    Health.    Perspect.  100,  259-­‐268.  

 Safe,  S.H.,  1994.  Polychlorinated-­‐biphenyls  (PCBs)  -­‐  environmental-­‐impact,    

biochemical  and  toxic  responses,  and  implications  for  risk  assessment.  Crit.  Rev.  Toxicol.  24,  87-­‐149.  

   

Page 117: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

105

Sandau,  C.D.,  Ayotte,  P.,  Dewailly,  E.,  Duffe,  J.,  Norstrom,  R.J.,  2000.  Analysis  of    hydroxylated  metabolites  of  PCBs  (OH-­‐PCBs)  and  other  chlorinated  phenolic  compounds  in  whole  blood  from  Canadian  inuit.    Environ.  Health.  Perspect.  108,  611-­‐616.  

 Schurig,  V.,  Glausch,  A.,  Fluck,  M.,  1995.  On  the  enantiomerization  barrier  of    

atropisomeric  2,2’,3,3’,4,6’-­‐hexachlorobiphenyl  (PCB  132).  Tetrahed.  Asym.  6,  2161-­‐2164.  

 Southwell,  B.R.,  Duan,  W.,  Alcorn,  D.,  Brack,  C.,  Richardson,  S.J.,  Kohrle,  J.,  Schreiber,    

G.,  1993.  Thyroxine  transport  to  the  brain:  role  of  protein  synthesis  by  the  choroid  plexus.  Endocrin.  133,  2116-­‐2126.  

 Truman,  P.,  van  den  Hurk,  P.,  2010.  Xenoestrogen  exposure  and  effects  in  bluegill    

from  the  Reedy  River,  South  Carolina,  USA.  Archiv.  Environ.  Contam.  Tox.  58,  165-­‐175.  

 Verreault,  J.,  Maisonneuve,  F.,  Dietz,  R.,  Sonne,  C.,  Letcher,  R.J.,  2009.  Comparative    

hepatic  activity  of  xenobiotic-­‐metabolizing  enzymes  and  concentrations  of  organohalogens  and  their  hydroxylated  analogues  in  captive  greenland  sledge  dogs  (Canis  familiaris).  Environ.  Tox.  Chem.  28,  162-­‐172.  

 Verreault,  J.,  Letcher,  R.J.,  Ropstad,  E.,  Dahl,  E.,  Gabrielsen,  G.W.,  2006.    

Organohalogen  contaminants  and  reproductive  hormones  in  incubating  glaucous  gulls  (Larus  hyperboreus)  from  the  Norwegian  Arctic.    Environ.  Tox.  Chem.  25,  2990-­‐2996.  

 Walters,  D.M.,  Fritz,  K.M.,  Otter,  R.R.,  2008.  The  dark  side  of  subsidies:  Adult  stream    

insects  export  organic  contaminants  to  riparian  predators.    Ecol.  Apps.  18,  1835-­‐1841.  

 Walters,  D.M.,  Mills,  M.A.,  Fritz,  K.M.,  Raikow,  D.F.,  2010.  Spider-­‐mediated  flux  of    

PCBs  from  contaminated  sediments  to  terrestrial  ecosystems  and  potential  risks  to  arachnivorous  birds.  Environ.  Sci.  Technol.  44,  2849-­‐2856.  

 Wong,  C.S.,  Garrison,  A.W.,  Smith,  P.D.,  Foreman,  W.T.,  2001.  Enantiomeric    

composition  of  chiral  polychlorinated  biphenyl  atropisomers  in  aquatic  and  riparian  biota.  Environ.  Sci.  Technol.  35,  2448-­‐2454.  

 Yang,  F.;  Xu,  Y.;  Pan,  H.;  Wu,  D.    2008.    Induction  of  hepatic  cytochrome  P450  1A1/2B    

activity  and  disruption  of  thyroglobulin  synthesis/secretion  by  mono-­‐ortho-­‐polychlorinated  biphenyl  and  its  hydroxylated  metabolites  in  cell  lines.    Environ.  Toxicol.  Chem.    27,  220-­‐225.  

Page 118: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

106

CHAPTER  4  

WEBS  AS  SUBSTRATE  FOR  PCB  PARTITIONING  

 

Introduction  

Spider  webs  are  one  of  the  most  ubiquitous  examples  of  predation  strategy  in  

our  environments.    The  primary  function  of  the  spider  web  is  to  capture  prey.    To  do  

so,   the   web   must   support   the   spider,   withstand   the   force   of   prey   striking   and  

struggling   in   the  web,   and   retain  prey   long   enough   for   the   spider   to   consume   the  

creatures   (Chacon   and   Eberhard,   1980).     Research   into   the   form,   chemistry,  

materials,  and  ecology  of  the  webs  has  been  investigated  over  the  past  thirty  years.;  

however,  a  research  gap  exists  where   the  characteristics  and   function  of  webs  are  

applied  to  toxicology  and  contaminant  exposure  pathways  for  spiders.    Based  upon  

information  about   the   composition,   construction,   and  ecological   role  of  webs,   it   is  

hypothesized   here   that   a   key   element   of   detoxification   of   PCBs   by   spiders   may  

involve  exporting  body  burdens  of  contaminants  to  webs  to  alleviate  stress  on  the  

organism.  

Araneidae   spiders,   which   are   a   spider   family   that   is   closely   related   to  

Tetragnathidae  spiders,  are  also  orb-­‐weaving  spiders  and  use  a  sticky,  spiral  thread  

to  constitute  the  bulk  of  the  web.    It   is  important  to  note  that  the  amino  acids  that  

comprise  the  silk  proteins  are  all  chiral,  and  all  oriented  in  the  D-­‐amino  acid  form.    

The  majority  of  the  protein  is  in  the  β-­‐sheet  formation  (Eisoldt  et  al.,  2011;Eisoldt  et  

al.,  2012).    The  core  of  the  silk  proteins  is  an  amphiphilic  repetitive  sequence  of  the  

Page 119: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

107

same  amino  acids,   for  multiple   thread   types  and  across  species   types   (Heim  et  al.,  

2009;Heim  et  al.,  2010).    Web  extracts  of  orb-­‐weavers  include  fatty  acids,  alcohols,  

esters,  ketones,  and  low  molecular  weight  hydrocarbons  (Prouvost  et  al.,  1999).  At  

contaminated  sites,  it  is  suspected  that  webs  also  contain  contaminants.  

The   most   important   behavior   from   a   toxicological   standpoint   is   that  

Tetragnathidae  spiders  consume  their  webs  and  rebuild  them  daily.    Up  to  90%  of  

the  web  material   is   recycled  without   being   digested   or   reworked   (Peakall,   1971),  

which  saves  energy  and  creates  a  storage  location  for  lipid-­‐soluble  contaminants.  

The   goal   of   the   study  was   to   test   the   hypotheses   that   spider  webs   contain  

PCBs,   and   that   Tetragnathidae   spiders   use   their   webs   to   store   PCBs.     Data   from  

analyses  of  the  total  PCBs,  chiral  PCBs,  and  homologs  were  examined  for  support  of  

these  hypotheses.      

 

Materials  and  Methods  

Sample  collection  

Webs  were  collected  at  locations  along  Twelvemile  Creek  (see  Figure  4.1  for  

sampling   locations,  Table  4.1   for  distances  between  sites  and  point  source).      Web  

density   along   the   shoreline   varies.     Our   observations   corroborate   the   claim   that  

Tetragnathidae  spiders  require  approximately  one  meter  of  cubic  space  to  construct  

their   webs   (Gillespie,   1987);   however,   this   varies   with   available   habitat   space.    

Narrow  sections  of  stream  with  good  tree  cover  and  many  branches  overlaying  the  

Page 120: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

108

water   column  were   host   to  many  more  webs   than   sections   that  were  wider  with  

poor  tree  coverage,  and  hence  more  accessible  to  avian  predators.  

Stainless   steel   spatulas   were   cleaned   with   isooctane   prior   to   collection   at  

each   site,   and  used   to   spool  webs.     Care  was   taken   to   avoid   collecting   extraneous  

matter  including  leaf  debris  and  prey  remnants.    Non-­‐web  material  was  removed  by  

tweezers  during  collection,  and  again  before  processing  in  the  lab.    This  was  done  to  

prevent  misappropriation  of  PCB  content  to  webs  from  the  materials  captured  in  the  

silk   material.     Webs   were   stored   at   -­‐20˚F   until   processed.     Each   site   had   three  

composite  web  samples.    Approximately  100  webs  were  pooled  at  each  site  to  allow  

for   sufficient   mass   for   analysis.       One   representative   sample   of   15   spiders   was  

collected  along  with  the  webs  at  each  site.      All  spiders  analyzed  in  this  study  were  

removed  from  the  webs  that  were  collected.  

     Table  4.1    Sampling  locations  and  their  distances  from  the  point  source.    

Site   Distance  from  Point  Source  

Distance  from  Previous  Site  

Reese  Mill   0.3  km   0.3  km  Belle  Shoals   8.85  km   8.85  km  Stewart  Gin   16.31  km   7.46  km  Robinson  Bridge   22.39  km   6.08  km  

 

 

Page 121: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

109

 

Figure  4.1  Map  of  Web  Sampling  Locations.    (R)  =  Reference  site  upstream  of    Sangamo-­‐Weston  point  source;  (RM)  =  Reese  Mill  site;  (BS)  =  Belle  Shoals  site;    (SG)=  Stewart  Gin  site;    (RB)  =  Robinson  Bridge  site.  

   

 

Sample  extraction  and  clean-­‐up  

Web   samples   were   weighed   and   recovery   standards   PCBs   14   and   169  

(Accustandard,   Wellington,   CT)   were   added   to   the   cells   prior   to   extraction   on  

Dionex  200  ASE.    PCBs  14  and  169  were  used  as  recovery  standards,  at  55%  (±24  

SD)  and  30%  (±23 SD)  respectively  across  both  sample  types.    Concentrations  were  

not  corrected  for  recovery.  

Page 122: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

110

A  9:1  hexanes:acetone  solution  (v/v)  was  used   for   the  extraction  (García  et  

al.,   2008).    Heating   time  was   5min   followed  by   two  2min   static   cycle.     Cells  were  

heated   to   100˚C   at   1500psi,   using   two   cycles   of   5min   heating   and   5min   static.     A  

flush   volume   of   60%  was   used,   and   solvent   lines   were   purged   for   60sec   (Kania-­‐

Korwel   et   al.,   2008b).     After   each   sample   the   system  was   rinsed  with   the   solvent  

mixture  to  prevent  carryover  between  cells.  

The   extracts  were   condensed   to  6mL  under   a   steady   stream  of   high  purity  

nitrogen,   and   lipid   content   was   measured   by   a   gravimetrical   method.     Briefly,  

samples   were   cleaned   on   an   alumina-­‐sodium   sulfate   column   (3.5g   and   1.5g,  

respectively).    Columns  were  eluted  with  hexanes   to  a   final  volume  of  10mL,   then  

solvent  exchanged  for  isooctane.    Samples  were  condensed  under  nitrogen  to  a  final  

volume  of  2mL  for  spider  samples,  and  1mL  for  web  samples.    Internal  standards  of  

aldrin   and   PCB   204   were   added   before   analysis.     Quality   of   assessment   was  

maintained   through   use   of   procedural   blanks,   laboratory   control   samples   in  

duplicate,   matrix   spikes   in   duplicate   (aldrin   and   PCB   204,   Accustandard),   blank  

tissue  samples,  and  check  standards  with  each  batch  of  10  samples.      

 

GC-­‐ECD  analysis  of  samples  

An   HP   6890   gas   chromatograph   with   an   RTX-­‐5   column   (Restek,   60m   x  

0.25mm   x   0.25μm)   was   used   to   quantify   the   PCB   content   of   spider   webs.     The  

temperature  program  began  at  115˚C,   and  was  held   steady   for  2min.     It  was   then  

ramped  at  a  rate  of  8°C/min  to  a  temperature  of  185°C  and  held  for  8min.  Lastly  the  

Page 123: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

111

temperature  was  ramped  at  a  rate  of  2°C/min  to  a  final  temperature  of  265°C,  and  

held  for  20min.    

An  HP  6850  gas  chromatograph  equipped  with  a  Chirasil-­‐Dex  column  (25m  x  

0.25mm)  and  a   63Ni  electron  detector  was  used   for  enantioselective  analysis.    The  

temperature  program  began  at  100˚C  for  2min,  then  ramped  at  10˚C/min  to  170  and  

held   for   10min,   then   ramped   at   8˚C/min   to   180˚C.     The   detection   limit   did   vary  

somewhat   by   congener,   but  was   approximately   25ng/L   for   chiral   PCB   congeners.    

The  EFs  for  the  racemic  standards  (PCBs  91,  95,  136,  149,  and  174)  were  between  

0.492   (±   0.003   SD)   and   0.504   (±0.006   SD).     Chiral   standards   were   run   prior   to  

samples   in   every   sequence   to   maintain   confidence   in   the   results.     Precision   was  

maintained  by  repeat  injections  every  fifth  sample.    

PCB  concentrations  and  EF  values  among  different  sampling  locations  were  

assessed  by  one-­‐way  analysis  of  variance  (ANOVA)  using  Tukey’s  test  to  determine  

significance  (p<0.05).    Nonmetric-­‐multidimensional  scaling  statistical  analysis  

(NMS)  was  completed  using  PC-­‐ORD  4.0  software  (MjM  software).  The  autopilot  

mode  was  utilized,  and  the  chi  squared  coefficient  used  as  the  distance  measure  

(McCune  and  Mefford,  1999;  McCune  et  al.,  2002).    

 

Results  

   Spider  concentrations  were  greater  than  those  observed  in  their  respective  webs,  

though   the   extent   to  which   they  were   greater   varied   (Figure   4.2).     Concentration  

Page 124: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

112

ratios   between   webs   and   spiders   fall   sharply   to   become   much   more   even   with  

distance  from  the  point  source  (Table  4.2).      

 

 

Figure  4.2    ΣPCB  concentration  (ng/g  lipid)  for  spiders  (n=1)  and  webs  (n=3).    Error  bars  indicate  one  standard  deviation  in  either  direction.  

Table  4.2    ΣPCB  content  in  spiders  and  webs  at  each  sampling  location.    a  No  PCBs  were  detected  at  the  Belle  Shoal  site,  which  is  likely  a  function  of  low  sample  weight.  

Sampling  Location  

ΣPCBspiders  (ng/g  lipids)  

ΣPCBwebs  (ng/g  lipids)  

[spiders]  /  [webs]  

Reese  Mill   2902.2        154.4  ±  40.2   18.8  Belle  Shoals        899.7                n.d.a   -­‐-­‐  Stewart  Gin        284.0        203.8  ±  42.3   1.4  Robinson  Bridge   1608.3        356.1  ±  107.9   4.5    

This   trend   is   described   for   the   Reese   Mill   sample   site   in   greater   detail   in  

Table  4.3,  which  shows   the  homolog  distributions,  and   is  discussed  below..    While  

the  table  lists  values  obtained  for  the  Reese  Mill  site  only,  it  is  representative  of  the  

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

Reese  Mills  

Belle  Shoals  

Stewart  Gin  

Robinson  Bridge  

Σ  PCB  (ng/g  lipid)  

spider  

web  

Page 125: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

113

patterns   observed   at   all   sampling   locations   where   web   concentrations   were  

sufficient  for  detection.    Spiders  had  greater  concentrations  for  all  homolog  groups  

analyzed   except   for   di-­‐chlorinated   and   nona-­‐chlorinated   congeners   (Table   4.2).    

Webs  had  a  concentration  of  40.3ng/g   lipids  of  di-­‐chlorinated  congeners,  whereas  

spiders   did   not   have   detectable   quantities   of   such   congeners,   and   webs   also   had  

nona-­‐chlorinated  compounds  present,  whereas  spiders  did  not.  

   

Table  4.3    Homolog  concentrations  in  spiders  and  webs  at  the  Reese  Mill  sampling  site.  

Homolog  Class   [spiders]    (ng/g  lipids)  

[webs]    (ng/g  lipids)  

Dominant  compartment  

Di   0   40.3   Webs  Tri   135.2   3.9   Spiders  Tetra   903.5   75.1   Spiders  Penta   1357.5   26.3   Spiders  Hexa   396.0   2.7   Spiders  Hepta   108.4   1.6   Spiders  Octa   1.6   3.2   Webs  Nona   0   1.4   Webs  

   

 

Homolog  Patterns  

When  averaged  across  the  sampling  sites,  spiders  had  consistent  homolog  patterns  

among   sampling   sites   (Figure   4.3).     The   penta-­‐chlorinated   congeners   had   the  

highest  percentages,  followed  by  tetra-­‐chlorinated  and  hexa-­‐chlorinated  congeners.    

The  lowest  percentages  were  seen  in  the  di-­‐  and  octa-­‐chlorinated  homolog  classes,  

and  no  nona-­‐chlorinated  congeners  was  measured  in  spiders  at  any  site  other  than  

Page 126: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

114

at   Belle   Shoals.     Spiders   from   the   Reese   Mill   site   differed   from   the   other   three  

locations   in   that   tri-­‐chlorinated   congeners   contributed   to   their   overall   PCB  

concentration   at   a   higher   percentage,   comparable   to   that   of   hexa-­‐chlorinated  

congeners  at  that  site  (Figure  4.3A).  

   

Figure  4.3    Homolog  patterns  of  PCB  concentrations    

in  spiders  (A)  and  webs  (B).  

 

Page 127: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

115

The  web  samples  had  a  somewhat  different  homolog  pattern  (Figure  4.3B).    

There   was   no   consistent   concentration   pattern   among   sites;   however,   nona-­‐

chlorinated  compounds  were  observed  to  be  the  lowest  contributing  homolog  class,  

just  as  they  were  in  both  the  spider  samples.    

Results  at   the   individual  sites  varied.    Reese  Mill  was   the  site  closest   to   the  

point  source,  and  also  had  the  greatest  contribution  by  di-­‐chlorinated  PCBs  among  

the   sites   analyzed.     Webs   at   Reese   Mill   had   a   significant   contribution   by   di-­‐

chlorinated  PCBs   at   26%.     The   source   of   these   congeners  was   likely   volatilization  

from  the  water  column.    Webs  at  the  Stewart  Gin  site  did  not  have  an  abundance  of  

di-­‐  and  tri-­‐chlorinated  congeners,  with  less  than  1%  of  the  total  PCB  concentration  

being  attributed   to   the   lower  chlorinated  congeners.    This  differed   from  Robinson  

Bridge,  which  while  further  downstream  from  the  point  source,  featured  almost  5%  

each   of   di-­‐   and   tri-­‐chlorinated   congeners.     The   Robinson   Bridge   site   had   a  

significantly   higher   contribution   of   tetra-­‐chlorinated   congeners   to   webs   than  

spiders  (48.5%  in  webs,  10.6%  in  spiders),  which  indicates  that  there  is  likely  input  

of   these   congeners   to   webs   from   both   spiders   and   volatilization   from   the   water  

column.  

 

Chirality  Data  

Nearly   all  web   samples   contained   adequate   concentrations   of   PCBs   91,   95,  

and   149   to   quantify   and   assess   for   chirality.     Some   of   the   Stewart   Gin   replicate  

samples  did  not  have  high  enough  concentrations  of  the  chiral  PCBs  to  assess  their  

Page 128: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

116

chirality  on  the  Chiralsil-­‐Dex  column;  as  a  result,   the  EF  graphs  for  this  site  reflect  

values  for  only  one  sample  and  do  not  feature  error  bars.    Additionally,  the  Stewart  

Gin  site  did  not  have  a  high  abundance  of  spiders,  and  a  pooled  sample  of  sufficient  

mass  was  not  able  to  be  obtained  for  use  in  chiral  analysis.      

In   Figure   4.4   the   EF   values   for   webs   from   all   four   sampling   locations   is  

shown.    Both  PCB  91  and  95  were  approximately  racemic.    PCB  95  concentrations  

fell  below  detection  limits  in  webs  from  Belle  Shoals  and  Steward  Gin,  but  at  Reese  

Mill  and  Robinson  Bridge  the  EF  was  found  to  be  approximately  racemic.  PCB  149  is  

significantly   nonracemic   at   all   locations,   with   the   second   eluting   congener   being  

preferentially   retained   in   the  organisms.    Haglund  and  Wiberg   (1996)  determined  

that   on   the   Chiralsil-­‐Dex   column   the   (+)   enantiomer   elutes   first,   and   the   (-­‐)  

enantiomer  elutes   second   for  PCB  149.    The  data   for  PCB  149  are  dissimilar   from  

that  observed  for  PCBs  91  and  95  in  this  study,  noted   in  Chapter  2,  and  as  well  as  

what  was  observed  in  leaves  by  Dang  et  al.  (2010).  

Page 129: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

117

 

 

Figure  4.4    Enantiomeric  fraction  values  for  chiral  PCBs  detected  in  spiders  (A)  and  webs  (B).    Error  bars  indicate  95%  confidence  interval.  

Page 130: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

118

 

The  EF  data  for  PCB  149  also  fails  to  support  the  hypothesis  that  webs  

exhibit  similar  EF  patterns  as  spiders  (Figure  4.4    The  EFs  in  the  spider  samples  

were  racemic  (Reese  Mill)  or  less  enriched  in  the  second  enantiomer  than  the  web  

samples  (Belle  Shoals  and  Robinson  Bridge).      

 

 Figure  4.5    NMS  plot  for  spider  and  web  samples.    Samples  were  included  for  all  

sites.    The  points  that  fall  outside  of  the  circles  represent  webs.      

The  NMS  plot  of  web  and  spider  EF  values  for  PCBs  95  and  149  indicated  a  

different  distribution  for  the  two  sample  types.    For  the  plot  shown,  web  and  spider  

samples  from  all  species  and  locations  were  incorporated  (Figure  4.5).    Within  the  

groups  the  relationships  were  less  clear.    Although  grouped  together,  the  data  for  

Page 131: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

119

webs  did  not  indicate  any  spatial  trends.    For  spiders,  samples  closest  to  the  point  

source  fall  near  the  top  of  the  plot,  and  the  most  distant  spider  sample  falls  at  the  

bottom  of  the  oval;  however,  this  trend  cannot  be  deemed  significant  as  only  one  

pooled  spider  sample  was  supplied  for  each  site.      Points  that  fall  outside  of  the  

circles  all  represent  web  samples.      

 

Discussion  

Total  PCBs  

The   change   in   ratios   likely   tied   to   the   concentration   in   spiders   decreasing  

with  distance  from  the  point  source.    Spider  concentration  varied  by  up  to  an  order  

of  magnitude,  whereas  web  concentration  only  changed  by  an  approximate  factor  of  

two.     It   is  proposed  here   that  differences   in  evolution  at  sampling  sites  may  affect  

the   concentrations   observed.     Spiders   at   Reese   Mill   have   been   shown   to   exhibit  

higher   metabolic   activity   (see   Chapter   3),   which   is   likely   due   to   their   need   to  

detoxify  a  more  significant  body  burden  than  observed  at  other  sampling  locations.    

If  the  spiders  expend  energy  metabolizing  their  body  burden  they  may  not  have  as  

great  a  need  to  sequester  contaminants.    Spiders  have  a   lesser  body  burden  at  the  

more  distant  sites  (see  data  for  Robinson  Bridge  spiders),  which  would  not  place  as  

great   a   demand   on   the   spiders   to   actively   detoxify   and   decrease   their   PCB  

concentrations.    This  would  allow  more  energy  to  be  directed  towards  growth  and  

reproduction   (Walker   et   al.,   2006),   which   could   also   contribute   to   a   lesser   body  

burden.    

Page 132: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

120

It   is   important   to   note   that   the   transfer   of   PCBs   could   move   in   either  

direction  –  from  the  spiders  to  the  webs,  or  the  webs  to  the  spider.      One  anomaly  in  

the  data  was  that  the  Belle  Shoals  site  did  not  have  any  detectable  PCBs  in  the  webs,  

which   is   likely   a   function   of   low   sample   weight.     It   was   not   possible   to   obtain  

samples  from  Belle  Shoals  in  excess  of  1g  due  to  low  web  and  spider  density  at  that  

site.    The  river  was  wider  at  this  location,  and  there  was  less  tree  cover,  allowing  for  

greater  access  by  birds  to  spiders.  

  The   PCB   concentration   in   webs   from   all   sampling   locations   were   similar,  

varying   by   only   a   factor   of   about   two,   despite   variation   in   spider   concentration  

among   sites.     This   could   be   linked   to   longevity   of   the  material   as   it   relates   to   the  

lifetime   of   the   spider.     Spiders   accumulate   lipid   tissue   that   may   remain   in   their  

system  over  the  course  of  their  life;  whereas,  web  material  may  not  last  as  long  as  

the  lipids  within  the  spider  regardless  of  material  recycling  (Peakall,  1971).    If  a  web  

is   destroyed,   the   contaminated  material   cannot   be   consumed   by   the   spider   and   a  

new   web   must   be   constructed   from   new,   less   contaminated   material.     The   ratio  

reflects  not  so  much  a  chemical  limit  for  the  mass  of  PCBs  that  can  associate  with  the  

material,  but  rather  points  towards  physical  reduction  of  PCBs  exposure  when  webs  

are  destroyed.  

 

Homologs  

The   observed   homolog   patterns   may   be   explained   by   contributions   from  

both   volatilization   from   the   stream  and   spiders.   Spiders   receive   their   entire   body  

Page 133: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

121

burden  of  PCBs  via  trophic  transfer.    Webs  function  as  a  tissue  external  to  the  body,  

and  are  suspended  directly  above  the  water  column.    Analysis  of  homolog  fugacity  

indicates   that   lower   chlorinated   congeners   are   much   more   volatile   than   highly  

chlorinated   congeners   (Schwarzenbach   et   al.,   2003).     The   distribution   for   tetra-­‐,  

penta-­‐,   and   hexa-­‐chlorinated   congeners   in   webs   supports   the   hypothesis   that  

spiders   offload   their   PCB   body   burden   to   their   webs;   however,   the   higher  

percentage  of   lower  chlorinated  congeners  in  webs  as  compared  to  spiders  fails  to  

support  the  spider  off-­‐loading  hypothesis.    It  is  possible  that  PCBs  volatilize  from  the  

water  column  due  to  the  contaminated  sediment  of  Twelvemile  Creek  and  sorb  onto  

the  webs.    If  true,  then  it  follows  that  the  PCBs  present  would  more  closely  mirror  

the   profile   seen   in   the   water   column.     Dang   (2012),   using   polyethylene   passive  

samplers,  determined  that  the  distribution  of  PCBs  in  Twelvemile  Creek  was  skewed  

towards   the   lower   chlorinated   congeners,   so   an   abundance   of   lower   chlorinated  

congeners   could   be   due   to   volatilization.     Additionally,   Dang   (2012,   unpublished  

data)  determined  that  about  10%  of  the  PCBs  sorbed  onto  Rhododendron  leaves  at  

a   site   just   down   river   at   Shady   Grove   in   Pickens,   SC,  were   di-­‐chlorinated.     It  was  

concluded  that  because  the  water  column  also  had  detectable  concentrations  of  di-­‐

chlorinated   congeners   that   volatilization  was   the   source   of   the   lower-­‐chlorinated  

congeners.      

Volatilization  as   a   source  of  PCBs   to  webs  at   Stewart  Gin   is  not   supported;  

rather,   the   abundance   of   hepta-­‐   and   octa-­‐chlorinated   compounds   indicated   that  

PCBs  from  spiders  are  the  predominant  source  to  webs.    The  homolog  distributions  

Page 134: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

122

of  spiders  and  webs  most  closely  mirror  each  other  at  Stewart  Gin,  again  providing  

evidence  that  spiders  off-­‐load  their  body  burden  to  webs.    The  homolog  distribution  

at   the   Robinson   Bridge   site   (Figure   4.3),   like   the   data   from   Reese   Mill,   provides  

evidence  that  volatilization  is  the  likely  supplier  of  di-­‐  and  tri-­‐chlorinated  congeners.    

While   the   contribution   of   the   lower   chlorinated   congeners   is   less   than  what   was  

observed   at   Reese   Mill,   their   presence   is   evidence   that   the   water   column   is  

supplying  a  portion  of  the  PCBs  observed  in  webs.      

A  spatial  pattern  in  homolog  enrichment  appears  in  the  data.    Sites  closest  to  

the  point  source  (Reese  Mill)  have  broader  PCB  distributions  in  spiders  that  capture  

lower   chlorinated   congeners,   whereas   sites   more   distant   (Robinson   Bridge)   are  

enriched   in   the   tetra-­‐,   penta-­‐,   and   hexa-­‐chlorinated   congeners.     There   may   be   a  

change   in   the   source   to   the   spiders.     Dang   (2012)   also   determined   that   there   are  

ongoing  sources  of  PCBs  to  Twelvemile  Creek.    These  sources  are  closer  to  the  Reese  

Mill   site.     The   lower   chlorinated   congeners   are   the  most   easily   removed   from   the  

ecosystem   via   volatilization   and   bacterial   degradation   (Farley   et   al.,   1996).     Such  

congeners   may   not   be   present   at   high   concentrations   at   the   more   downstream  

sampling  locations;  hence,  the  smaller  contribution  of  lower  chlorinated  compounds  

in  webs  at  those  downstream  sites  as  compared  to  the  upstream  web  distributions.      

Turbulence  of   the  water   in   the   stream  could   also   influence  volatility  of   the  

PCBs   in   the   water   column.     High   turbulence   can   reduce   the   energy   necessary   to  

escape   the   water   phase,   thus   encouraging   higher   weight   PCBs   to   volatilize.     The  

Page 135: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

123

process   is   likely   more   complicated   than   web   PCB   content   being   derived   from   a  

single  source.      

While  the  greater  concentrations  of  di-­‐chlorinated  congeners  in  webs  can  be  

explained   through   fugacity,   the   presence   of   nona-­‐chlorinated   congeners   is   more  

difficult   to   explain.     Nona-­‐chlorinated   congeners   are   more   bioaccumulative   than  

lower   chlorinated   congeners   due   to   their   higher   chlorine   content,   and   Kow   value  

(Schwarzenbach  et  al.,  2003).    These  congeners  should  preferentially  be  retained  in  

the   organism.     Their   presence   in   the  web  may   be   attributed   to   spiders   offloading  

their  body  burden  into  lipid  tissues  outside  of  the  body.    Spider  webs  are  recycled  

by  the  organisms,  with  nearly  90%  of  web  material  being  reused  in  new  webs  spun  

nightly  without  being  metabolized  by  the  organism  (Peakall,  1971).    Spiders  may  be  

able   to   store   these   contaminants   outside   of   their   bodies.     The   high   Kow   value,  

homolog  recalcitrance  to  metabolism,  and  recycling  of  web  lipids  may  all  contribute  

to  the  accumulation  of  highly  chlorinated  congeners  in  the  web  material.  

 Chirality      

The  chirality  data  fail  to  support  the  hypothesis  that  webs  are  mirrors  of  the  

contamination  seen  in  spiders.    Rather,  it  provides  evidence  that  suggests  that  PCB  

sorption   to   webs   is   an   enantioselective   process.       The   data   from   the   Twelvemile  

Creek  arm  of  Lake  Hartwell  discussed  previously  (see  Figure  2.2)  indicated  that  the  

EF  value  for  spiders  at  the  lake  was  racemic.    The  data  obtained  for  the  river  spiders  

indicate  that  over  the  course  of  the  gradient  down  the  river  the  EF  values  for  PCBs  

Page 136: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

124

95   and   149   both   reflect   an   increasing   prevalence   of   the   first   eluting   enantiomer.    

This  behavior  is  not   likely  attributed  to  a  change  in  the  spider  uptake  process,  but  

rather  a  change  in  the  source  of  PCBs.    The  results  for  PCB  95  are  similar  to  those  

obtained  for  lakeshore  spiders  (Chapter  2),  as  are  the  EF  results  for  PCB  91  and  149  

at  Reese  Mill,  but  it   is  possible  that  with  an  increased  sample  size  the  trend  would  

be   found   nonsignificant.     Alternatively,   the   process   of   off-­‐loading   the   PCB   body  

burden  to  the  webs  could  be  a  non-­‐selective  process,  whereas  PCBs  sourced  to  the  

webs   from   the  water   column  via   volatilization  may  have  a  non-­‐racemic   signature.    

Fugacity  should  be  identical  for  both  enantiomers,  but  if  the  starting  material  in  the  

water   column   does   not   have   a   racemic   signature,   then   the   webs   would   have   an  

enriched  EF  value  as  well.     Previous   investigations  at   this   site  have   indicated   that  

PCB  95   is  racemic   in  the  water  column,  and  PCB  91   is  enriched  in  the  first  eluting  

enantiomer  (Dang,  2012).    PCB  95  was  found  to  be  racemic,  which  is  similar  to  the  

water  column  but  differs  from  that  measured  in  spiders.    PCB  91  in  webs  was  also  

racemic,  but  differed  from  the  values  seen  for  both  spiders  and  the  water  column.  

Comparison   between   the   spider   and   the   web   EF   data   would   indicate   that  

webs   are   not   good   indicators   for   the   contamination   profile   in   spiders;   however   a  

larger   sample   size   of   spiders   would   allow   for   a   better   assessment   of   the  

contamination  profile  for  that  population.    The  NMS  plot  of  web  and  spider  samples  

failed  to   indicate  any  spatial  patterns  (Figure  4.5),  but  suggested  that  webs  have  a  

distinct  EF  profile  compared  with  spiders  at  the  same  location.    Web  EF  values  were  

Page 137: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

125

very  similar  among  sites,   and  resulted   in  a   clear  grouping  of   those  samples   in   the  

plot.    

 

Conclusions  

The  hypothesis  that  webs  have  PCB  content  was  confirmed  by  these  

investigations.    Homolog  patterns  support  the  hypothesis  that  spiders  off-­‐load  their  

body  burden  to  their  webs.    The  distribution  pattern  for  webs  roughly  mirrors  that  

of  spiders,  though  with  a  higher  contribution  of  di-­‐  and  tri-­‐chlorinated  congeners,  as  

well  as  nona-­‐chlorinated  congeners.    It  is  likely  that  while  the  majority  of  the  highly  

chlorinated  congeners  are  sourced  from  the  spiders,  most  of  the  mass  of  lower  

chlorinated  congeners  is  due  to  volatilization  from  the  water  column.  

Chirality  data  provide  additional  support  for  the  spider  off-­‐loading  

hypothesis.    The  non-­‐racemic  values  for  PCB  149  indicate  that  a  biological  process  is  

likely  affecting  the  transport  from  spiders  to  webs.    NMS  plots  where  web  and  

spider  samples  are  clearly  grouped  and  do  not  overlap  also  suggest  

enantioselection.  

 

                 

Page 138: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

126

   

References    Blackledge,  T.A.,  Scharff,  N.,  Coddington,  J.A.,  Szuts,  T.,  Wenzel,  J.W.,  Hayashi,  C.Y.,    

Agnarsson,  I.,  2009.  Reconstructing  web  evolution  and  spider  diversification  in  the  molecular  era.  Proc.    Natl  Acad.    Sci.    USA  106,  5229-­‐5234.  

 Chacon,  P.,  Eberhard,  W.G.,  1980.  Factors  affecting  numbers  and  kinds  of  prey    

caught  in  artifical  spider  webs,  with  considerations  of  how  orb  webs  trap  prey.  Bull.    Br.    Arachnol.    Soc.  5,  28-­‐38.  

 Dang,  V.D.  2012.    Assessing  ongoing  sources  and  fate  of  dissolved  polychlorinated    

biphenyls  (PCBs)  in  a  stream.  Ph.D.  dissertation.      Dang,  V.D.,  Walters,  D.M.,  Lee,  C.M.,  2010.  Transformation  of  Chiral  Polychlorinated    

Biphenyls  (PCBs)  in  a  Stream  Food  Webs.  Environ.  Sci.  Technol.  44,  2836-­‐2841.  

 Eisoldt,  L.,  Thamm,  C.,  Scheibel,  T.,  2012.  The  role  of  terminal  domains  during    

storage  and  assembly  of  spider  silk  proteins.  Biopolymers  97,  355-­‐361.    Eisoldt,  L.,  Smith,  A.,  Scheibel,  T.,  2011.  Decoding  the  secrets  of  spider  silk.  Materials    

Today  14,  80-­‐86.    Farley,  .J.;  Germann,  G.G.;  and  Elzerman,  A.W.    1994.    Differential  weathering  of  PCB    

congeners  in  Lake  Hartwell,  South  Carolina.    In:  Environmental  Chemistry  of  Lakes  and  Reservoirs.    Baker,  L.A.,  Ed.  Advances  in  Chemistry;  American  Chemical  Society.  

 Foelix,  R.F.,  1982.  Biology  of  Spiders,  1st  ed.  Harvard  University  Press,  Cambridge,    

Massachusetts.    García,  I.,  Ignacio,  M.,  Mouteira,  A.,  Cobas,  J.,  Carro,  N.,  2008.  Assisted  solvent    

extraction  and  ion-­‐trap  tandem  mass  spectrometry  for  the  determination  of  polychlorinated  biphenyls  in  mussels.  Comparison  with  other  extraction  techniques.  Anal.    Bioanal.    Chem.  390,  729-­‐737.  

 Gillespie,  R.G.,  1987.  The  Mechanism  of  Habitat  Selection  in  the  Long-­‐Jawed  Orb-­‐  

Weaving  Spider  Tetragnatha  elongata  (Araneae,  Tetragnathidae).  J.  Arachnol.  15,  81-­‐90.  

   

Page 139: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

127

Hawthorn,  A.C.,  Opell,  B.D.,  2003.  van  der  Waals  and  hygroscopic  forces  of  adhesion    generated  by  spider  capture  threads.  J.    Exp.    Biol.  206,  3905-­‐3911.  

 Hawthorn,  A.C.,  Opell,  B.D.,  2002.  Evolution  of  adhesive  mechanisms  in  cribellar    

spider  prey  capture  thread:  evidence  for  van  der  Waals  and  hygroscopic  forces.  Biol.    J.    Linn.    Soc.  77,  1-­‐8.  

 Heim,  M.,  Romer,  L.,  Scheibel,  T.,  2010.  Hierarchical  structures  made  of  proteins.  The    

complex  architecture  of  spider  webs  and  their  constituent  silk  proteins.  Chem.    Soc.    Rev.  39,  156-­‐164.  

 Heim,  M.,  Keerl,  D.,  Scheibel,  T.,  2009.  Spider  Silk:  From  Soluble  Protein  to    

Extraordinary  Fiber.  Angewandte  Chemie  International  Edition  48,  3584-­‐3596.  

 Kania-­‐Korwel,  I.,  Zhao,  H.,  Norstrom,  K.,  Li,  X.,  Hornbuckle,  K.C.,  Lehmler,  H.,  2008.    

Simultaneous  extraction  and  clean-­‐up  of  polychlorinated  biphenyls  and  their  metabolites  from  small  tissue  samples  using  pressurized  liquid  extraction.  Journal  of  Chromatography  A  1214,  37-­‐46.  

 Kennedy,  C.H.,  1950.  The  Relation  of  American  Dragonfly-­‐eating  Birds  to  Their  Prey.    

Ecol.  Monogr.  20,  103-­‐142.    McCune,  B.,  Grace,  J.B.,  Urban,  D.L.,  2002.      Analysis  of  Ecological  Communities.  MjM    

Software  Design,  Gleneden  Beach,  OR.    McCune,  B.,  Mefford,  M.J.,  1999.  PC-­‐ORD.  Multivariate  Analysis  of  Ecological  Data,    

Version  4.  MjM  Software  Design,  Gleneden  Beach,  OR.    Opell,  B.D.,  Markley,  B.J.,  Hannum,  C.D.,  Hendricks,  M.L.,  2008.  The  contribution  of    

axial  fiber  extensibility  to  the  adhesion  of  viscous  capture  threads  spun  by  orb-­‐weaving  spiders.  J.    Exp.    Biol.  211,  2243-­‐2251.  

 Opell,  B.D.,  Bond,  J.E.,  2000.  Capture  thread  extensibility  of  orb-­‐weaving  spiders:    

testing  punctuated  and  associative  explanations  of  character  evolution.  Biol.    J.    Linn.    Soc.  70,  120-­‐120.  

 Opell,  B.D.,  1999.  Changes  in  spinning  anatomy  and  thread  stickiness  associated    

with  the  origin  of  orb-­‐weaving  spiders.  Biol.    J.    Linn.    Soc.  68,  593-­‐612.    Opell,  B.D.,  1998.  Economics  of  spider  orb-­‐webs:  the  benefits  of  producing  adhesive    

capture  thread  and  of  recycling  silk.  Funct.  Ecol.  12,  613-­‐624.    

Page 140: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

128

Peakall,  D.B.,  1971.  Conservation  of  web  proteins  in  the  spider  Araneus  diadematus.    J.    Exp.    Zool.  176,  257.  

 Prouvost,  O.,  Trabalon,  M.,  Papke,  M.,  Schulz,  S.,  1999.  Contact  sex  signals  on  web    

and  cuticle  of  Tegenaria  atrica  (Araneae,  Agelenidae).  Arch.  Insect  Biochem.  Physiol.  40,  194-­‐202  

 Schulz,  S.,  Toft,  S.,  1993.  Branched  long  chain  alkyl  methyl  ethers:  a  new  class  of    

lipids  from  spider  silk.  Tetrahedron  49,  6805-­‐6820.    Selden,  P.A.,  Shear,  W.A.,  Sutton,  M.D.,  2008.  Fossil  evidence  for  the  origin  of  spider    

spinnerets,  and  a  proposed  arachnid  order.  Proc.    Natl  Acad.    Sci.    USA  105,  20781-­‐20785.  

 Walker,  C.H.,  Hopkin,  S.P.,  Sibly,  R.M.,  and  Peakall,  D.B.    2006.    Principles  of    

Ecotoxicology.  Taylor  and  Francis  Group.      Vollrath,  F.,  Selden,  P.A.,  2007.  The  role  of  behavior  in  the  evolution  of  spiders,  silks,    

and  webs.  Ann.    Rev.    Ecol.    Svol.    Syst.  38,  819-­‐846.        

Page 141: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

129

CHAPTER  5  

CONCLUSIONS  AND  RECOMMENDATIONS  

Conclusions  

Chirality   investigations   failed   to   support   the   hypotheses   that   each   spider  

species  would  be  distinct   from   the  others.     The   second  hypothesis,   that   spider  EF  

values  would  be  distinct   from  prey  EF  values,  was  supported  by  the  chirality  data.    

Spider   values   shifted   in   the   direction   favoring   retention   of   the   first   eluting  

enantiomer  for  PCB  91  compared  to  the  midges;  EF  values  for  PCBs  95  and  149  did  

not  have  a  clear  shift  in  direction.    This  change  in  EF  for  PCB  91  could  be  a  product  

of  metabolism  on  the  part  of  the  spider,  or  spider  off-­‐loading  of  their  body  burden  to  

web  material.        

  Evidence  from  in  vivo  and  in  vitro  studies  support  the  hypothesis  that  spiders  

can  metabolize  their  PCB  body  burden.    Analysis  of  field  extracts  provided  evidence  

that  PCB  metabolites  are  present  in  spiders  located  along  the  Twelvemile  Creek  arm  

of   Lake   Hartwell.       There   was   no   detection   of   metabolites   with   seven   or   more  

chlorines.     Although   these   results   supported   the   hypothesis   that   spider   can  

transform  their  PCB  body  burden,  the  actual  products  of  metabolism  were  less  clear  

due   to   the   number   of   unidentified   peaks   in   the   metabolic   fraction.     Laboratory  

incubations   of   enzymes   with   PCBs   88   and   149   provided   evidence   that   these  

congeners   can   be   transformed   by   spider   enzymes   to   a   single   compound   distinct  

from  the  parent  material.    PCB  61  was  partially  metabolized  to  2-­‐MeO-­‐PCB  61,  and  

potentially  to  other  metabolites.      

Page 142: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

130

  Web   investigations   affirmed   the   hypothesis   that   webs   have   measurable  

concentrations  of  PCBs.    The  concentrations  are  not  significant  enough  to  warrant  

their   inclusion   in   ecological   risk   assessments,   but  may   help   spiders  manage   their  

PCB  body   burden.     The   hypothesis   that   spiders   are   the   source   of   these   PCBs  was  

partially  supported  due  to  similarities  in  the  homolog  distribution  patterns  between  

spiders   and   webs;   however,   the   greater   presence   of   di-­‐   and   tri-­‐chlorinated  

congeners  in  webs  indicates  that  volatilization  may  also  contribute  to  the  total  PCB  

concentration   in   webs.     Changes   in   chirality   from   spiders   to   webs   indicate   that  

biological  processes  may  be  affecting   the   transport  of   chiral  PCBs   from  spiders   to  

webs,  providing  additional  evidence  that  spiders  contribute  to  web  PCB  content.  

 

Recommendations  for  Future  Work  

An  exposure   study   could  be   completed  where  prey   insects   are   reared  with  

exposure  to  a  limited  number  of  PCB  congeners,  and  are  in  turn  fed  to  spiders.    This  

would   allow   for   targeted   analysis   of   the   transfer   between   trophic   levels,   at   what  

concentrations,  and  how  the  chirality  is  affected  at  each  level  of  the  food  chain.    Such  

a  study  could  also  investigate  the  metabolism  of  the  PCB  congeners  at  each  level  of  

the   food   chain,   or   even   investigate   if   trophic   transfer   of   PCB  metabolites   occurs.    

Such  investigations  would  answer  lingering  questions  about  the  source  of  OH-­‐PCBs  

in  spider,  and  whether  or  not  OH-­‐PCBs  in  prey  are  transformed  to  catechols  during  

the  feeding  process.    

Page 143: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

131

Such  a  study  could  allow  for  a  mass  balance  to  be  conducted.    This  would  be  

the  optimal  way  to  describe   fate  and  transport.    An  enclosed   food  web  would  also  

allow   for   collection  of   spider  excrement,  which  has  yet   to  be   investigated   for  PCB  

content.    The  material  is  challenging  to  collect,  as  the  spiders  are  suspended  above  

the   water   when   they   release   it   to   the   environment,   and   it   drops   into   the   water  

column  where  it  dissolves.    If  spiders  are  removed  from  the  habitat  after  controlled  

feeding  exposures  and  sequestered  in  a  fish  tank  for  a  few  days  enough  excrement  

might  be  collected  to  begin  analyzing  what  exits  the  organism  via  excretion.  

A   study  of   this  nature  was  attempted   for   this  dissertation;  however,   it  was  

unsuccessful   due   to   low   population   yield   of   exposed   midges.     Additional  

complications   arose   when   spiders   were   unable   to   spin   webs   successfully   in   the  

provided   enclosures.     It   is   hypothesized   that   a   better   prey   yield   coupled   with   a  

cooler,   more   humid   synthetic   habitat   for   spiders   could   provide   a   better   study  

system.  

Additional   metabolite   studies   can   also   be   conducted.   The   wider   array   of  

metabolite   standards   now   available   would   allow   for   consideration   of   different  

parent   congeners.     Additionally,   obtaining   standard   for  3-­‐MeO-­‐   and  4-­‐MeO-­‐PCB61  

could  allow  for  a  more  comprehensive  analysis  of  the  data  already  obtained.    

The   attempts   to   determine   the   metabolic   pathway   for   spiders   were  

inconclusive.     Use   of   antibodies   to   identify  which   enzymes   are   active   could   be   an  

alternative  way  to  determine  the  pathway.    Antibodies  for  CYP1A  and  CYP2B  can  be  

developed   with   fluorescent   tags   such   that   when   activity   is   detected   there   is   a  

Page 144: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

132

measureable   signal   from   the   antibodies.     This   could   be   challenging,   too,   because  

many  of  these  antibodies  have  been  developed  in  mammalian  systems,  and  may  not  

be  optimal  for  use  in  arthropod  systems.  

A  volatility  exposure  study  could  be  conducted  to  better  determine  the  

source  of  PCBs  in  webs.    A  controlled  laboratory  experiment  that  uses  web  material,  

water,  and  the  Aroclor  mixtures  present  at  this  Superfund  site  could  provide  

information  about  which  PCBs  are  volatilizing  from  the  water  column,  and  which  of  

those  sorb  on  to  the  webs  if  at  all.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 145: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

133

 

 

 

 

 

 

 

 

 

 

APPENDICES    

Page 146: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

134

 

Appendix      A  

Supplemental  Figures  for  Chapter  2  

 

Figure  A.1    EF  values  for  chiral  congeners  at  sampling  locations  in  Tetragnathidae.  

 

 

Figure  A.2    EF  values  for  chiral  congeners  at  sampling  locations  in  Araneidae.  

0

0.5

1

T6 G H I K N O T12

PCB 91

PCB 95

PCB 149

PCB174

0

0.5

1

T6 G H I K N O T12

PCB 91

PCB 95

PCB 149

PCB174

Page 147: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

135

 

Figure  A.3    EF  values  for  chiral  congeners  at  sampling  locations  in  basilica.  

 

Figure  A.4    EF  values  for  chiral  congeners  at  sampling  locations  for  Chironomidae.  

   

0

0.5

1

T6 G H I K N O T12

EF

PCB 91

PCB 95

PCB 149

PCB174

0

0.5

1

T6 G H I K N O T12

EF

PCB 91

PCB 95

PCB 149

Page 148: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

136

Appendix  B  

Supplemental  Tables  for  Chapter  2  

 

Table  B.1  Environmentally  stable  chiral  congener  substitution  patterns    

PCB  Congener   Chlorine  Substitution  Pattern  45   2,  2’,  3,  6  84   2,  2’,  3,  3’,  6  88   2,  2’,  3,  4,  6  91   2,  2’,  3,  4’,  6  95   2,  2’,  3,  5’,  6  132   2,  2’,  3,  3’,  4,  6’  136   2,  2’,  3,  3’,  6,  6’  144   2,  2’,  3,  4,  5’,  6  149   2,  2’,  3,  4’,  5’,  6  171   2,  2’,  3,  3’,  4,  4’,  6  174   2,  2’,  3,  3’,  4,  5,  6’  183   2,  2’,  3,  4,  4’,  5’,  6  

       Table  B.2   Sample  sizes  (n)  for  each  EPA  sampling  site.    Individuals  were  pooled    

to  create  samples  with  approximately  1.5g  mass.    

Sampling  site   Tetragnathidae   Araneidae   Basilica  G   4   0   1  

T6   3   3   1  H   3   3   3  I   4   4   3  K   3   3   3  N   3   0   1  O   3   3   1  T12   3   4   1  

     

Page 149: Spider Mediation of Polychlorinated Biphenyl Transport and Transformation Across Riparian

137

Appendix  C  

Supplemental  Tables  for  Chapter  3  

 

Table  C.1      SIM  parameters  used  to  screen  for  PCB  metabolites.    Three  settings    were  used  for  each  homolog  class.    

 #  Cl   m/z   SIM  settings  1   218.57   216  /  218  /  220  2   253.02   251  /  253  /  255  3   287.47   286  /  288  /  290  4   321.92   320  /  322  /  324  5   356.37   354  /  356  /  358  6   390.82   388  /  390  /  392  7   425.27   423  /  425  /  427  8   459.72   458  /  460  /  462  9   494.17   492  /  494  /  496