spacecraft thermal control...

30
Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David G. Gilmore Editor Second Edition The Aerospace Press • El Segundo, California American Institute of Aeronautics and Astronautics, Inc. • Reston, Virginia

Upload: lyquynh

Post on 05-Jun-2018

301 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Spacecraft Thermal Control Handbook

Volume I: Fundamental Technologies

David G. GilmoreEditor

Second Edition

The Aerospace Press • El Segundo, California

American Institute of Aeronautics and Astronautics, Inc. • Reston, Virginia

Page 2: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

v

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Contributing Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Chapter 1 Spacecraft Systems Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Spacecraft Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Earth Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Interplanetary Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Chapter 2 Spacecraft Thermal Environments. . . . . . . . . . . . . . . . . . . . . . . .21

Environments of Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Standard Earth Orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36Environments of Interplanetary Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . .48Aerobraking Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60Launch and Ascent Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Chapter 3 Thermal Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71Spin-Stabilized Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71Three-Axis-Stabilized Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72Propulsion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79Sun, Earth, and Star Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81Cooled Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84Solar Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86The Huygens Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87System Overview The Hubble Space Telescope . . . . . . . . . . . . . . . . . . . . . . .95

Chapter 4 Thermal Surface Finishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139Common Thermal Surface Finishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139Causes of Thermal Surface Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . .143Degradation Rates for Common Thermal Finishes . . . . . . . . . . . . . . . . . . . .152LDEF Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155Electrical Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Page 3: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contents

vi

Chapter 5 Insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Blanket Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Blanket Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Provisions for Venting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Provisions for Electrical Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Bakeout and Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193High-Temperature Blankets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193Suggestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194Insulation for In-Atmosphere Applications . . . . . . . . . . . . . . . . . . . . . . . . . 198References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Chapter 6 Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Passive Structure Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Structural Panels with Heat Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Body-Mounted Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Deployable Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Radiator Freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215Radiator Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Experimental Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Chapter 7 Heaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Heater Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224Failure Modes of Mechanical Thermostats . . . . . . . . . . . . . . . . . . . . . . . . . 227Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Computer-Controlled Heater System Example . . . . . . . . . . . . . . . . . . . . . . 231Radioisotope Heater Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Chapter 8 Mountings and Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247Unit Conduction Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247Bolted-Joint Conductance without Interface Filler . . . . . . . . . . . . . . . . . . . 260Bolted-Joint Conductance with Interface Filler . . . . . . . . . . . . . . . . . . . . . . 275Complex Configurations and Special Topics. . . . . . . . . . . . . . . . . . . . . . . . 284Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Page 4: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contents

vii

Chapter 9 Louvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331Vane Louvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Analysis of Vane Louvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Designing Louvers for Operation in Sunlight . . . . . . . . . . . . . . . . . . . . . . . 346Pinwheel Louvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Chapter 10 Heat Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353Heat-Switch Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354Heat-Switch Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355Paraffin Heat Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Cryogenic Heat Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Chapter 11 Phase-Change Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Phase-Change-Material Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Phase-Change Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377When To Use a PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380PCM Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383The PCM Design Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Chapter 12 Pumped Fluid Loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405Fluid-Flow Concepts and Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 407Forced Convection in Pipes and Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415System Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418Analysis of a Fluid Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442Computer Software for System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 443PFL Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Chapter 13 Thermoelectric Coolers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476Heat Load Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478XRT Focal-Plane TEC Mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479Design Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Page 5: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contents

viii

Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Chapter 14 Heat Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489Types of Heat Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500Heat-Pipe Applications and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 501Heat-Pipe References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502LHPs and CPLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502Selecting a Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Chapter 15 Thermal Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523Spacecraft Project Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523Thermal Design/Analysis Process Overview . . . . . . . . . . . . . . . . . . . . . . . . 534Fundamentals of Thermal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537Thermal Design Analysis Example POAM . . . . . . . . . . . . . . . . . . . . . . . . . 552Margins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572TMM Computer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575Radiation Analysis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Chapter 16 Thermal Contact Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599Contact Heat-Transfer Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600Parameters Influencing Thermal Joint Resistance . . . . . . . . . . . . . . . . . . . . 602Thermal Joint Resistance Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603The Effect of Oxidation on Thermal Contact Resistance. . . . . . . . . . . . . . . 623The Effect of Interstitial Materials on Thermal Contact Resistance . . . . . . 626References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Chapter 17 Precision Temperature Control . . . . . . . . . . . . . . . . . . . . . . . . 639

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639The Space Interferometry Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640The Hydrogen Maser Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Page 6: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contents

ix

Chapter 18 Space Shuttle Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667Engineering-Compatibility Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669Safety Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675The Cargo Integration Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676Orbiter Payload-Bay Thermal Environment . . . . . . . . . . . . . . . . . . . . . . . . 677Middeck Payload Accommodations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697Ferry-Flight Accommodations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700Optional Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Chapter 19 Thermal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710Design Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715Development Thermal Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725Unit Thermal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727Subsystem and Payload Thermal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 742System Thermal Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742Launch Site Thermal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Chapter 20 Technology Projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759Technology Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760Programmatic Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761Future Technologies and Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Appendix A Surface Optical Property Data . . . . . . . . . . . . . . . . . . . . . . . . 791

Appendix B Material Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . 803

Appendix C Thermally Conductive Filler Materials and Suppliers . . . . 819

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Page 7: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

xv

Contributing Authors

K. Aaron,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 17, Precision Temperature Control

J. Ambrose,

Lockheed Martin, Sunnyvale, California Chapter 17, Precision Temperature Control

B. J. Anderson,

NASA/MSFC, Huntsville, Alabama Chapter 2, Spacecraft Thermal Environments

W. Batts,

Computer Sciences Corporation, Huntsville, Alabama Chapter 2, Spacecraft Thermal Environments

V. Baturkin,

National Technical University of Ukraine, formerly Kyiv Polytechnic Institute, Kyiv, Ukraine

Chapter 8, Mountings and Interfaces

R. Bettini,

B.F. Goodrich Aerospace, Danbury, Connecticut Chapter 3, Thermal Design Examples

P. Bhandari,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 12, Pumped Fluid Loops

G. C. Birur,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 12, Pumped Fluid LoopsChapter 20, Technology Projections

L. Bledjian,

The Aerospace Corporation, El Segundo, California Chapter 11, Phase-Change Materials

D. A. Boyd,

Smithsonian Astrophysical Observatory, Cambridge, MassachusettsChapter 17, Precision Temperature Control

A. Chuchra,

Swales Aerospace, Beltsville, Maryland Chapter 13, Thermoelectric Coolers

J. F. Clawson

, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 2, Spacecraft Thermal Environments

G. Cluzet,

Alcatel, Velizy, France Chapter 3, Thermal Design Examples

R. L. Collins,

The Aerospace Corporation, El Segundo, California Chapter 15, Thermal Design Analysis

B. Cullimore,

C&R Technologies, Littleton, Colorado Chapter 14, Heat Pipes

G. M. DeVault,

The Boeing Company, Houston, Texas Chapter 18, Space Shuttle Integration

Page 8: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contributing Authors

xvi

J. Doenecke,

Astrium, Friedrichshaten, Germany Chapter 3, Thermal Design Examples

M. Donabedian,

The Aerospace Corporation, El Segundo, California Chapter 5, Insulation

R. J. Eby,

Orbital Sciences Corporation, Dulles, Virginia Chapter 9, Louvers

D. Ferguson,

Swales Aerospace, Beltsville, Maryland Chapter 2, Spacecraft Thermal Environments

C. Finch,

BAE Systems, Basildom, United Kingdom Chapter 3, Thermal Design Examples

M. Fong,

Lockheed Martin Corporation, Sunnyvale, California Chapter 4, Thermal Surface Finishes

D. G. Gilmore,

The Aerospace Corporation, El Segundo, California Chapter 1, Spacecraft Systems OverviewChapter 2, Spacecraft Thermal EnvironmentsChapter 3, Thermal Design ExamplesChapter 4, Thermal Surface FinishesChapter 5, InsulationChapter 6, RadiatorsChapter 7, HeatersChapter 15, Thermal Design Analysis

D. F. Gluck,

DFG Engineering, Albuquerque, New Mexico Chapter 8, Mountings and Interfaces

G. E. Gurevich,

Microcosm Inc., El Segundo, California Chapter 18, Space Shuttle Integration

D. V. Hale,

Lockheed Martin, Huntsville, Alabama Chapter 11, Phase-Change Materials

B. E. Hardt,

The Aerospace Corporation, El Segundo, California Chapter 9, LouversChapter 20, Technology Projections

B. P. Harris,

United Space Alliance, Houston, Texas Chapter 18, Space Shuttle Integration

A. Hashemi,

Lockheed Martin, Palo Alto, California Chapter 17, Precision Temperature Control

M. J. Hoover,

Lockheed Martin, Huntsville, Alabama Chapter 11, Phase-Change Materials

C. G. Justus,

Computer Sciences Corporation, Huntsville, Alabama Chapter 2, Spacecraft Thermal Environments

R. D. Karam,

Orbital Sciences Corporation, Dulles, Virginia Chapter 9, Louvers

Page 9: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contributing Authors

xvii

T. T. Lam,

The Aerospace Corporation, El Segundo, California Chapter 12, Pumped Fluid LoopsChapter 20, Technology Projections

K. Lankford,

Starsys Research Corporation, Boulder, ColoradoChapter 10, Heat Switches

E. I. Lin,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 5, Insulation

J. C. Lyra,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 7, Heaters

J. F. Maddox,

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts

Chapter 17, Precision Temperature Control

M. B. H. Mantelli,

Federal University of Santa Catarina, Florianopolis, BrazilChapter 16, Thermal Contact Resistance

E. M. Mattison,

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts

Chapter 17, Precision Temperature Control

C. R. Miller,

NASA/JSC, Houston, Texas Chapter 18, Space Shuttle Integration

M. Nikitkin,

Swales Aerospace, Beltsville, Maryland Chapter 14, Heat Pipes

T. P. O’Donnell,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 20, Technology Projections

M. J. O’Neill,

Lockheed Martin, Huntsville, Alabama Chapter 11, Phase-Change Materials

B. Patti,

European Space Agency, Leiden, Netherlands Chapter 3, Thermal Design Examples

J. Pecson,

Lockheed Martin, Palo Alto, California Chapter 17, Precision Temperature Control

R. C. Prager,

The Aerospace Corporation, El Segundo, California Chapter 14, Heat Pipes

H. A. Rotter,

NASA/JSC, Houston, Texas Chapter 18, Space Shuttle Integration

J. G. Santiago,

Stanford University, Palo Alto, California Chapter 20, Technology Projections

R. Serna,

NASA/JSC, Houston, Texas Chapter 18, Space Shuttle Integration

Page 10: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Contributing Authors

xviii

W. K. Smith,

The Boeing Company, Houston, Texas Chapter 18, Space Shuttle Integration

T. Stevenson,

University of Leicester, Leicester, United Kingdom Chapter 13, Thermoelectric Coolers

R. Stoll,

B.F. Goodrich Aerospace, Danbury, Connecticut Chapter 3, Thermal Design Examples

W. K. Stuckey,

The Aerospace Corporation, El Segundo, California Chapter 4, Thermal Surface Finishes

J. W. Stultz,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 5, InsulationChapter 7, Heaters

T. D. Swanson,

NASA Goddard Space Flight Center, Greenbelt, Maryland Chapter 20, Technology Projections

G. T. Tsuyuki,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Chapter 2, Spacecraft Thermal EnvironmentsChapter 5, Insulation

B. Turner,

BAE Systems, Basildom, United Kingdom Chapter 3, Thermal Design Examples

R. F. C. Vessot,

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts

Chapter 17, Precision Temperature Control

K. Vollmer,

Astrium, Friedrichshaten, Germany Chapter 3, Thermal Design Examples

J. W. Welch

, The Aerospace Corporation, El Segundo, California Chapter 19, Thermal Testing

Y. Yoshikawa,

Lockheed Missiles and Space Company, Sunnyvale, California Chapter 3, Thermal Design Examples

M. M. Yovanovich,

University of Waterloo, Waterloo, Canada Chapter 16, Thermal Contact Resistance

Page 11: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

1

1 Spacecraft Systems Overview

D. G. Gilmore

*

Introduction

During the past 40 years, hundreds of spacecraft have been built in support of sci-entific, military, and commercial missions. Most can be broadly categorized aseither three-axis-stabilized spacecraft, spin-stabilized spacecraft, or pallets; thesetypes are distinguished by their configurations, internal equipment, and thermal-control designs. This chapter is a brief overview of the characteristics of each ofthese different types of spacecraft and the missions they support. Representativethermal designs for each type are discussed in more detail in Chapter 3.

Spacecraft Configurations

The most common spacecraft configuration today is three-axis-stabilized. Thistype of spacecraft is characterized by a body that is roughly box-shaped and bydeployable solar-array panels. Examples are the Defense Meteorological SatelliteProgram (DMSP), the Japanese Earth Resources Satellite (JERS), and the Russiancommunications satellite Gorizont, shown in Fig. 1.1. The bodies of these space-craft are usually kept inertially stable except for a slow rotation induced about oneaxis to keep the payload antennas or sensors continuously pointed toward Earth asthe satellite orbits. The solar-array panels are then counterrotated relative to thespacecraft body to keep them inertially fixed on the sun. Some three-axis space-craft, such as the European Infrared Space Observatory (ISO, Fig. 1.1), haverestrictions on attitude (the vehicle’s orientation relative to an inertial coordinatesystem) or low power requirements that allow them to use fixed solar arrays thatdo not rotate to track the sun.

A typical internal equipment complement for a three-axis-stabilized spacecraftis shown in the exploded view of a Fleet Satellite Communications (FLTSAT-COM) satellite in Fig. 1.2. The spacecraft is commonly referred to in terms of a“payload” and a “bus,” or “platform.” The payload is the equipment that servicesthe primary mission—for example, a cloud-cover camera for a weather satellite oran infrared (IR) sensor for a missile early-warning system. Since FLTSATCOM isa communication satellite, the payload is the communications subsystem, whichconsists of the antennas on the Earth-facing side of the vehicle and the communi-cations electronics boxes mounted in the upper hexagonal compartment, as shown in Fig. 1.2. The bus consists of all other spacecraft subsystems that support thepayload. These subsystems typically include• Structures subsystem: the physical structure of the spacecraft, to which all

electronics boxes, thrusters, sensors, propellant tanks, and other componentsare mounted

*The Aerospace Corporation, El Segundo, California.

Page 12: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

2 Spacecraft Systems Overview

Fig. 1.1. Three-axis-stabilized satellites.

• Electrical power/distribution subsystem (EPS or EPDS): the equipment used togenerate and distribute electrical power to the spacecraft, including solararrays, batteries, solar-array controllers, power converters, electrical harnesses,battery-charge-control electronics, and other components

• Telemetry, tracking, and command subsystem (TT&C): The electronics used totrack, monitor, and communicate with the spacecraft from the ground. TT&Cequipment generally includes receivers, transmitters, antennas, tape recorders,and state-of-health sensors for parameters such as temperature, electrical cur-rent, voltage, propellant tank pressure, enable/disable status for various com-ponents, etc.

• Attitude/velocity control subsystem (ACS or AVCS): The devices used to senseand control the vehicle attitude and velocity. Typical components of the ACSsystem include sun and Earth sensors, star sensors (if high-precision pointingis required), reaction or momentum wheels, Inertial Measurement Units(IMUs), Inertial Reference Units (IRUs), and the electronics required to pro-cess signals from the above devices and control satellite attitude.

DMSP

Gorizont

ISO

JERS

Page 13: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Spacecraft Configurations 3

• Propulsion subsystem: Liquid and solid rockets or compressed-gas jets andassociated hardware used for changing satellite attitude, velocity, or spin rate.Solid rockets are usually used for placing a satellite in its final orbit after sepa-ration from the launch vehicle. The liquid engines (along with associatedplumbing lines, valves, and tanks) may be used for attitude control and orbitadjustments as well as final orbit insertion after launch.

• Thermal-control subsystem (TCS): The hardware used to control temperaturesof all vehicle components. Typical TCS elements include surface finishes,insulation blankets, heaters, and refrigerators.

Many of these subsystem components are shown in the drawing of FLTSAT-COM in Fig. 1.2.

The second category of spacecraft is spin-stabilized. These are less commonthan the three-axis-stabilized type and have been used mostly for relatively high-altitude missions in geosynchronous or Molniya orbits (p. 9). Some spinning sat-ellites, however, are used in low-altitude orbits. A typical “spinner,” Intelsat VI, isshown in Fig. 1.3. As the category name implies, these satellites achieve attitudestability by spinning like a top. Each spins at approximately 15 rpm about the axisof a cylindrical solar array. In the case of Intelsat VI, the communications payloadis mounted on a large shelf, which is despun relative to the rest of the spacecraft sothat it points continuously at Earth.

A spinner has the same basic subsystems as a three-axis-stabilized spacecraft:structures, EPS, TT&C, ACS, propulsion, and TCS. Usually, the payload is con-tained entirely on the despun section, while most of the other subsystems are onthe spinning side. Some types of spinners, however, such as the Defense SupportProgram satellites (DSP; Fig. 1.4), do not have a despun shelf. In the case of DSP,the payload, an IR telescope/sensor, spins with the rest of the satellite; the rotationof the vehicle provides a scanning motion for the sensor.

A pallet is technically a collection of one or more payloads plus some limitedsupport services, such as power distribution, data recording, or telemetry sensors.Pallets may be anything from a small experiment mounted to the side of a hostspacecraft to a large structure containing many instruments and mounted in thepayload bay of the space shuttle. The principal difference between the pallet andother spacecraft is that the pallet is not able to function autonomously, but insteadrelies on the host vehicle for ACS, EPS, and TT&C support.

The Experiment Support System (Fig. 1.5) is a typical pallet system. It consistsof a rather large structure that supports a half-dozen experiments and an equip-ment compartment containing power distribution, command processing, and datarecording equipment. The pallet is mounted in the space-shuttle payload bay, andthe shuttle provides ACS, EPS, and TT&C functions. In addition to the palletitself, there is a command monitor panel mounted in the crew compartment toallow the astronauts to control the operation of the experiments on the pallet.Because of the support provided by the shuttle, the pallet does not have propul-sion, ACS, EPS, or TT&C subsystems, and it is incapable of operating on its ownin space.

Page 14: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

4 Spacecraft Systems Overview

Fig. 1.2. Exploded view of FLTSATCOM. (Legend on facing page. )

49

27

42

45

4348

51

50

363736

4

24

11

10

47 17

1

18

10

30

3132

28

33

2915

44 212

753

56

36

4140

3839

6

26

3

8

34 35

46

22

25 20 23 21 2 5

14

55

54 9 13 15 16 19

52

Page 15: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Spacecraft Configurations 5

Legend for Fig. 1.2.

1. Solar array drive assembly2. Sun sensor assembly3. Earth sensor assembly4. Control and auxiliary electronics5. Spinning Earth sensor assembly6. Reaction wheel assembly7. Coarse sun sensor assembly8. Earth sensor electronics9. Nutation damper assembly

10. Battery assembly11. Power control unit12. Converter, spacecraft equipment13. Converter, communications no. 114. Converter, communications no. 215. Converter, transmitter16. Payload switching unit no. 117. Payload switching unit no. 218. Solar panel assembly19. Electrical integration assembly

20. S-band receiver21. Decrypter KIR23 (2 required)22. Command unit

23. S-band telemetry transmitter24. PCM encoder

25. S-band diplexer26. RF coaxial switch27. S-band antenna

28. Preamp/downconverter/IF limiter no.129. IF filter limiter no. 230. Processor receiver/synthesizer31. Repeater receiver32. Command receiver/synthesizer33. Oven-controlled crystal oscillator (2)34. AF processor35. UHF command decoder36. UHF transmitter Navy low power37. UHF transmitter Navy high power38. UHF transmitter (DODWB)39. UHF transmitter (AFNB)40. UHF transmitter filter41. UHF multicoupler filter assembly42. Transmit antenna assembly43. Frequency generator44. Receiver filter45. UHF receive antenna assembly46. Signal distribution unit no. 147. Signal distribution unit no. 248. Passive hybrid

49. FB processor50. SHF receiver51. SHF transmitter52. SHF antenna

53. Propellant tank54. Fill and drain valve55. Thruster assembly56. Apogee kick motor

Electrical Power/Distribution System

Attitude and VelocityControl

Telemetry, Tracking, andCommand System

S-Band Command Group

S-Band Telemetry Group

S-Band Antenna Group

Communication SystemUHF Transponder

Propulsion System

SHF Transponder

Page 16: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

6 Spacecraft Systems Overview

Fig. 1.3. Intelsat VI satellite.

Fig. 1.4. DSP satellite.

Telemetry and command antenna

C-Band multiplebeam antennas

K-Band spotbeam antennas

Earth coverageantennas

Traveling wavetube amplifiers

Communicationsequipment

Nickel-hydrogenbatteries

Spinning structureand electronics

Thermal radiator

Solar cell arrays

Orbit and attitudecontrol propulsionsystem

Page 17: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Earth Orbits 7

Fig. 1.5. Experiment Support System.

Another spacecraft configuration worth noting here is that of upper stages.Although they are not spacecraft per se, upper stages may be of a similar level ofcomplexity, and they may contain some of the same subsystems. They areincluded in this handbook because upper-stage thermal control after separationfrom the booster is quite similar to the thermal control of spacecraft.

Upper stages are generally used to raise a spacecraft to a higher operationalorbit from the relatively low orbit to which the booster delivers it. The duration oftheir missions varies from a few hours to several days. Upper stages can use solid,liquid, or cryogenic propellants. The Inertial Upper Stage (IUS, Fig. 1.6) is anexample of a solid-propellant upper stage that can be used in conjunction witheither the space shuttle or expendable boosters. The IUS itself has two stages; thefirst is generally used to put the spacecraft into a highly elliptical transfer orbit,and the second is fired at transfer-orbit apogee (the point in the orbit with thegreatest altitude above the planet surface) to make the orbit circular at the higheraltitudes. Like a satellite, the IUS has structures, EPS, TT&C, ACS, propulsion,and thermal-control subsystems.

Earth Orbits

A variety of orbits are used for different types of Earth-oriented missions. Themost common orbits, in order of increasing altitude, are low Earth (LEO),Molniya, and geosynchronous (GEO). These are drawn to scale in Fig. 1.7. Thefollowing section briefly describes these orbits, and a more detailed discussion oforbit parameters can be found in Chapter 2.

Orbits whose maximum altitudes are less than approximately 2000 km are gen-erally considered low Earth orbits. They have the shortest periods, on the order ofan hour and a half. Some of these orbits are circular, while others may be some-what elliptical. The degree of eccentricity is limited by the fact that the orbit is notmuch larger than Earth, whose diameter is approximately 12,760 km (Fig. 1.7).The inclination of these orbits, which is the angle between the plane of the equator

Far U.V.

QINMS

CIRRIS pallet

Tape recorder2 places

Grad Grad sample boxGrad electronics

CIRRIS

HUP

URA

Page 18: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

8 Spacecraft Systems Overview

Fig. 1.6. Inertial upper stage.

Reaction engine moduleSRM-2 safe and ARM (2)T34D medium-gainantennaSTS antenna (optional)Battery (3)Battery (3)Thrust vector controlComputerTransponderFuel tank (optional)Reaction engine moduleThrust vector control APower distribution unitEnvironmentalmeasurement unitPower transfer unitDecrypter (optional)Signal conditioning unitSTS antennaPower amplifierPower amplifier (optional)Diplexer

Inertial measurementunit

Star scannerSTS antenna

ComputerPyro switching unit

Transponder (optional)Fuel tank

Reaction engine modeEncrypter (optional)Signal interface unit

Signal conditioning unitSpacecraft connectors

T34D interface unitDC-DC converter

(optional)Encrypter (optional)

STS antenna (optional)Fuel tank

Reaction engine moduleDiplexer (optional)

Thrust vector controlpotentiometer

Controlsystem

Nozzle

Solid rocketmotor

Interstage structure

Extendable exit cone

Solid rocket motor

Spacecraft interface plane

Equipment support section

Page 19: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Earth Orbits 9

Fig. 1.7. Orbit types.

and the plane of the orbit, can vary from 0 deg to greater than 90 deg. Inclinationsgreater than 90 deg cause a satellite in LEO to orbit in a direction opposite toEarth’s rotation. Low Earth orbits are very often given high inclinations so that thesatellite can pass over the entire surface of Earth from pole to pole as it orbits.This coverage is important for weather and surveillance missions.

One particular type of low Earth orbit maintains the orbit plane at a nearly fixedangle relative to the sun (Fig. 1.8). The result of this is that, on every orbit, the sat-ellite passes over points on Earth that have the same local time, that is, the samelocal sun-elevation angle. Because Earth rotates beneath the orbit, the satellitesees a different swatch of Earth’s surface on each revolution and can cover the

Fig. 1.8. Sun-synchronous orbit.

Molniya

Geosynchronous

Low Earth orbit

etc.

N

Rev 1

N

Rev 2

Page 20: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

10 Spacecraft Systems Overview

entire globe over the course of a day. The ability to see the entire surface of Earthat the same local sun angle is important for weather observation and for visual-surveillance missions. This type of orbit is known as sun-synchronous and is dis-cussed in more detail in Chapter 2. Sun-synchronous orbits may be positioned sothat satellites always see points on Earth at a specific time, anywhere from localsunrise/sunset to local noon. They are often known as “noon” or “morning” orbits.

The next higher type of common orbit is known as Molniya. These orbits arehighly elliptical (apogee 38,900 km, perigee [the point in the orbit with the lowestaltitude above the planet surface] 550 km) and highly inclined (62 deg). They pro-vide good views of the north polar region for a large portion of the orbit(Fig.1.9). Because the satellite travels very slowly near apogee, it has a good viewof the polar region for up to eight hours out of its 12-hour period. A constellationof three satellites in Molniya orbits can provide continuous coverage of the north-ern hemisphere for missions such as communication with aircraft flying over thepolar region.

The highest common orbit type is geosynchronous. These orbits are circular andhave very low inclinations (< 10 deg). They have an altitude of 35,786 km. Theirdistinguishing characteristic is a period matching Earth’s rotation, which allows asatellite to remain over the same spot on Earth at all times. This characteristic isvaluable for a wide variety of missions, including weather observation, communi-cation, and surveillance.

One final useful observation is that most Earth-orbiting satellites travel throughtheir orbits in a counterclockwise motion as seen from above the north pole. Theymove in this direction to take advantage of the initial eastward velocity given to thethe satellite as a result of Earth’s rotation (approximately 1500 km/h at the Kennedy

Fig. 1.9. Molniya orbit.

6 h

4 h

2 h

1 h

0

30 min

Page 21: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Interplanetary Orbits 11

Space Center). To travel the orbit in the opposite direction would require thebooster to overcome the initial 1500 km/h eastward velocity before starting tobuild up speed in a westerly direction. This requirement would significantly affectbooster size and allowable payload weight.

Interplanetary Orbits

Orbits used in interplanetary missions range from simple, direct planet-to-planettransfer orbits to complicated trajectories involving close flybys past multipleplanets on the way to a final destination. Lunar transfer orbits, such as those usedon the Apollo program (Fig. 1.10), offer direct, minimum-energy transfer to themoon. Similar direct transfers are usually used for missions to Mars or Venus, asshown in Fig. 1.11. Spacecraft going to the outer planets often take advantage ofgravity assists from flybys past other planets along the way. In a flyby, the space-craft enters the gravitational field of a planet it is passing, and it achieves a netacceleration as a result of the planet’s own velocity. This gravitational “slingshot”effect allows for either a smaller, lower-cost launch vehicle or the accommodationof more payload equipment mass. The Venus-Venus-Earth-Jupiter Gravity Assisttrajectory (VVEJGA) of the Cassini mission to Saturn is shown in Fig. 1.12, andTable 1.1 summarizes the key orbital parameters for the planets of our solar sys-tem. The wide range of environments encountered in a Cassini-type trajectory cancomplicate the spacecraft thermal design process; this idea is discussed in subse-quent chapters.

Fig. 1.10. Lunar transfer orbits (NASA). Spacecraft modules: CM, command module;CSM, command-service module; LM, lunar module; SM, service module; S-IVB, Sat-urn IVB.

Ascent stagejettison (rev 34)

Trans-Earthinjection (rev 46)

Trans-Earth trajectoryCM/SM separation

190-km Earthparking orbit

CMsplashdown

S-IVB restart

Insertion

Launch

Translunar injection

Translunar trajectory

CSM LM 106by 311 km(1st 2 orbits)

CSM111 km

CSM LM 13 by106 km (12 orbits)

CSM orbitcirculation(rev 12)111 km

S-IVB evasivemaneuver

Spacecraftseparation

S-IVB residualpropellant dump

S-IVB impacttrajectory

Hybridtrajectorytransfer

CSM/LM separation

LM powered descentinitiation (rev 14)

LM landing

LM ascent

DockingLM insertion(17 by 83 km)

Page 22: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

12 Spacecraft Systems Overview

Fig. 1.11. Minimum-energy direct transfers used for missions to Mars or Venus.

Fig. 1.12. VVEJGA trajectory.

(Courtesy of NASA)

MarsEarth VenusSun

Venus swingbyApr. 21, 1998

June 20, 1999

Earth swingbyAug. 16, 1999

LaunchOct. 6, 1997

Orbit ofJupiter

Orbit ofSaturn

Jupiter swingbyDec. 30, 2000

Saturn arrivalJuly 1, 2004

Orbit of Earth

Deep space maneuverDec. 2, 1998

Orbit of Venus

Page 23: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Interplanetary Orbits 13

In some interplanetary missions, aerocapture maneuvers (Fig. 1.13) are used toslow the spacecraft and place it in orbit around a planet. This process involves send-ing the spacecraft close enough to the planet so that it actually passes through theupper reaches of the planet’s atmosphere. Friction in the atmosphere slows thevehicle to a velocity that is below the planet’s escape velocity. Injecting the spacecraftinto orbit around the planet at just the right altitude and direction is critical toavoid its being either excessively heated or deflected back into interplanetary space.Several orbits around the planet may be required to gradually lower the orbit altitude.

Fig. 1.13. Aerocapture maneuvers.

Table 1.1. Planetary Orbit Parameters

Orbit Semimajor Axis (AU)

Min. Distance from Sun (AU)

Max. Distance from Sun (AU)

Equatorial Radius (km)

Mercury

0.3871 0.3075 0.4667

2425Venus

0.7233 0.7184 0.7282

6070Earth

1.000 0.9833 1.0167

6378Moon

1.000 0.9833 1.0167

1738Mars

1.524 1.381 1.666

3397Jupiter

5.20 4.95 5.45

71,300Saturn

9.54 9.01 10.07

60,100Uranus

19.18 18.28 20.09

24,500Neptune

30.06 29.80 30.32

25,100Pluto/Charon

39.44 29.58 49.30

3200(Pluto)

Circularization burn

Atmosphere

Page 24: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

14 Spacecraft Systems Overview

In some cases, a similar process helps minimize the use of propellant when certainkinds of orbit changes are required during a spacecraft’s orbital mission. Aerocap-ture maneuvers create significant heat loads that must be addressed in the thermaldesign process.

Some rather unique orbits rely on balances between centrifugal and gravita-tional forces among multiple bodies. The Italian-French mathematician JosefLagrange discovered that in cases where one body orbits around a much largerone, such as the moon around Earth or Earth around the sun, the centrifugal forceand the two gravitational forces balance each other at five points. A body locatedprecisely at any of these points will therefore remain there unless perturbed. Thesepoints, known as the Lagrange points, are designated L1 through L5, as shown inFig. 1.14. L1, L2, and L3 are so unstable that, for a body positioned at any ofthem, a slight perturbation can knock the body out of equilibrium and send it onits way. The other two points, L4 and L5, are stable enough for a body positionedat either one to return to equilibrium if perturbed. For the unstable Lagrangepoints, a spacecraft can be placed in a small, fairly stable orbit around the pointthat requires little in the way of corrective maintenance maneuvers. The Solar andHeliospheric Observatory (SOHO) is placed at the Earth-sun L1 point; the Micro-wave Anisotropy Probe (MAP) satellite and the Next Generation Space Telescopeare considering the Earth-sun L2 point as a possible home.

Fig. 1.14. Lagrange points.

L1 L2

L5

L4

L3

Page 25: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Missions 15

Missions

A wide variety of missions are supported by the three general types of spacecraftplatforms discussed earlier. The type of mission will dictate the orbit, the payload,and, in some cases, the platform. Typical missions include communication, scien-tific observation, weather monitoring, navigation, remote sensing, surveillance,and data relay. This section briefly describes each of these missions.

The most common mission for both commercial and military satellites is com-munication; there are currently 294 operating communication satellites in orbit.Thuraya and Singapore Telecom-1 (ST-1, Fig. 1.15) are commercial communica-tion satellites. “Comsats” relay radio, telephone, television, or data signals fromone point on Earth to another. These satellites are usually, but not always, in high-altitude geosynchronous orbits, where they remain over the same point on Earth atall times. Communication can be provided between any two points on the side ofEarth to which the satellite has a direct view. Communication between two points

Fig. 1.15. Comsats.

Thuraya

Iridium

Astrium

Page 26: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

16 Spacecraft Systems Overview

on opposite sides of Earth, however, requires the use of multiple satellites withcrosslinks between them. Both Thuraya and ST-1 are typical communication sat-ellites that do not have crosslink capability. Iridium (Fig. 1.15) is a satellite con-stellation that has crosslinks and is able to provide communication between anytwo points on Earth.

Weather monitoring is another mission common to civilian and military spaceprograms. The DMSP spacecraft (Fig. 1.16) is a typical low-altitude weather sat-ellite. It carries visual and IR cameras that continuously photograph cloud pat-terns, as well as secondary sensors, such as Special Sensor Microwave Imager/Sounder (SSMIS), that can monitor phenomena such as surface wind speeds, soilmoisture content, and precipitation rates. Low-altitude weather satellites are usu-ally in sun-synchronous orbits. This allows them to scan the entire surface ofEarth at the same local sun angle over the course of a day. High-altitude weathersatellites, such as NASA’s GOES (Geostationary Operational Environmental Sat-ellite, Fig. 1.16), are usually in geosynchronous orbits that allow them to continu-ously photograph one entire hemisphere of Earth.

Navigation constitutes a third type of spacecraft mission. For the United States,this mission is currently fulfilled by one satellite program, NAVSTAR-GPS (Glo-bal Positioning System). The GPS system includes a constellation of 24 satellitesin 12-hour circular orbits. Each GPS satellite (Fig. 1.17) continuously broadcastsa signal that can be picked up by small receivers on the ground, in aircraft, or even

Fig. 1.16. Weather satellites.

Unyawedvelocityvector

Apparentsun motion

Propulsionmodule

+ZG

–YG

–XG

–ZG

+XG

Earthcenter

95°

Solararray

Precisionmountingplatform

Equipmentsupportmodule

Sunshade

+YG

Earthsensorassembly

Thruster

Sunsensorunit

Celestialsensor

DMSP

GOES

Page 27: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Missions 17

Fig. 1.17. Positioning satellites.

in another satellite. If three or more GPS satellites are visible at any one time,the receiver can determine its own position and velocity to within 1 m and 0.1 m/sec. Russia also operates a system of positioning satellites, known as GLONASS(Global Navigation Satellite System, Fig. 1.17), that are located in similar orbits.A next-generation navigation satellite program, aptly named Galileo, is also cur-rently planned by the European Space Agency.

Surveillance is a general category for satellites whose mission is to monitor var-ious activities on Earth. This surveillance can be in the form of IR sensors todetect missile launches, radar to track aircraft or ships, visual observation ofground activities, or intercept of radio transmissions. Satellites designed to sup-port each of these different missions have markedly different configurations.

Space Imaging’s Ikonos (Fig. 1.18) is a commercial optical-surveillance satellite.It provides 1-m panchromatic and 4-m color resolution digital imagery of Earth’s

Fig. 1.18. Surveillance satellites.

GPS GLONASS

Helios

Ikonos

Page 28: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

18 Spacecraft Systems Overview

surface. Its photos are used for mapping, urban planning, and environmental assess-ment. Helios (Fig. 1.18) is a national optical-surveillance satellite operated by France.

The DSP spacecraft shown in Fig. 1.4 is an example of an IR surveillance satel-lite. The payload is an IR telescope that detects and tracks missiles by the heatemitted from their rocket plumes. The detectors in the telescope are cooled toapproximately 150 K by a cryogenic radiator with a helium-coolant loop. Theentire satellite rotates at 6 rpm to provide a scanning motion that sweeps the lineardetector array across Earth’s surface. Ground software reconstructs the sweep intoan Earth image with all heat sources displayed. DSP provides the United Stateswith its first warning of missile launches.

Space Based Radar (SBR, Fig. 1.19) is an example of a radar-surveillance satel-lite. Spacecraft proposed for this program are quite large, with antenna dimen-sions on the order of 30 m. They would be developed to track aircraft and ships,with some designs being proposed to track missiles and individual warheads fordefense applications. Radarsat, a remote-sensing satellite program led by theCanadian Space Agency, is also shown in Fig. 1.19.

Relay satellites support another type of mission similar to that of communica-tion satellites except that the communication link is between the ground and a sec-ond satellite (Fig. 1.20). Such links eliminate the need for ground stations spacedthroughout the world, and they provide continuous contact with satellites in anyorbit. An example of a relay satellite is NASA’s Tracking and Data Relay SatelliteSystem (TDRSS), shown in Fig. 1.20. TDRSS is used to provide ground-to-ground and ground-to-satellite links and to communicate with shuttle astronauts.

Most Earth-orbiting scientific satellites need go no higher than low Earth orbitto accomplish their missions. Astronomical satellites, such as the Earth Observing

Fig. 1.19. Radar satellites.

Solar array

Solar array

Bus module

SARantenna

Payload module

Radarsat

Flightpath

Dual rotationsolar array

Phasedarray

Componentenclosure

MLI blanket

SBR concept

Page 29: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

Missions 19

Fig. 1.20. TDRSS relay.

System (EOS) and the Hubble Space Telescope (Fig. 1.21), need only get aboveEarth’s atmosphere to conduct their observations. A low-altitude orbit is an advan-tage for programs like EOS, whose mission is to study Earth. Some missions, likethe Russian Granat X-ray and gamma-ray observatory (Fig. 1.21), do requirehigh-altitude Earth orbits. There are also, of course, missions that require inter-planetary scientific spacecraft to leave Earth’s orbit entirely. These programs, suchas Cassini (Fig. 1.21), sometimes must follow complicated trajectories through thesolar system to get to their final destination.

Fig. 1.21. Scientific satellites.

GranatCassini

EOS

Hubble Space Telescope

Page 30: Spacecraft Thermal Control Handbookaerospace.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/bk… · Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies David

20 Spacecraft Systems Overview

Remote-sensing missions are accomplished by satellites such as the U.S. Land-sat, the French SPOT (

Systeme Pour l’Observation de la Terre

), and the EuropeanERS (Earth Resources Satellite) (Fig. 1.22). These vehicles gather images in avariety of wavelengths. This information is used to manage crops and other Earthresources and to support environmental and global change research. For this kindof mission, the satellites are usually placed in sun-synchronous polar orbits at analtitude of approximately 830 km.

Fig. 1.22. Remote-sensing satellites.

ERS

Coarsesun sensorsETM+

Instrumentaperture

+Z

+Y–Velocity

+XNadir

Coolerdoor(open)

Solar array(canted 20° from +Z axis)

Fullaperturecalibrator

Earth sensorassembly

GimballedX-bandantennas

Landsat 7

SPOT