spectrometry

45
. SPECTROMETRY SPECTROMETRY Meeting-11 IPSE

Upload: cian

Post on 06-Jan-2016

66 views

Category:

Documents


0 download

DESCRIPTION

SPECTROMETRY. Meeting-11 IPSE. SPECTROMETRY ? SPECTROSCOPY ? SPECTROMETER? SpektroFPHOTOmeter ?. Spectrometry. Spectroscopy : Field of Science that learn the theory of matter and energy interactions. Spectrometry: Field of Science that learn measurement methods - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: SPECTROMETRY

.

SPECTROMETRYSPECTROMETRY

Meeting-11IPSE

Page 2: SPECTROMETRY

Spectrometry Spectrometry

SPECTROMETRY ?

SPECTROSCOPY ?

SPECTROMETER?

SpektroFPHOTOmeter ?

Page 3: SPECTROMETRY

Spectroscopy :

Field of Science that learn the theory of matter

and energy interactionsSpectrometry:

Field of Science that learn measurement methods

and instrumentation to measure the matter- energy

interactions

Spectrometer:

Instrument to measure the matter- energy

interactions

Page 4: SPECTROMETRY
Page 5: SPECTROMETRY

Matter- Energy (radiation) Interaction

Wave curve Radiation/Light

Energy c

hhE .

a bc

d

d

Page 6: SPECTROMETRY

A part of light is transmited A part of light is transmited

b

Page 7: SPECTROMETRY

A part of Light is reflected with A part of Light is reflected with a a certain angle of reflectioncertain angle of reflection

c

Page 8: SPECTROMETRY

A part of light is refracted with a A part of light is refracted with a certain angle certain angle

d

d

Page 9: SPECTROMETRY

Transition in atoms/moleculesTransition in atoms/molecules

a

A part of light is absorbed

Page 10: SPECTROMETRY

Absorption Process by mattersAbsorption Process by matters

cause

Page 11: SPECTROMETRY

IMPORTANT THING:

The level of energy of atom/molecule/species will differ from one to another, so it will cause the difference of its transition.

Characteristic to every atom, molecule, species

Basic of Measurement

Page 12: SPECTROMETRY

Wave length Range Frequency (Hz) Type of Radiation Transition Type of Spectrometric Tachniques

< 0,1 Å > 3 . 1019 Gamma ray () nuclear Gamma Emission

0,1 – 100 Å 3.1019– 3. 1016 X ray Inner Electron Absorption, Emission, and x ray diffraction

5- 180 nm 6.1016 – 2.1015 UV vaccum Electron bonding UV Vacuum absorption

180-780 nm 2.1015- 1. 1012 UV/VIS Electron bonding Absorption/Emission UV/VIS

780 – 3000 nm 4.1014-1.1012 IR Vibration/Rotation of molecules

IR absorption

0,75– 3,75 mm 4.1011-8.1010 Micro wave rotation Absorption of micro wave

3 cm 1. 1010 Micro wave spin electron in magnetic field

Resonance of spin electron (ESR)

0,6-10 m 5.108 - 3.107 Radio wave Spin nuclear in magnetic field

Nuclear magnetic radio (NMR)

Spectrum Range and Measurement Techniques

Page 13: SPECTROMETRY

Basic Law of light absorption

PtPoPa

Prb

Po = Pt + Pa + Pr

For transparent matter : Pr ~ 0, so Po = Pt + Pa

Transmittans, T T = Pt/Po

Can be stated in %T

Examples : T = 0,2 , so the %T = 20

Page 14: SPECTROMETRY

Absorbans, A = -log T

A = a b cLambert-Beer’s Law

Jika C = mol/L A = . b. c

is coefficient of molar Absorptivity

What is the meaning of:

A = 0 or A = 1 ?

%T = 0, atau %T = 50 atau %T = 100 ?

Page 15: SPECTROMETRY

Exercise :

a. What is the absorbance of a sample solution in water if its transmittance is 40 % ?

a. If the molar absorptivity of solution is 10.000 and the light is passed into the 1 cm cells, what is the concentration of solution (Mole/L)?

Page 16: SPECTROMETRY

INSTRUMENTATIONINSTRUMENTATIONSpektrophotometer UV/VISSpektrophotometer UV/VIS

Page 17: SPECTROMETRY

•Instrumentation for UV/VIS absorption measurement

1. Nesler’s tube

x S-1 S-2 S-3

• for Visible/color solution

• Comparing the color intensity of X solution with the standard solution with the definite concentration

2. Cylinder Hehner

• Visual colorimetric, visible• Comparing the color intensity of standard solution and sample.• make the sample and standard are equal in color intensity,• are equal, b are different, so the concentration can be determined dicari

Page 18: SPECTROMETRY

NesslerNessler’s Tube’s Tube

Page 19: SPECTROMETRY

CyCylinder Hehnerlinder Hehner

Page 20: SPECTROMETRY

3. Colorimeter Dubosq•Colorimeter visual vis/ Color Solution

•The change of solution height

• Compare the color of sample and standard

solution

• Equiped with “teropong”

• Principle: A standard=A sample

standard= sample

C samplel=

(b.C)standard/b sample

4. Photometer filter

Bagan alat

light filter cel detector read out

Resource /galvanometer

Page 21: SPECTROMETRY

Colorimeter DubosqColorimeter Dubosq

Page 22: SPECTROMETRY
Page 23: SPECTROMETRY

a. Light resource: wolfram/tungsten lamp

Prerequisite for resource:

* light intensity high enough and stable

* The light sholud be continuum (1 range of )

b. Filter : to isolate spectra range that will be chosen

nm <400 400-450 450-500 500-570 570-590 590-620 620-750

color UV purple blue Blue-green

yellow orange red

Complement

Green- yellow

yellow orange blue Blue- green

Green- blue

c. Cel/Cuvete:

* Materials: Glass, plastic, quartz

Page 24: SPECTROMETRY

d. Detector: Photocel

FeSemi conduktor (Se)

Thin layer of Ag (Collector Electrode)

+ -

to galvanometer

Strengths and weaknesses:

* Strong, cheap

* No electrical resource is needed

* Only for visible light

* sensitive at 550 nm

* Can not amplified (to low renpond)

* less sensitive to light with low intensity

* easy to get patiq

Page 25: SPECTROMETRY

SpektroSpektrophphotometerotometer(Spectronic-20)(Spectronic-20)

Page 26: SPECTROMETRY

Spectrometric measurementSpectrometric measurement

Page 27: SPECTROMETRY

5. Flow Chart of Spectrometer

Block diagrams

resource mono cell detector recorder

of light Chromator

a. Light Resouces:

• wolfram/tungsten lamp Visible light

• Deutrium/H lamp UV light

- +

H2 Quartz tube

Low pressure

UV light produced: 180-200 nm

Page 28: SPECTROMETRY

Why the light should be monochromatic?

• Enhance the sensitivity, because the absorbans measured in maximum value

• Absorbans of light follow L-B law

b. Monochromator :

devise to select ,

to scatter the polychromatic into monochromatic

1

12

2

Slit in collimator prism/ focussing slit out

lens diffraction grating lens

Page 29: SPECTROMETRY

c. Cell/Cuvette:it must not be adsorbed the light used

Diameter (b) = 1 cm

Volume : 5 mL/ 10 mL

UV: quartz

VIS : glass, plasctic

Sample measurement should be compared with blank solution,

Sample cell should be“matched” match with blank cell

d. Detector :

Principle:

Absorb the energy of light, and change into the measured unit

Exp: menghitamkan photo plate, electrical current, thermal, dll

Detector:

harus menghasilkan sinyal yang mempunyai hubungan kuantitatif dengan intensitas sinar

Page 30: SPECTROMETRY

Noise Detektor: isyarat latar belakang yang timbul dalam detektor bila tidak ada intensitas sinar dari sampel yang sampai pada detektor

Sumber Noise:

* Perubahan dalam detektor

* Isyarat listrik dari peralatan

Syarat detektor:

* dapat menangkap/merespon energi sinar

* peka dengan noise rendah

* waktu respon pendek

* stabil

* dapat memperkuat isyarat listrik dengan mudah

* Isyarat listrik yang dihasilkan berbanding lurus dengan intensitas sinar

G = k’P + k’’

P = intensitas, k’= kepekaan detektor, k’’=arus gelap,

G = respons listrik (ggl)

P = k’ G k’’ ditekan ~ 0

Po= k’ Go

Page 31: SPECTROMETRY

Log Po/P= log k’Go/k’.G’= log Go/G = A (absorbans)

Jenis Detektor Untuk Spektr. UV/VIS:

1. Foto sel : Vis

2. VPT (Vacuum Photo Tube= tabung foton hampa)

3. PMT (Photo multiplier Tube= tabung penggandaan foton), dapat mengukur isyarat dengan intensitas <<

Pelarut dalam Spektrofotometri:

•Dapat melarutkan cuplikan

•Tidak menyerap sinar yang digunakan

Pelarut Cut off Pelarut Cut off

AsetonBenzen

CCl4

Cs2

CHCl3C6H12CH2Cl2

330 nm285 nm265 nm375 nm245 nm215 nm235 nm

EtanolEtilesterIsooktan

IsopropanolMetanolPiridin

air

205 nm205 nm215 nm215 nm215 nm305 nm200 nm

Page 32: SPECTROMETRY

Ax

A

Analisis kuantitatif

Dasar : Hk L-B A = . B. C

1). Cara pembandingan:

Membandingkan A sampel dengan A std

yang diketahui konsentrasinya

As = . b.Cs

Ax = .b. Cx

Cx= As.Cs/Ax

3). Cara kurva kalibrasi:

Membuat kurva kalibrasi (C vs A)

xx

x

x

xC

Cx

2). Cara adisi standar:

standar - ukur As

cuplikan + Standar - ukur : A = As + Ax

Perhatikan pengaruh pengenceran !!!!

Page 33: SPECTROMETRY

4). Cara standar adisi:

Vs.Cs1 VsCs2 VsCs3 VsCs3 VsCs4 VsCs5

VxCx

A= b VxCx/Vt + b VsCs/Vt

Plot A vs Cs ----- A = + Cs

= b VxCx/Vt = b Vs/Vt

A

C

= kemiringan kurva

Soal: Serapan10 mL larutan Co2+ 0,0005 M adalah 0,35. 10 mL larutan tersebut yg dicampur dengan 10 mL larutan

cuplikan menghasilkan serapan 0,52. Hitung konsentrasi Co2+ dalam cuplikan

Page 34: SPECTROMETRY

Analisis multi komponen

Syarat: komponen2 tidak saling berinteraksi

Prinsip: A total ( ttt)= Ac1 + Ac2 + Ac3 + … dst

Contoh : campuran Ni2+ dengan Co2+

A (Ni)= Ni( -Ni)b. CNi + Co(-Ni)b. CCo

A (C0)= Ni(-Co)b. Cni + Co(-Co)B. Cco

Harus dicari 4 dari 4 kurva kalibrasi:

Ni( -Ni) ; Ni(-Co) ; Co(-Ni) ; Co(-Co)

(persamaan dengan dua bilangan anu)

A

Ni

Co

Ni+Co

Ttk isosbestik

Page 35: SPECTROMETRY

Titrasi Fotometri:

Menentukan titik ekivalen untuk reaksi penetralan, pengkompleksan, redoks

TE: terjadi perubahan yang signifikan dari serapan

Beberapa kemungkinan:

1. Zat yang dititrasi

2. Zat penitrasi menyerap atau tidak?

3. produkBeberapa jeni kurva titrasi:

Volume titran Volume titran Volume titran

A

A

a b c

d e f

Reaksi: X(yg dititrasi) + T (titran) - Produk (P)

Ramalkan : x, T, dan P pada masing-masing kurva

Page 36: SPECTROMETRY

Titrasi Campuran:

dua logam dalam campuran dapat langsung ditentukan konsentrasinya.

TE- M

TE-NA

mL titran (EDTA)

Logan M dan N dititrasi dengan EDTA

Penjelasan ?????

Penentuan rumus kompleks:

Tiga cara: * Variasi kontinyu

* Angka banding mol

* Angka banding lereng

Page 37: SPECTROMETRY

a). Cara Variasi kontinyu

* Kation M + ligan L ==== kompleks ML

* Buat konsentrasi M dan L tepat sama

* Buat campuran M dan L pada variasi volume,

tetapi volume total tetap sama

* Ukur serapannya, buat kurva hubungan A

terhadap fraksi volume salah satu (M atau L)

0 0,2 0,4 0,6 0,8 1,0 Vm/(Vm+VL)

1,0 0,8 0,6 0,4 0,2 0,0 VL/(Vm+VL)

A

Ekstrapolasi:

Vm/(Vm+VL)= 0,34

VL /(Vm+VL)= 0,66

Perbandingan M:L =

0,34 : 0,66 = 1 : 2

Rumus kompleks: ML2

b). Cara angka banding mol:

* pada pencampuran [M] konstan ,[L] berubah

* Diukur pada di mana salah satu menyerap

kuat

Page 38: SPECTROMETRY

* Buat kurva A terhadap perbandingan mol ligan (L)

dan mol kation

0 1 2 3 4 5 Mol L/Mol M

A

c). Cara angka banding lereng:

* Khusus untuk kompleks lemah

(Kstab kecil)

* mengukur serapan larutan kompleks dengan

kelebihan yang besar dari L atau M

* kurva A terhadap [L] total dan A terhadap

[M] total

Page 39: SPECTROMETRY

A

[M] atau [L]

Reaksi: mM + nL == MmLn

Pada [M] >>>> maka

MmLn ~CL/n

An = b MmLn ~ b CL/n

Lereng: Sn = An/CL= b/n

Dengan cara yang sama untuk [L] >>

Am = b MmLn = b CM/n

Lereng Sm = Am/Cm = b/m

Angka banding rasio Sm/Sn= ( b/m)/( b/n)

= n/m

Page 40: SPECTROMETRY

Langkah-langkah utama dalam Analisis kuantitatif dengan spektro. UV/VIS:

1. Pembentukan molekul yang dapat menyerap sinar tampak (VIS).

2. Pemilihan panjang gelombang (kurva serapan)

3. Pembuatan kurva kalibrasi

4. Pengukuran absorbans cuplikan/analit

5. Penentuan konsentrasi analit

Page 41: SPECTROMETRY

Kembali ke pertanyaan:

Apakah kurva kalibrasi selalu linier menuju nol ?Ya, selama mengikuti hukum Lambert-Beer.

Syarat berlakunya hukum L-B:

Syarat konsentrasi : rendah (ppm)

Syarat kimia: Zat pengabsorpsi

tidak terdisosiasi, tidak bereaksi

dengan pelarut, stabil

Syarat cahaya:

harus monokromatis

Page 42: SPECTROMETRY

A

C

A

B Pita A

Pita B

• Bila bekerja pada pita serapan A (maks), maka tidak berubah banyak, kurva lurus, mengikuti hk L-B

• , Bila bekerja pada pita serapan B (bukan maks), maka simpangan besar, berubah pada setiap perubahan

• Bila bekerja pada maks, keberulangan pengukuran serapan sangat baik

4. Syarat kejernihan: tidak ada cahaya yang disebarkan/dibiaskan

Page 43: SPECTROMETRY

Kesalahan pada analisis Kesalahan pada analisis kuantitatifkuantitatif(kesalahan fotometri)(kesalahan fotometri)

Tb

C log.

1

dTTT

e

T

dTe

CbC

dC

log

log)(log

..

1

HK L-B: - log T = B. C

,b konstan sehingga kesalahan C terukur disebabkan oleh kesalahan dT dari T terukur

Diferensiasi, dibagi C

Page 44: SPECTROMETRY

E = 2,718 ; log e= 0,434

TTTC

CdT

TTC

dC

log

434,0

log

434,0

C

CKesalahan relatif konsentrasi karena kesalahan pengukuran T

Latihan :

1. Hitunglah kesalahan relatif pengukuran konsentrasi pada nilai pembacaan %T = 20 dan 80

2. Tentukan pada %T berapa kesalahan relatif konsentrasi terjadi paling kecil

Berdasarkan perhitungan: daerah %T operasional dengan kesalahan relatif minimal adalah antara (20 – 65 ) %T

Page 45: SPECTROMETRY

% kesalahan

Dalam konsentrasi, C

20 65 %T