sparse data formats and efficient numerical methods for uq in … · low-rank approximation of the...

33
Sparse data formats and efficient numerical methods for UQ in numerical aerodynamics NASPDE-2010 Workshop, Freiberg, Alexander Litvinenko, Hermann G. Matthies Institut f¨ ur Wissenschaftliches Rechnen, TU Braunschweig [email protected] September 20, 2010 1

Upload: others

Post on 01-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Sparse data formats and efficient numericalmethods for UQ in numerical aerodynamics

    NASPDE-2010 Workshop, Freiberg,Alexander Litvinenko, Hermann G. Matthies

    Institut für Wissenschaftliches Rechnen,TU [email protected]

    September 20, 2010

    1

  • Outline

    Part I. Overview

    Modelling of free stream turbulence

    Uncertainties in geometry

    Part II. Low-rank approximation of the solution

    2

  • Outline

    Part I. Overview

    Modelling of free stream turbulence

    Uncertainties in geometry

    Part II. Low-rank approximation of the solution

    3

  • Problem setup

    Stationar Navier-Stokes equation:

    v · ∇v − 1Re

    ∇2v + ∇p = g, and ∇ · v = 0.

    + b.c. and Wilcox-k-w turbulence modeldomain: RAE-2822 airfoil with some area around

    Solver: TAU has more than 300 parameters! (developed inDLR)Many of them are or can be uncertain!The first task: Classify uncertain parameters (p. 25).

    4

  • Overview of uncertainties

    Uncertain Input:

    1. Variables α and Ma

    2. Geometry of airfoil

    3. Parameters of a turbulence model

    Uncertain solution:

    1. mean value and variance of v

    2. exceedance probabilities P(v > v∗)

    3. probability density functions of v .

    5

  • Our Aims

    1. Sparse (low-rank) representation of the input data (randomfields)

    2. The whole computation process must be done in areasonable time

    3. Use the deterministic solver as a black box

    4. A sparse (low-rank) data format for the solution

    6

  • Outline

    Part I. Overview

    Modelling of free stream turbulence

    Uncertainties in geometry

    Part II. Low-rank approximation of the solution

    7

  • Modelling of uncertainties in free stream turbulence

    α

    v

    v

    u

    u’

    α’v1

    2

    Random vectors v1(θ) and v2(θ) model free stream turbulence 8

  • v1 =Iuθ1√

    2and v2 =

    Iuθ2√2

    .

    where θ1 and θ2 two Gaussian random variables.

    Let θ :=√

    θ21 + θ22 and β := arctg

    v2v1

    Then

    α′

    = arctgsin α + z sin βcos α − z cos β , where z :=

    Iθ√2

    and the new Mach number

    Ma′

    = Ma

    1 +I2θ2

    2−√

    2Iθ cos(β + α).

    where Ma′

    = u′

    us, us speed of sound.

    9

  • Sparse Gauss-Hermite Quadratures

    Figure: Sparse Gauss-Hermite grids of order 2 (13 points) and 3 (29points).

    10

  • α(θ1, θ2), Ma(θ1, θ2), where θ1, θ2 have Gaussiandistributions

    Statistics obtained on sparse Gauss-Hermite grid with 137points.Input uncertainties in α and Ma

    mean st. dev. σ σ/meanα 2.8 0.2 0.071Ma 0.73 0.0026 0.0036

    results in uncertainties in the solution lift CL and drag CD

    CL 0.85 0.0373 0.044CD 0.0187 0.0031 0.163

    11

  • Table: Comparison of results obtained by a sparse Gauss-Hermitegrid (n grid points) with 17000 MC simulations.

    n 137 381 645 MC,17000

    σCL/CL 0.044 0.042 0.042 0.045σCD/CD 0.163 0.159 0.16 0.159|CL − CL0|/CL 7.6e-4 1.3e-3 1.6e-3 4.2e-4|CD−CD0|/CD 1.7e-2 1.5e-2 1.4e-2 2.1e-2

    12

  • Assume that α, Ma have Gaussian distributions:

    2.6

    2.8

    3

    3.2

    0.7

    0.71

    0.72

    0.73

    0.74

    0.75

    0.76

    0.8

    0.82

    0.84

    0.86

    0.88

    0.9

    0.92

    alpha

    Cl(alpha, Ma), I=0.005, RAE−2822.Wilcox

    Ma

    Cl(a

    lph

    a, M

    a)

    2.6

    2.8

    3

    3.2

    0.71

    0.72

    0.73

    0.74

    0.75

    0.76

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    alpha

    CD(alpha, Ma), I=0.005, RAE−2822.Wilcox

    Ma

    CD

    (alp

    ha

    , M

    a)

    13

  • 500 MC realisations of pressure coeff. (cp) in dependence onαi and Mai

    14

  • 500 MC realisations of skin friction coeff. (cf) in dependence onαi and Mai

    15

  • 5% and 95% quantiles for cp from 500 MC realisations.

    16

  • 5% and 95% quantiles for cf from 500 MC realisations.

    17

  • 0.75 0.8 0.85 0.9 0.950

    5

    10

    15

    20

    25Lift: Comparison of densities

    0.005 0.01 0.015 0.02 0.025 0.03 0.0350

    50

    100

    150Drag: Comparison of densities

    0.75 0.8 0.85 0.9 0.950

    0.2

    0.4

    0.6

    0.8

    1Lift: Comparison of distributions

    0.005 0.01 0.015 0.02 0.025 0.03 0.0350

    0.2

    0.4

    0.6

    0.8

    1Drag: Comparison of distributions

    sgh13

    sgh29

    MC

    18

  • Figure: Intervals [mean − 3σ, mean + 3σ], σ standard deviation, ineach point of RAE2822 airfoil for the pressure, density, cp and cf.Build for 645 points of sparse Gauss-Hermite grid.

    19

  • Outline

    Part I. Overview

    Modelling of free stream turbulence

    Uncertainties in geometry

    Part II. Low-rank approximation of the solution

    20

  • Uncertainties in geometry

    Random boundary perturbations:∂Dε(ω) = {x + εκ(x , ω)n(x) : x ∈ ∂D}.where κ(x , ω) is a random field.

    How to generate geometry with uncertainties ?Algorithm:

    1. Assume cov. function cov(x , y) for random field κ(x , ω)given

    2. Compute Cij := cov(xi , xj) for all grid points (in a sparseformat!)

    3. Solve eigenproblem Cφi = λiφi4. Then κ(x , ω) ≈ ∑mi=1

    √λiφiξi(ω), where ξi(ω) are

    uncorrelated random variables.

    Sparse approximation of dense matrix C is done in [Khoromskij,Litvinenko, Matthies, 2009]

    21

  • 21 realisations of RAE-2822 airfoil

    Covariance function is of Gaussian typecov(ρ) = 10−5exp(−∑2i=1(xi − yi)2/ℓ2i ).

    22

  • Uncertainties in geometry

    mean st. dev. σ σ/meanCL 0.8552 0.0049 0.0058CD 0.0183 0.00012 0.0065

    PCE of order 1 with 3 random variables and sparseGauss-Hermite grid wite 25 points were used.

    23

  • Outline

    Part I. Overview

    Modelling of free stream turbulence

    Uncertainties in geometry

    Part II. Low-rank approximation of the solution

    24

  • Low-rank approximation of the solution

    Let W := [v1, v2, ..., vZ ], where vi are solution vectors.Given tSVD W̃ = ŨΣ̃Ṽ T = ABT ≈ W .How to compute tSVD of [W̃ , vZ+1, ..., vZ+K ] with a linearcomplexity ? (M. Brand, 2006)

    v =1Z

    Z∑

    i=1

    vi =1Z

    Z∑

    i=1

    A · bi = Ab, (1)

    C =1

    Z − 1WcWTc =

    1Z − 1UΣV

    T VΣT UT =1

    Z − 1UΣΣT UT .

    (2)Diagonal of C can be computed with the complexityO(k2(Z + n)).

    25

  • Decay of eigenvalues

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−20

    −15

    −10

    −5

    0

    5

    log, #eigenvalues

    log

    , va

    lue

    s

    pressuredensitycpcf

    Figure: Decay (in log-scales) of 100 largest eigenvalues of solutionmatrices: [pressure], [density], [cf], [cp] ∈ R512×645 on the surface ofRAE-2822 airfoil. 26

  • Relative errors of rank-k approximations

    k press. density tke ev xv zv memory, MB10 1.9e-2 1.9e-2 4.0e-3 1.4e-3 1.1e-2 1.3e-2 2120 1.4e-2 1.3e-2 5.9e-3 4.1e-4 9.7e-3 1.1e-2 4250 5.3e-3 5.1e-3 1.5e-4 7.7e-5 3.4e-3 4.8e-3 104

    Table: each matrix ∈ R260000×600. Dense matrix format costs 1.25 GB.

    Conclusion: already with a small rank a good accuracy can beachieved. Why?

    27

  • Comparison of computing times

    rank k Update time, sec. SVD time, sec.10 107 153720 150 208450 228 8236

    Table: Computing times of rank-k approximations of W ∈ R260000×600.

    28

  • Pressure, density, turb. kinetic energa, eddy viscosity, velosityin x and z directions.

    29

  • Conclusion

    ◮ Two different ways of modelling uncertainties in α, Ma.◮ Uncertainties in the input data α, Ma and in the geometry

    strongly influence on the drag CD and weakly on the lift CL.◮ Results obtained with the sparse GH grid are very similar

    to the MC results, but require much smaller computingtime.

    30

  • Future work

    1. Bayesian update of uncertain input parameters

    2. Adaptive refinement in stochastic space (number of PCEterms, which ones)

    31

  • Literature

    1. A.Litvinenko, H. G. Matthies, Sparse Data Representationof Random Fields, PAMM, 2009.

    2. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Applicationof hierarchical matrices for computing the Karhunen-Loèveexpansion, Springer, Computing, 84:49-67, 2009.

    3. B.N. Khoromskij, A.Litvinenko, Data Sparse Computationof the Karhunen-Loève Expansion, AIP ConferenceProceedings, 1048-1, pp. 311-314, 2008.

    4. H. G. Matthies, Uncertainty Quantification with StochasticFinite Elements, Encyclopedia of ComputationalMechanics, Wiley, 2007.

    32

  • Acknowledgement

    Project MUNA under the framework of the GermanLuftfahrtforschungsprogramm funded by the Ministry ofEconomics (BMWA).

    Elmar Zander:A Malab/Octave toolbox for stochastic Galerkin methods(KLE, PCE, sparse grids, tensors, many examples etc)

    http://ezander.github.com/sglib/

    33

    Part I. OverviewModelling of free stream turbulenceUncertainties in geometryPart II. Low-rank approximation of the solution