sparsitybaseddeconvoluonoflowdose...

1
SparsityBased Deconvolu5on of LowDose Perfusion CT Using Learned Dic5onaries Ruogu Fang 1 , Tsuhan Chen 1 , Pina C. Sanelli 2 1 Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA 2 Department of Radiology, Weill Cornell Medical College, NYC, NY, USA 1. Introduction to Perfusion CT (PCT) Brain PCT useful for evaluation of cerebrovascular diseases, especially stroke and vasospasms Challenging to estimate perfusion parameter maps Noisy contrast enhancement profile Oscillatory nature of current methods Priors used to estimate perfusion parameters Temporal convolution model [1] Spatial coherence and boundary [2] High-dose perfusion map database 2. Sparse perfusion deconvolution (SPD) Perfusion parameter model (Indicator-dilution theory [1]) First pass of contrast bolus yields time-density curves (TDC) for each voxel of tissue Least square solution is straightforward Highly sensitive to noise in low-dose PCT Perfusion parameter estimation based on dictionaries D is a dictionary learned from high-dose CBF map patches x is the CBF map we want to estimate α represents a sparse vector so that Dα can approximate x with certain error tolerance A similar formula-on has been used in image denoising [3] 3. Dictionary learning and sparse coding Dictionary learning: K-SVD Sparse coding: Iterative process 4. Learned dictionary from high-dose CTP 5. LACA estimation for cTSVD [4] and SPD 6. Ischemic tissue clustering 7. Conclusion/Discussion Novel sparsitybased deconvolu-on algorithm to es-mate CBF in lowdose CTP Train a dic-onary using CBF maps of highdose CTP Outperform cTSVD algorithm and improve the diagnos-c performance of differen-a-on between ischemic and normal -ssues References [1] Østergaard, L., et. al.: High Resolutie Measurement of Cerebral Blood Flow Using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis. Magn. Reson. Med. 1996 [2] He, L., et. al.: A Spa-oTemporal Deconvolu-on Method To Improve Perfusion CT Quan-fica-on. TMI 2010 [3] Elad, M., et. al.: Image Denoising Via Sparse and Redundant Representa-ons Over Learned Dic-onaries. TIP 2006 [4] WiYsack, H.J., et. al.: CTPerfusion Imaging Of The Human Brain: Advanced Deconvolu-on Analysis Using Circulant Singular Value Decomposi-on. CMIG 2008 Sanelli PC, Lev MH, Shetty S. Neurographics 2005;4:1-74 CBF CBV MTT ml/100gm/min ml/100gm sec Rate of blood flow through arteries, veins and capillaries Volume of blood in arteries, veins and capillaries Average time from arterial inlet to venous outlet noise and artifacts in perfusion maps C v (t)= CBF t 0 C a (τ )R(t τ )J = μ 1 C C a R 2 2 + x Dα 2 2 + μ 2 α 0 J = μ 1 C C a R 2 2 + x Dα 2 2 + μ 2 α 0 1. OMP 2. Quadra-c problem Globally trained dictionary using high-dose CBF maps DCT dictionary (a) (b) (c) (d) 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 200 (a) cTSVD in high-dose (b) cTSVD in low-dose (c) SPD in low-dose cTSVD d=22.67 SPD d=63.79 d = m 1 m 2 σ 2 1 n 1 + σ 2 2 n 2 Department of Electrical and Computer Engineering, Cornell University | http://chenlab.ece.corenll.edu/ruogu | [email protected] CTP & LACA ROI cTSVD @ 190mA cTSVD @ PSNR=20 SPD @ PSNR=20 PSNR 20 40 60 80 TSVD 56.09 47.11 23.14 22.98 SPD 41.94 42.12 16.44 16.47 Standard Devia5on Tu-1-MU-28

Upload: others

Post on 16-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SparsityBasedDeconvoluonofLowDose ...chenlab.ece.cornell.edu/people/ruogu/publications/MICCAI12_Poster.… · Challenging to estimate perfusion parameter maps! • Noisy contrast

Sparsity-­‐Based  Deconvolu5on  of  Low-­‐Dose  Perfusion  CT  Using  Learned  Dic5onaries  

Ruogu Fang1, Tsuhan Chen1, Pina C. Sanelli2

1Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA 2Department of Radiology, Weill Cornell Medical College, NYC, NY, USA

1.  Introduction to Perfusion CT (PCT) •  Brain PCT useful for evaluation of cerebrovascular diseases,

especially stroke and vasospasms

Challenging to estimate perfusion parameter maps •  Noisy contrast enhancement profile •  Oscillatory nature of current methods Priors used to estimate perfusion parameters •  Temporal convolution model [1] •  Spatial coherence and boundary [2] •  High-dose perfusion map database

2. Sparse perfusion deconvolution (SPD) •  Perfusion parameter model (Indicator-dilution theory [1])

•  First pass of contrast bolus yields time-density curves (TDC) for each voxel of tissue

•  Least square solution is straightforward •  Highly sensitive to noise in low-dose PCT

•  Perfusion parameter estimation based on dictionaries

•  D is a dictionary learned from high-dose CBF map patches

•  x is the CBF map we want to estimate •  α represents a sparse vector so that Dα can

approximate x with certain error tolerance •  A  similar  formula-on  has  been  used  in  image  denoising  

[3]

3. Dictionary learning and sparse coding •  Dictionary learning: K-SVD •  Sparse coding: Iterative process

4. Learned dictionary from high-dose CTP

5. LACA estimation for cTSVD[4] and SPD

6. Ischemic tissue clustering

7. Conclusion/Discussion •  Novel  sparsity-­‐based  deconvolu-on  algorithm  to  es-mate  

CBF  in  low-­‐dose  CTP  •  Train  a  dic-onary  using  CBF  maps  of  high-­‐dose  CTP  •  Outperform  cTSVD  algorithm  and  improve  the  diagnos-c  

performance  of  differen-a-on  between  ischemic  and  normal  -ssues

References [1] Østergaard, L., et. al.: High Resolutie Measurement of Cerebral Blood Flow Using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis. Magn. Reson. Med. 1996 [2] He,  L.,  et.  al.:  A  Spa-o-­‐Temporal  Deconvolu-on  Method  To  Improve  Perfusion  CT  Quan-fica-on.  TMI  2010  [3] Elad,  M.,  et.  al.:  Image  Denoising  Via  Sparse  and  Redundant  Representa-ons  Over  Learned  Dic-onaries.  TIP  2006  [4]  WiYsack,  H.J.,  et.  al.:  CT-­‐Perfusion  Imaging  Of  The  Human  Brain:  Advanced  Deconvolu-on  Analysis  Using  Circulant  Singular  Value  Decomposi-on.  CMIG  2008

Sanelli PC, Lev MH, Shetty S. Neurographics 2005;4:1-74

CBF CBV MTT ml/100gm/min ml/100gm sec

Rate of blood flow through arteries,

veins and capillaries

Volume of blood in arteries, veins and

capillaries

Average time from arterial inlet to venous outlet

noise and artifacts in perfusion maps

Cv(t) = CBF

� t

0Ca(τ)R(t− τ)dτ

J = µ1�C−CaR�22 + �x−Dα�22 + µ2�α�0

J = µ1�C−CaR�22 + �x−Dα�22 + µ2�α�0

1.  OMP  2.  Quadra-c  problem  

Globally trained dictionary using high-dose CBF maps

DCT dictionary

(a) (b) (c) (d)0 0.5 10

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

120

(a) (b) (c)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

140

160

180

200

(a) cTSVD in high-dose  (b) cTSVD in low-dose  (c) SPD in low-dose  

cTSVD d=22.67

SPD d=63.79

d =m1 −m2�

σ21

n1+ σ2

2n2 !

Department of Electrical and Computer Engineering, Cornell University | http://chenlab.ece.corenll.edu/ruogu | [email protected]

CTP  &  LACA  ROI   cTSVD  @  190mA   cTSVD  @  PSNR=20  SPD  @  PSNR=20  

PSNR 20 40 60 80 TSVD 56.09 47.11 23.14 22.98 SPD 41.94 42.12 16.44 16.47

Standard  Devia5on  

Tu-1-MU-28