spectroscopy xrd

64
Spectroscopy XRD (X-Ray Diffraction on powders) Dr. Chris UP, Feb. 2016

Upload: chris-sonntag

Post on 22-Jan-2018

2.518 views

Category:

Education


6 download

TRANSCRIPT

Page 1: Spectroscopy XRD

Spectroscopy XRD

(X-Ray Diffraction on powders)

Dr. Chris UP, Feb. 2016

Page 2: Spectroscopy XRD

Energy regions of electromagnetic waves

Page 3: Spectroscopy XRD

Different principles (1) Energy absorption

E1 and E2 are different states of a molecule: Vibrational states -> IR spectroscopy Nuclear spin states -> NMR spectroscopy electronic states -> UV/VIS spectroscopy

Page 4: Spectroscopy XRD

(2) Energy emission

Raman (infrared) Fluorescence (uv)

Page 5: Spectroscopy XRD

(3) XRD “spectroscopy”

Different principle: reflection of X-Rays on a sample

Page 6: Spectroscopy XRD

Generation of X-Rays The target metal

defines the energy of the x-rays

Page 7: Spectroscopy XRD

Excitation of INNER electrons, falling back emits X-Rays Typical metals are Mo (λ = 0.07 nm) and Cu (λ = 0.154 nm)

Page 8: Spectroscopy XRD

XRD Principle

Different planes in a crystal give different signals = positive interference of waves

Page 9: Spectroscopy XRD

Why 2 ϴ ? The Bragg diffraction condition contains only one

factor of θ: 2dsinθ=nλ It should be noted that θ refers to the incidence angle of the x-ray beam, and the beam is actually deflected

by an angle of 2θ, as illustrated in the image below:

Page 10: Spectroscopy XRD

Bragg’s Law

Page 11: Spectroscopy XRD
Page 12: Spectroscopy XRD

PLANES IN CRYSTALS MILLER INDICES

Page 13: Spectroscopy XRD

Crystal lattices – 3 cubic structures

NaCl type

Page 14: Spectroscopy XRD

Movie clip: youtube.com/watch?v=pMTA_wiY784

Page 15: Spectroscopy XRD

Indices h k l

http://slideplayer.org/slide/792387/#

Page 16: Spectroscopy XRD
Page 17: Spectroscopy XRD

Identify crystal layers Miller indices h k l

http://www.iue.tuwien.ac.at/phd/dhar/node17.html

Page 18: Spectroscopy XRD

Practice Miller layers

½ 2

Page 19: Spectroscopy XRD

Negative indices

Page 20: Spectroscopy XRD
Page 21: Spectroscopy XRD

Examples

Page 22: Spectroscopy XRD

Miller Indices Example

htt

p:/

/ww

w.w

olf

ram

alp

ha.

com

/wid

get/

wid

getP

op

up

.jsp

?p=v

&id

=cc0

11

df9

9e5

87

39

30

ccb

65

97

43

a22

1b

&ti

tle=

Cal

cula

te%

20

Mill

er%

20

Ind

ices

%2

0fo

r%2

0P

lan

es&

them

e=p

urp

le&

i0

=1&

i1=2

&i2

=0&

po

dSe

lect

=&sh

ow

Ass

um

pti

on

s=1

&sh

ow

War

nin

gs=1

Page 23: Spectroscopy XRD

Cubic structure – interplanar distances

Page 24: Spectroscopy XRD

Calculate plane distances

Page 25: Spectroscopy XRD

Examples

Page 26: Spectroscopy XRD

Examples

htt

p:/

/ww

w.s

lides

har

e.n

et/m

eon

ly2

1Ic

and

epen

do

nh

imal

lmyl

ifeA

A/x

rd-l

ectu

re-1

Page 27: Spectroscopy XRD

What is the unit cell dimension a of NaCl ? Use plane 111 with 2x theta = 27 deg and λ = 1.54 nm (Cu-Kα)

Page 28: Spectroscopy XRD

Which plane will give a signal at 2x theta = 46 deg when the cubic constant a = 0.5 nm and λ = 1.54 nm ?

Page 29: Spectroscopy XRD

X-rays with wavelength 1.54 Å are “reflected” from the (1 1 0) planes of a cubic crystal with unit cell a = 6 Å. Calculate the Bragg angle, ϴ, for orders of reflection, n = 1-5.

Page 30: Spectroscopy XRD

Use Braggs Law to calculate possible values for ϴ :

Solution:

Page 31: Spectroscopy XRD

Indexing Example

Page 32: Spectroscopy XRD

constant

Find out which hkl combinations using in this formula will give a constant value.

Page 33: Spectroscopy XRD
Page 34: Spectroscopy XRD

ESTIMATED PARTICLE SIZES

Page 35: Spectroscopy XRD

htt

p:/

/mah

end

rako

pp

olu

.blo

gsp

ot.

com

/20

13

/07

/on

line-

crys

talli

te-s

ize-

calc

ula

tor.h

tml

Page 36: Spectroscopy XRD

AG NANOPARTICLES

Page 37: Spectroscopy XRD

From jcpds database http://comptech.compres.us/tools/jcpds/

In Angstrom = 10 x nm

VERSION: 4 COMMENT: Silver (04-0783, shock wave) K0: 120.800 K0P: 4.84000 SYMMETRY: CUBIC A: 4.08620 ALPHAT: 0.000000 DIHKL: 2.3590 100. 1.00 1.00 1.00 DIHKL: 2.0440 52. 2.00 0.00 0.00 DIHKL: 1.4450 32. 2.00 2.00 0.00 DIHKL: 1.2310 36. 3.00 1.00 1.00 DIHKL: 1.1760 12. 2.00 2.00 2.00 DIHKL: 1.0215 6. 4.00 0.00 0.00 DIHKL: 0.9375 23. 3.00 3.00 1.00 DIHKL: 0.9137 22. 4.00 2.00 0.00 DIHKL: 0.8341 23. 4.00 2.00 2.00

Page 38: Spectroscopy XRD

Ag Nanoparticles XRD

http://www.azonano.com/article.aspx?ArticleID=2318#5

Page 39: Spectroscopy XRD

Particle size estimation

Debye-Scherrer Formula:

λ = 0.154 nm , W = width at half maximum = 0.011 rad, Theta = 45 deg

Page 40: Spectroscopy XRD

Plane distance

http://pubs.rsc.org/en/content/articlehtml/2013/ce/c3ce40497h

Page 41: Spectroscopy XRD

a = b = c = 0.4081 nm Distance between 111 planes

between 100 planes

Page 42: Spectroscopy XRD

GRAPHITE AND GRAPHENE OXIDE (GO)

Page 43: Spectroscopy XRD

JCPDS Database VERSION: 4 COMMENT: Graphite K0: 100.000 K0P: 4.00000 SYMMETRY: HEXAGONAL A: 2.456 C: 6.696 VOLUME: 34.9786 ALPHAT: 00.00E0 DIHKL: 3.3480 100. 0 0 2 DIHKL: 2.1270 3. 1 0 0 DIHKL: 2.0271 17. 1 0 1 DIHKL: 1.7953 3. 1 0 2 DIHKL: 1.6740 7. 0 0 4 DIHKL: 1.5398 5. 1 0 3 DIHKL: 1.2280 2. 1 1 0 DIHKL: 1.1529 3. 1 1 2 DIHKL: 1.1333 2. 1 0 5 DIHKL: 1.1160 2. 0 0 6

It needs 4 indices to describe the planes in hexagonal structure

Page 44: Spectroscopy XRD

Indices for HCP structures http://www.materials.ac.uk/elearning/matter/crystallography/indexingdirectionsandplanes/indexing-of-hexagonal-systems.html

Page 45: Spectroscopy XRD

https://www.youtube.com/watch?v=vK913oWl_XI

Page 46: Spectroscopy XRD

Graphite and Graphene Oxide

htt

p:/

/ww

w.r

sc.o

rg/s

up

pd

ata/

cc/c

0/c

0cc

01

25

9a/

c0cc

01

25

9a.

pd

f

Page 47: Spectroscopy XRD

Graphite structure

Page 48: Spectroscopy XRD
Page 49: Spectroscopy XRD

htt

p:/

/bgc

ryst

.co

m/s

ymp

14

/pap

ers/

29

1_S

hal

aby_

BC

C_

47

-1_

20

15

.pd

f

Page 50: Spectroscopy XRD

Reduced GO: 2θ = 26.29 degree With λ = 0.154 nm the distance between the planes: The close d-spacing of RGO to pristine graphite and disappearance of peak at 2θ = 12.43 degree indicate that the oxygen containing group of graphite oxide have been efficiently removed

Page 51: Spectroscopy XRD

From: Nanomaterials 2015, 5, 826-834 Graphene Oxide Synthesis from Agro Waste

The peak at 2θ = 11.6° indicates an interlayer distance of 0.79 nm fully oxidized graphite sheets

Page 52: Spectroscopy XRD

FT-IR spectrum of GO

Page 53: Spectroscopy XRD

In the IR spectrum typical peaks of functional groups can be identified: Around 3500 cm-1: O-H stretching 1700 cm-1: typical for C=O stretching 1600 cm-1: C-C vibrations of graphite 1210 cm-1: C-OH stretching

Page 54: Spectroscopy XRD

From: Chem. Commun., 2011,47, 12370-12372 One-pot reduction of graphene oxide at subzero

temperatures

Page 55: Spectroscopy XRD

From: J. Chil. Chem. Soc. vol.58 no.4 Concepción dic. 2013 http://dx.doi.org/10.4067/S0717­97072013000400067

GREEN SYNTHESIS AND CHARACTERIZATION OF GRAPHITE OXIDE BY ORTHOGONAL EXPERIMENT

Different oxidation parameters for graphite

Page 56: Spectroscopy XRD
Page 57: Spectroscopy XRD

From: SENSORS AND ACTUATORS B CHEMICAL 199:190–200 · AUGUST 2014

Page 58: Spectroscopy XRD

ZINC OXIDE NANOPARTICLES

Page 59: Spectroscopy XRD

Hexagonal Closest Packing

Page 60: Spectroscopy XRD

Zinc oxide XRD – Wurzite Structure

http://www.hindawi.com/journals/isrn/2012/372505/

Page 61: Spectroscopy XRD

Estimate particle sizes

Page 62: Spectroscopy XRD

Nanoscience and Nanotechnology 2015, 5(1): 1-6 Synthesis of Zinc Oxide Nanoparticles via Sol – Gel

Route and Their Characterization

Page 63: Spectroscopy XRD
Page 64: Spectroscopy XRD

Hope this was helpful !

Please follow Ajarn Chris on Facebook