spectralis - innova · fundus autofluorescence in the abca4[-]/[-] mouse model of stargardt disease...

11
SPECTRALIS for Research on Animals* *Not for use on humans

Upload: others

Post on 18-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

SPECTRALIS for Research on Animals*

*Not for use on humans

Widefield Lens 55° Standard Lens 30°

Example Images on Mice

image courtesy of „P.Albrecht, University of Duesseldorf (GER), Dept. of Neurology“

Widefield Lens 55° Standard Lens 30°

Example Images on Rats

image courtesy of „S Schmitz-Valckenberg, University of Bonn (GER), Dept. of Ophthalmology“

OCT - Angiography on Rats

Superficial Plexus

image courtesy of „S Schmitz-Valckenberg, University of Bonn (GER), Dept. of Ophthalmology“

OCT - Angiography on Rats

Superf. Plexus Deep Plexus

image courtesy of „S Schmitz-Valckenberg, University of Bonn (GER), Dept. of Ophthalmology“

Further Imaging Modalities

IR FA RF MC

1) Grozdanic, Ames, USA 2) Albrecht, Düsseldorf, GER 3) Pinilla, Zaragoza, SPA 4) Sparrow, New York, USA: doi:10.1167/iovs.12-9672 5) Herms, Munich, USA: doi:10.1371/journal.pone.0053547 6) Seeliger, Tübingen, GER: doi:10.1371/journal.pone.0131154

1 1 1 2 ICGA

Structural B-Scan

Angio B-Scan

3

7) Weinreb, San Diego, USA: doi:10.1167/iovs.07-1447 8) Zinkernagel, Bern, SUI: doi:10.1167/iovs.14-14445 9) Allen Katz, USA 10) Schmitz-Valckenberg, Bonn, GER 11) Phipps, Rochester, USA: doi:10.1371/journal.pone.0070785

qAF Lifetime FSB(CFP) & AF YFP GFP 8 7 6 5 4

UWF HRT-RCM OCT-A 10 11

9

Further Experimental Model Systems

1) Albrecht, Düsseldorf, GER 2) Fletcher, Melbourne, AUS, doi: 10.1167/iovs.14-15732 3) Schmitz-Valckenberg, Bonn, GER 4) Yoshimura, Kyoto, JPN, doi: 10.1371/journal.pone.0036135 5) Steffens, Ann Arbor, USA 6) Steffens, Ann Arbor, USA 7) Korbel, Munich, GER 8) Burgoyne, Porland, USA, doi: 10.1167/iovs.13-13245

Mouse 1

Beagle 6

Buzzard 7

Opossum 5

Monkey 8

Rat 3

Rabbit 4

Cat 2

Approximate*1 Field-of-View Comparison

*1: Magnification depends on distance to sample. Therefore, experiment might not represent an accurate comparison

30° lens 55° lens 102° lens

Mouse Rat

Lenses No lens will give you the capabilities to measure accurately as known from clinical

use, because all calculations were designed for the imaging of human eyes It is advisable to discuss with Heidelberg Engineering which lens is best suited for

your experiments Standard 30° lens

For mouse experiments you will be happy with the additional blue 25 dpt. mouse lens This lens is necessary for OCT measurements on mice Thickness maps and (human-optimized) segmentation and segmentation tools available

Widefield 55° lens Useful for both mouse an rat Especially for rat, more of the periphery is visible There are no thickness maps, no segmentation tools available

Anterior Segment lens Applicable for both animal models General imaging without geometric accuracy can be done with the other lenses too

55° 30°+mouse lens

Some Readings Methods Correlation between SD-OCT, immunocytochemistry and functional findings in an animal model of retinal degeneration doi: 10.3389/fnana.2014.00151 Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography doi: 10.1186/2051-5960-2-54 Fundus Autofluorescence in the Abca4[-]/[-] Mouse Model of Stargardt Disease - Correlation With Accumulation of A2E, Retinal Function, and Histology doi: 10.1167/iovs.13-11688 Spontaneous CNV in a Novel Mutant Mouse Is Associated With Early VEGF-A–Driven Angiogenesis and Late-Stage Focal Edema, Neural Cell Loss, and Dysfunction doi: 10.1167/iovs.14-13989 Correlations between ERG, OCT, and Anatomical Findings in the rd10 Mouse doi: 10.1155/2014/874751 Modalities Longitudinal and Simultaneous Imaging of Retinal Ganglion Cells and Inner Retinal Layers in a Mouse Model of Glaucoma Induced by N-Methyl-D-Aspartate doi: 10.1167/iovs.10-6654 Single-Cell Resolution Imaging of Retinal Ganglion Cell Apoptosis In Vivo Using a Cell-Penetrating Caspase-Activatable Peptide Probe doi: 10.1371/journal.pone.0088855 Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice doi: 10.1371/journal.pone.0040352 Long-Term In Vivo Imaging and Measurement of Dendritic Shrinkage of Retinal Ganglion Cells doi: 10.1167/iovs.10-6012 Quantitative Fundus Autofluorescence in Mice. Correlation with HPLC Quantitation of RPE Lipofuscin and Measurement of Retina Outer Nuclear Layer Thickness doi:10.1167/iovs.12-11490 Fluorescence Lifetime Imaging of the Ocular Fundus in Mice doi: 10.1167/iovs.14-14445 Optische-Kohärenztomographie-Angiographie (OCT-A) bei Ratten doi: 10.1007/s00347-016-0309-6 Animal Models: Real-Time Imaging of Rabbit Retina with Retinal Degeneration by Using Spectral-Domain Optical Coherence Tomography doi: 10.1371/journal.pone.0036135 ATP-Induced Photoreceptor Death in a Feline Model of Retinal Degeneration doi: 10.1167/iovs.14-157329 Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone–Rod Dystrophy doi: 10.1038/mt.2013.232 Optical Coherence Tomography as a Diagnostic Tool for Retinal Pathologies in Avian Ophthalmology doi: 10.1167/iovs.13-11922 Longitudinal Detection of Optic Nerve Head Changes by Spectral Domain Optical Coherence Tomography in Early Experimental Glaucoma doi: 10.1167/iovs.13-13245

Heidelberg Engineering GmbH Max-Jarecki-Str. 8 69115 Heidelberg

Tel. +49 6221 64630 Fax +49 6221 646362 www.HeidelbergEngineering.com

2001

51-0

01 G

L.AE

16 ©

201

6 H

eide

lber

g En

gine

erin

g G

mbH