space shuttle range command verification · space shuttle range safety command destruct system...

167
NSWC TR 80-417 SPACE SHUTTLE RANGE SAFETY COMMAND DESTRUCT SYSTEM ANALYSIS AND VERIFICATION PHASE III - BREAKUP OF SPACE SHUTTLE CLUSTER VIA 0 RANGE SAFETY COMMAND DESTRUCT SYSTEM MARCH 1981 PREPARED FOR THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER. ALA13AMA NASA DEFENSE PURCHASE REQUEST H-130478, AMENDMENT 6 NAVSURFWPNCEN TASK NO. WR14ZANOI TI Appioved for public release, distribution unlimited. n IE T SE-P 1 1981 r 41 NAVAL SURFACE WEAPONS CENTER Dahigren, Virginia 22448 *Silv.er Spring, Maryland 20910 01 ~~

Upload: others

Post on 30-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

SPACE SHUTTLE RANGE SAFETY COMMAND

DESTRUCT SYSTEM ANALYSIS AND VERIFICATION

PHASE III - BREAKUP OF SPACE SHUTTLE CLUSTER VIA0 RANGE SAFETY COMMAND DESTRUCT SYSTEM

MARCH 1981

PREPARED FOR THENATIONAL AERONAUTICS AND SPACE ADMINISTRATIONGEORGE C. MARSHALL SPACE FLIGHT CENTER. ALA13AMA

NASA DEFENSE PURCHASE REQUEST H-130478, AMENDMENT 6NAVSURFWPNCEN TASK NO. WR14ZANOI TIAppioved for public release, distribution unlimited. n IE T

SE-P 1 1981

r 41 NAVAL SURFACE WEAPONS CENTERDahigren, Virginia 22448 *Silv.er Spring, Maryland 20910

01 ~~

Page 2: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

SECUAITY CLASSIFICATION OF THIS PAGE (When Data Entfered)

READ RINTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORMNMBER 2. GOVT ACCESSION NO .ALD NUMBER

ILI NSWCLTR-80-4171A A k'S _ _ _ _

and . ..Subtitle) S. TY REPORTPJa jOD COVERED

"APACE iJUTTLE ,ANGE •AFETY • D Final

SJ E~~SM •TYss IC•ZNX,=ESTRUCT ASTD .---- -I-ATIN

P,,: ,• .p .. 2 S,:,De o .. b m-i-ie , A

. AU TNOR(a) t ---. ,O N uO@*AW r,.l

K ~A. ,./"IGo recbl~a~d J. M,1Wardr•'anra-j 'e'-'t-es

S.PERFORMING .. ...ORGANIZA4ION| NAME AND ADDRES|S 10. PROGRAM", K• EMENT,- PROJECT, TASKS~White Oak Laboratory

Silver Spring, MD 20910

W.-/icly.( .Lto6 . -L /__l__burn

11. CONTROLLING OFFICE NAME ANK-AVV !S9---

½ __ . 171.~~1MONITORING PAGES

"14. MONITORING RESS(I1 dillerent from Controling Office) If. SECURITY CLASS. (of this retpot)

UNCLASSIFIEDSaCM;D. ALOIFIC ATION/DOWN GRADIN G

7 SCNa DU L.

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract antratd In Vlock 30, ii dllfaaent hrom Report)

IS: SUPPLEM91NTARY NOTES

It. KEY WORDS (Continue onv'revarae aide ilnecaestey wd Ideantify by black Rnbiff)

"space shuttle solid rocket booster finite elements fragmentsdestruct system structural response flight dynamics detonationlinear shaped charge explosion debrisexternal tank aerodynamic drag hydrogen-oxygen-airorbiter stress analysis blast

20. ABSTRACT (Continue on reve,&* Oid# It nAce9aay 0md Id0ntItY by block FAiel )

-. The Triplex Destruct System (LSC's on each SRB and on ET) was analyzed foreffectiveness for the entire ascent portion of the flight. LSC size/place-"ments were established, LOX/LH2 v nt times were predicted, SRB depressurizatiintimes were calculated, and SRB/ET/Crbiter structural breakup pattern and timewere determined. Further, debris weight and aerodynamic characteristics arepresented for use in future hazard analyses..c

DD DITION INOV6 Is OSOLETEUNCLASSIFID

,,'S/N O! 02.LF-O! 44601 CA SFESECURITY CLASSIFICATION OF TNIS PAGE (When DIratateEm

-it ~

Page 3: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE (Maen Data Enteored)

UNCLASSIFIEDSECURITY CLASSIFICATION OP-rNIS PAGE(Vka, Palo ZIal~o

Page 4: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

Accession For

NTIS GRA&IDTIC TAB F] NSWC TR 80-417Unannounced F]

Eli'Justification.SDTIC.0

By_ ELECTEDistribution/_S- .... .SEP 1 1981Availability Codes

lAvail and/orDist j Special

FOREWORD

This report is submitted to the National Aeronautics and Space Administration(NASA), George C. Marshall Space Flight Center, Alabama, in fulfillment. of NASA-Defense Purchase Request H-13047-B, dated 15 May 1975, and as modified by Amendment 6on 12 August 1976. This Phase III study deals with the breakup of the Space Shuttleconfigurations upon activation of the Triplex Command Destruct system.

The findings of earlier Phase I and II studies conducted by the Naval SurfaceWeapons Center (NSWC), White Oak Laboratory, are utilized in this study. In Phase I,the aerodynamic loads imposed on the Space Shuttle components were determined for thenominal cluster ccnfiguration and in case of inadvertent loss of either a solidrocket booster or the orbiter vehicle. The Phase II study, in part, resulted in thedesign of the current Triplex Command Destruct System.

This Phase III study analyzes in detail the breakup of the cluster components.

The breakup pieces are identified and their characteristics, e.g., size, shape,

weight, and ballistic properties, are described. This information can be used toestimate the trajectories of the pieces and the debris pattern formed on the surfaceof the earth. This, in turn, leads to an estimate of the hazards encountered in theunlikely event that destruct action has to be taken.

The authors acknowledge and appreciate the excellent technical contributions ofmany of their colleagues at the White Oak Laboratory. M.A. Brown, L.E. Crogan,C.W. Smith, J.W. Watt, and T.J. Young provided much of the structural analysis forthe breakup models. A.J. Gorechlad, J. Knott, R.E. Lee, and W. Ragsdale suppliedthe bulk of the aerodynamics data. These contributions form an intrinsic part ofthe substance of this report. The professional guidance and leadership of J.A. Roach,MSFC, EL-42, and NASA technical coordinator of this task, are also iecognized andappreciated. As in our earlier associations with him on Phases I and II of this pro-gram, his patient and cooperative actions made working on this task both productiveand pleasurable.

* D.L. LEHTOW.M. HINCKLEYJ. PETES, Team Leader

J. F. PROCTORBy direction

Li

Page 5: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 8U-417

CONTENTS

Chapter Page

1 BACKGROUND ......................................................... 1-1INTRODUCTION ..................................................... 1-1

OBJECTIVES ..................................................... 1-2DISCUSSION ..................................................... 1-4

2 EXECUTIVE SUMMARY .................................................. 2-1INTRODUCTION ..................................................... 2-1SRB BREAKUP ...................................................... 2-1ET BREAKUP ....................................................... 2-2ORBITER BREAKUP .................................................. 2-3LOX-LH 2 EXPLOSION ................................................ 2-3CONCLUSION ....................................................... 2-5

3 BLAST EFFECTS FROM ET DESTRUCT ..................................... 3-1INTRODUCTION ..................................................... 3-1JET OUTFLOW ...................................................... 3-2JET BREAKUP ...................................................... 3-2RATE OF BUBBLE GROWTH ............................................ 3-27

STRIPPING OF LIQUID JET ........................................ 3-29DROPLET EVAPORATION TIME ....................................... 3-30

CLUSTER WITH ORBITER ............................................. 3-31MIXING UNDER ORBITER ........................................... 3-33IMPACT OF LH 2 PANCAKE ON LOX JET ............................... 3-34

CLUSTER WITHOUT ORBITER .......................................... 3-36TURBULENT MIXING IN WAKE OF CLUSTER .............................. 3-36DETONABILITY OF HYDROGEN-OXYGEN-AIR MIXTURES ..................... 3-37

HYDROGEN-AIR MIXTURES .......................................... 3-37HYDROGEN-OXYGEN MIXTURES ....................................... 3-40LH2 -LOX MIXTURES ............................................... 3-41PROPAGATION OF BURNING ......................................... 3-41

BLAST ............................................................ 3-42

4 SRB, ET, AND ORBITER BREAKUP ....................................... 4-1INTRODUCTION ..................................................... 4-1SRB BREAKUP ...................................................... 4-1ET BREAKUP ....................................................... 4-10ORBITER BREAKUP .................................................. 4-15DEBRIS FRAGMENTS ................................................. 4-16RELOCATION OF LH2 TANK LSC ....................................... 4-24

ii

Page 6: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CONTENTS - Continued

Chapter Page

Appendix A LISTING OF SRB DEBRIS FRAGMENTS .................................... A-i

Appendix B LISTING OF ET DEBRIS FRAGMENTS ..................................... B-i

Appendix C LISTING OF ORBITER DEBRIS FRAGMENTS ................................ C-I

ILLUSTRAT IONS

Figure Page

2-1 LOX/LH2 MIXING AND EXPLOSION SITES ................................. 2-2

3-1 THRUST VS. TIME FOR LOX JET ........................................ 3-33-2 THRUST VS. TIME FOR LH 2 JET ........................................ 3-43-3 PORTION OF LOX PLUME PASSING UNDER ORBITER ......................... 3-323-4 SHAPE OF LH2 JET UNDER ORBITER ..................................... 3-333-5 DETONATION LIMITS OF H2 AIR MIXTURES ................................ 3-383-6 DETONABILITY OF H2 AIR MIXTURE AT ALTITUDE OF 831 FT (10 SEC) ...... 3-38

i 3-7 DETONABILITY OF H2 AIR MIXTURE AT ALTITUDE OF 24.49 KFT (50 SEC)... 3-393-8 DETONABILITY OF H2 AIR MIXTURE AT ALTITUDE OF 90.57 KFT

(T = 100 SEC) .................................................... 3-393-9 DETONATION LIMITS OF H2 -0 2 MIXTURES ................................ 3-403-10 FRACTION OF H2 DETONABLE IN TURBULENT PLUME ........................ 3-433-11 PRESSURE VS. DISTANCE FOR 7,400-LB TNT CHARGL ...................... 3-44

4 3-12 IMPULSE VS. DISTANCE FOR 7,400-LB TNT CHARGE ....................... 3-454-1 SRB COMMAND DESTRUCT SYSTEM ........................................ 4-24-2 FRAGMENTATION OF SYSTEM TUNNEL BY LSC'S ............................ 4-24-3 INITIAL SRB PERFORATION PATTERN .................................... 4-34-4 PROPELLANT FRAGMENT SIZE DISTRIBUTIONS ............................. 4-54-5 EFFECT OF FLAME SPREAD RATE ON CHAMBER PRESSURE DURING PROPELLANT

BREAKUP .......................................................... 4-64-6 CHAMBER PRESSURE VS. TIME AFTER DESTRUCT ACTION .................... 4-74-7 MAXIMUM RELATIVE VELOCITY OF PROPELLANT FRAGMENTS .................. 4-84-8 FORWARD FRUSTUM AND SKIRT .......................................... 4-94-9 AFT CASE, AFT SKIRT AND NOZZLE ..................................... 4-94-10 AFT SRB/ET ATTACH STRUT............................................ 4-94-11 ET COMMAND DESTRUCT SYSTEM ......................................... 4-114-12 ET SKIN FRAGMENTS .............................................. ... 4-124-13 FRAGMENTATION OF CABLE TRAY ....................................... 4-124-14 INITIAL HOLING OF LH 2 TANK ......................................... 4-134-15 MAJOR ET FRAGMENTS ................................................ 4-144-16 BLAST LOADING ON ORBITER ........................................... 4-154-17 FORWARD FUSELAGE STRUCTURE ......................................... 4-174-18 ASCENT VEHICLE AXIS SYSTEM ........................................ 4-194-19 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH

INADVERTENT RIGHT SRB SEPARATION 10 SECONDS AFTER LIFT-OFF ....... 4-204-20 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WI1Ht INADVERTENT RIGHT SRB SEPARATION 50 SECONDS AFTER LIFT-OFF ....... 4-20

S~iii

Page 7: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

ILLUSTRATIONS - Continued

Figure Page

4-21 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITHINADVERTENT RIGHT SRB SEPARATION 100 SECONDS AFTER LIFT-OFF ...... 4-21

4-22 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITHINADVERTENT ORBITER SEPARATION iJ SECONDS AFTER LIFT-OFF ......... 4-21

4-23 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITHINADVERTENT ORBITER SEPARATION 50 SECONDS AFTER LIFT-OFF ......... 4-22

4-24 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITHINADVERTENT ORBITER SEPARATION 100 SECONDS AFTER LIFT-OFF ........ 4-22

4-25 AV VS. DESTRUCT ACTION TIME FOR SELECTED FRAGMENTS ................. 4-234-26 10-FT LSC INSTALLATION SPANNING RING FRAME XT 1624 ................. 4-254-27 XT 1624 FRAME CROSS SECTION AT LSC ................................. 4-264-28 LH2 TANK RESPONSE TO LSC CUT AT EARLY TIMES DURING ASCENT .......... 4-30A-I DRAG COEFFICIENT FOR AFT CASE AND NOZZLE ........................... A-22A-2 DRAG COEFFICIENT FOR FORWARD FRUSTUM AND SKIRT ..................... A-23A-3 DRAG COEFFICIENT FOR AFT SRB/ET ATTACH STRUTS ...................... A-24A-4 DRAG COEFFICIENT FOR SRB MOTOR CASE SEGMENTS ....................... A-25A-5 DRAG COEFFICIENT FOR CLEVIS PINS ................................... A-26A-6 DRAG COEFFICIENT FOR LONG, SLENDER SRM CASE, SYSTEMS TUNNEL, AND

j LSC SEGMENTS ..................................................... A-27A-7 DRAG COEFFICIENT FOR SHORT SRB SYSTEMS TUNNEL SEGMENTS ............. A-27A-8 DRAG COEFFICIENT FOR SRM PROPELLANT CUBES .......................... A-28B-i LIFT AND DRAG COEFFICIENTS FOR FORWARD ET SECTION .................. B-24B-2 LIFT AND DRAG COEFFICIENTS FOR MID ET SECTION ...................... B-25B-3 LIFT AND DRAG COEFFICIENTS FOR AFT ET SECTION ...................... B-26B-4 DRAG COEFFICIENT FOR PIPE SECTIONS ................................. B-27B-5 DRAG COEFFICIENT FOR VENT VALVE, PURGE, AND HFLIUM INJECTION LINES. B-27B-6 DRAG COEFFICIENT FOR ET SKIN SECTIONS .............................. B-28B-7 DRAG COEFFICIENT FOR RING FRAME STABILIZERS (LH 2 TANK) ............. B-28B-8 DRAG COEFFICIENT FOR STABILITY RINGS (LH 2 TANK), STRINGERS AND

TENSION STRAPS (SLOSH BAFFLE), CABLE TRAY SEGMENTS, AND LSCSHEATH SEGMENTS .................................................. B-29

B-9 DRAG COEFFICIENT FOR SLOSH BAFFLE SEGMENTS AND INDIVIDUAL BAFFLEWE.BS .............................................................. B-29

C-I DRAG COEFFICIENT FOR FUSELAGE MID SECTION .......................... C-8C-2 DRAG COEFFICIENT FOR FUSELAGE AFT SECTION (BODY, WING, TAIL,

NOZZLES) ......................................................... C-9C-3 DRAG COEFFICIENT F"R NOSE LANDING GEAR ............................. C-10C-4 DRAG COEFFICIENT FOR RCS NOZZLES ................................... C-10C-5 DRAG COEFFICIENT FOR RCS FUEL, OXIDIZER, AND PRESSURIZATION TANKS.. C-l1C-6 DRAG COEFFICIENT FOR ORBITER/ET ATTACH STRUTS ...................... C-IIC-7 DRAG COEFFICIENT FOR BEAMS, TRUSSES, AND PIPES ..................... C-12C-8 DRAG COEFFICIENT FOR PAYLOAD BAY DOORS, LANDINQ GEAR DOORS, SKIN

SECTIONS, AND THERMAL TILES ...................................... C-12C-9 DRAG COEFFICIENT FOR C-C THERMAL MATERIAL .......................... C-13

iv

Page 8: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLES

Table Page

1-1 RSS ACTIVATION SCOPE OF WORK ....................................... 1-3

d i 3-1 CRYOGEN DATA ....................................................... 3-5"3-2 FLIGHT DATA ........................................................ 3-53-3 DUMPING OF LOX TANK ................................................ 3-63-4 AERODYNAMIC STRIPPING OF LOX JET ................................... 3-63-5 DUMPING OF LH2 TANK ................................................ 3-73-6 AERODYNAMIC STRIPPING OF LH2 JET ................................... 3-73-7 PROPERTIES OF PLUME FROM 1 CM SECTION OF LOX JET.................... 3-83-8 COMPOSITION OF PLUME FROM I CM SECTION OF LOX JET .................. 3-83-9 AERODYNAMIC STRIPPING OF LH 2 BY LOX-AJR PLUME ...................... 3-93-10 DETONATION PROPERTIES OF LOX+AIR FLOW ON LH2 PANCAKE ............... 3-93-11 VENTING OF LOX TANK AT 10 SECONDS FLIGHT TIME ...................... 3-103-12 VENTING OF LOX TANK AT 20 SECONDS FLIGHT TIME ...................... 3-113-13 VENTING OF LOX TANK AT •O SECONIjS FLIGHT TIME ...................... 3-123-14 VENTING OF LOX TANK AT 65 SECONDS FLIGHT TIME ...................... 3-133-15 VENTING OF LOX TANK AT 100 SECONDS FLIGHT TIME ..................... 3-143-16 VENTING OF LOX TANK AT 115 SECONDS FLIGHT TIME ..................... 3-153-17 VENTING OF LOX TANK AT 350 SECONDS FLIGHT TIME ..................... 3-163-18 VENTING OF LOX TANK AT 450 SECONDS FLIGHT TIME ..................... 3-173-19 VENTING OF LH 2 TANK AT 10 SECONDS FLIGHT TIME ...................... 3-183-20 VENTING OF LH 2 TANK AT 20 SECONDS FLIGHT TIME ...................... 3-193-21 VENTING OF LH2 TANK AT 50 SECONDS FLIGHT TIME ...................... 3-203-22 VENTING OF LH 2 TANK AT 65 SECONDS FLI[HT TIME ...................... 3-213-23 VENTING OF LI12 TANK AT 100 SECONDS FLIGHT TIME ...................... 3-223-24 VENTING OF LH2 TANK AT 115 SECONDS FLIG;HT TIME ..................... 3-233-25 VENTING OF LH2 TANK AT 350 SECONDS FLIGHT TIME ..................... 3-24

S3-26 VENTING OF LH9 TANK AT 450 SECONDS FLIGHT TIME ..................... 3-253-27 VENTING TIMES FOR LOX AND L112 TANKS ................................. 3-263-28 IMPACT OF LH2 ON LOX JET........................................... 3-353-29 MIXING OF JETS WITH ORBITER SEPARATED .............................. 3-354-1 VELOCITY, ANGLE OF ATTACK, AND ANGLE OF SIDESLIP AT DESTRUCT

'ACTION TIME FOR SELECTED TIMES ................................... 4-18

A

I t

Sm =•

Page 9: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CHAPTER 1

BACKGROUND

INTRODUCTION

The Space Shuttle cluster includes a Triplex Command Destruct System to beactivated by the range safety officer to terminate certain conditions of aberrantr flight. This system evolved partly as a result of two studies made by the Naval

Surface Weapons Center, White Oak Laboratory, for the George C. Marshall Space FlightCenter (MSFC), Code EL-42.

The first study (Phase I), initiated in mid-1975, determined that the destructsystem as then designed was inadequate to assure the required catastrophic destructof the Space Shuttle cluster and rapid duvping of the LOX and LH2 in the externaltank (ET) at all times into flight from 10 seconds after lift-off to 300 seconds.IThis initial destruct system used linear-shaped charges (LSC's) mounted outboard onthe two solid rocket boosters (SRB's). Destruct action of the SRB's was to bringabout destruct of the ET.

It is particularly important to destruct the ET; its large quantities of LOX and) LH2 present a considerable potential explosion hazard upon ground impact should the

ET fall to the surface relatively intact. Specifically, the Air Force Eastern TestRange Manual, AFETRM-127-1, in paragraph 4.3.1.3.1.2 states: "For liquid propellantstages- using non-toxic propellants, the destruct charges must cause penetration ofthe propellant tanks, both fuel and oxidizer, to the extent necessary for rapid dis-persion of the propellants. The intent of this requirement is to ensure the maximumamount of propellants are dispersed before vehicle impact with the ground. This willreduce the impact area hazard by reducing the explosive yield."

A Phase II study explored about a dozen different explosive systems to accomplishthe desired destruct and dumping at all timas of interest. 2 A number of criteria were

"'"Study Report on Space Shuttle Range Safety Command Destruct System Analysis andVerification," Naval Surface Weapons Center, White Oak Laboratory, Silver Spring,Maryland, for George C. Marshall Space Flight Center, Marshall Space Flight Center,Alabama, under NASA-Defense Purchase Request H-13047 B of 15 May 1975. Reportdated 2 Feb 1976. (Now published as Phase I of this report.)

2 "Ordnance Options for a Space Shuttle Range Safety Command Destruct System," NavalSurface Weapons Center, White Oak Laboratory, Silver Spring, Maryland, forGeorge C. Marshall Space Flight Center, Marshall Space Flight Center, Alabama,under NASA-Defense Purchase Request H-13047 B, Amendment 3, 8 Mar 1976. Report

Y - dated 10 Dec 1976. (Now published as Phase II of this report.)

•. 1-1

Page 10: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

keyed to the requirements to help evaluate each system studied. These requirementswere: (1) rapid dumping of the LOX and LH 2 at altitude; (2) minimum mixing of theLOX and LH2 , so that (3) minimum potential blast yield of the mixture results;(4) minimum weight of the ordnance devices; (5) commonality of the ordnance devices;and (6) easy placement of the ordnance items. The recommended system, the one thatbest met the criteria, added explosively loaded LSC's to the ET, dedicated to thedirect and independent destruct of the ET. This, in conjunction with the LSC'saboard the two SRB's, comprises the Triplex Command Destruct System.

Destruct of the Space Shuttle and dumping of the LOX and LH2 are but the start-ing points for other range and ground safety (or hazards) considerations. Thedestruct products have to be quantified and identified. How many SRB, ET, andorbiter vehicle (OV) pieces are formed? Of what shape, size, and weight are they?And what are the aerodynamic characteristics of these thousands of pieces, their dragand lift coefficients? This information is required to permit calculation of thedebris pattern at the surface of the earth and estimates of the extent of surfacehazards. Because much of the information developed in Phases I and II is applicableto answering the questions on the Space Shuttle breakup, MSFC added Phase III todevelop a breakup model and determine the properties of the resulting pieces. Thatwork is the subject of this report.

OBJECTIVES. The technical objectives of this study, along with some of the

ground rules, are stated in the Statement of Work issued by MSFC.

I. Scope of Work

For the cases indicated in the accompanying matrix (Table 1-1)determine the following:

(a) Number of pieces resulting from Range Safety Action

(b) Size, area, and weight and shape of pieces

(c) AV imparted to pieces

(d) Aerodynamic Characteristics, CD and CL vs. Mach Number of3 pieces

II. Discussion

(a) The starting point for developing the breakup model forthe SRBs, ET, and Orbiter will be the action of theexplosive destruct systems aboard the SRBs and the ET asdetermined in rhases I and II of this study. These sys-tems will rupture, tear, hole, or in general, weaken thestructural integrity of the SRBs and the ET.

(b) These weakened structures will be subject to furtherdestruction and breakup through the application ofexplosion, inertia, aerodynamic, and body forces appliedto the full and partial clusters. The Orbiter willexperience its breakup through the application of thesesame forces.

1-2

Page 11: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 1-1 RSS ACTIVATION SCOPE OF WORK

1. Analyze the following cases:

Percentage ofOrbiter Propellant

Nominal One SRB Lost Lost Remaining

Component SRB ET OV SRB ET OV SRB ET SRB ET

Time or PropellantLevel Free Cluster

10 sec after lift-off X X X 90 98

20 sec* X X X X X X

50 sec, max Q-region X X X 45 88

52 sec* X X X X

65 sec* X X

100 see, just prior X X X <1 75to SRB burnout

115 sec* X X X X X X

350 sec flight time X 25

450 sec, propellant X <1depletion

*The cases were added at a later time.

2. Define:a. Number of pieces resulting from Range Safety Action.b. Size (area and weight) and shape (consistent with aerodynamic curves).c. AV imparted to pieces.d. Aerodynamics.(CD and CL vs. Mach Number).

(c) Breakup of the nominal configuration will start uponactivation of the range command destruct system. How-ever, to realistically account for the time betweeninadvertent initial and subsequent separation ofvarious cluster elements (as determined in the Phase Istudy) and the activation of the range command destructsystem, the major structural breakup analysis for thecluster elements will start at the following timei:

'10 sec at 10 sec after lift off•15 sec at all other times except undersuch circumstances arising from an

J. 1-3

Page 12: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

inadvertent separation in which subsequentstructural failure will occur in lesstime; the delta times of Phase I will thenbe used.

(d) A normal flight path will be used in the analysis, i.e.,the altitude and velocity of the cluster or componentsof the cluster are as defined in normal flight, or closeto these values.

(e) Vehicle dynamics will be thooe predicted in the Phase Istudy at the appropriate times for command destruct.

(f) CD and CL will be time average or spectrum values asfunctions of Mach number.

(g) The AV imparted to the pieces will be the vector sum ofthe velocity of the cluster at the time range destructis initiated and the velocity imparted by the explosionand other forces.

DISCUSSION. The objectives of the task are straightforward. It should be notedthat only initial breakup pieces and the aerodynamics of these pieces are called forin the task, not the subsequent trajectories and possible further breakup. Someelaboration on the "Discussion" portion of the Statement of Work, particularly withreference to the starting times for considering command-destruct-initiated breakup,may be useful. For the nominal configuration of the cluster (with the two SRB's,the ET, and the OV all attached), the starting time for breakup can be at whatevertime the destruct signal is given. The flight condition times in the matrix areappropriate. In the modified matrix, these times are translated into approximatetimes in seconds into flight. (Note that only a modified matrix (Table 1-1) is pre-sented in this report; the original matrix had only the flight times without asterisks.The reasons for the added times, shown with asterisks, are reflected in the followingparagraphs.)

When an SRB or the OV is inadvertently lost, the starting times have to beslightly modified. This is necessary to account for the time between initial lossof the SRB or OV and the time when the destruct command signal to activate the LSCdestructor explosives is given. Eastern Test Range personnel estimate that a fewseconds may elapse before it is definitely determined that the cluster has lost amajor component. Additional seconds may be consumed in consolidating and evaluatingall information pertinent to the loss. As a consequence, it may be 10 to 15 secondsafter the initial loss that the command destruct signal is given. During this time,as shown in Phase I, substantial separation and damage of the cluster elements have

F occurred under the influence of the aerodynamic flight loads. When the destructsignal is given, the major catastrophic breakup is initiated and superimposed on the

* separated and structurally weakened cluster units. These new and realistic timesfor starting the destruct through activation of the LSC ordnance are included in the

modified matrix as asterisked items.

Chapter 2 of this report summarizes the results of the study. It is patentlyimpossible to characterize all of the thousands of pieces created by the breakup forall conditions of cluster configuration at the different times of interest in any-thing but a qualitative way. Similarly, the assumptions going into the calculations

1-4

Page 13: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

for the breakup models, the details of the structural analyses, and the mixing anddetonation of the dumped LOX and LH2 are treated mainly in qualitative terms. Thedetails of these assumptions and calculations are presented in Chapters 3 and 4.Chapter 3 treats the LOX-LH2 dumping, mixing, and explosion. Chapter 4 provides thebreakup models and structural analyses. Listings of breakup pieces are broken downinto three groups, one each for the SRB, ET, and OV. The breakup pieces for the SRBare presented in Appendix A, those for the ET in Appendix B, and those for the OV inAppendix C. Within each group, the lists are arranged according to time into flight.

i1 5

7

I

Pt

Ii1-.

Page 14: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CHAPTER 2

EXECUTIVE SUMMARY

INTRODUCTION

Upon activation of the Range Safety System (RSS), explosively loaded,linear-shaped charges (LSC's) on the two solid rocket boosters (SRB's) and theexternal tank (ET) of the Space Shuttle cluster rupture the SRB and ET skins along

SItheir lengths. This initial weakening of the structural integrity of the SRB's andET leads to a major breakup of the SRB's, the ET, and the orbiter vehicle (OV). Themany forces - mechanical, aerodynamic, and explosive - contributing to this breakupand the characteristics (size, shape, weight, number, CD, CL, and AV) of the piecesor fragments are the subject of this report.

The breakup model considers activation of the RSS from 10 seconds after lift-off through 450 seconds into flight. Both the normal configuration of the SpaceShuttle cluster and the abnormal situation where either one SRB or the OV isinadvertently released are considered. Table 1-1 indicates in matrix form theShuttle configurations and times of concern covered in this study.

After the longitudinal cuts of the SRB and ET skins by the LSC's, many inter-acting and strong forces operate to break the Space Shuttle cluster into manythousands of pieces of various sizes and shapes. Mechanical and aerodynamic forcesproduce the major breakup of the main propulsion system components, while mechanicaland blast forces cause damage and some breakup of the OV. First, consider thebreakup model with only mechanical and aerodynamic forces being the breakupmechanisms. Later, the explosive blast forces generated by the mixing and detonation

* •of the LOX and LH2 escaping from the ET will be introduced.

SRB BREAKUP

Upon severing the solid rocket motor (SRM) skin along 70 percent of its length,the internal pressure created by the burning propellant is sufficient to open theSRB case and propellant grain in a clamshell-like fashion. This now weakened SRBstructure breaks along seven major segment joints. 7he six cylindrical segments ofthe motor case cut by the LSC break into twelve pieces, each segment breaking inhalf at the clamshell hinge. The forward frustum and skirt and the aft case andnozzle separate as individual large pieces: The equipment tunnel and its contentsalso contribute to fragment production.

2-1

Page 15: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The opening up of the motor casp segments fractures the propellant into aspectrum of sizes from about 1-inch cubes to a few pieces in the 35-inch cuberange. The SRB breakup is the satrz dhether the SPB is in its normalconfiguration or in t free mode, having been inadvertently separated. It shouldbe noted that the solid propellant is not expected to detonate under the actionof the LSC or the subsequent rapid burning due to breakup.

The breakup mechanism of the SRB is essentially the same at 10 secondsafter lift-off as at 115 seconds into flight, except for propellantfragmentation. At the later times, less propellant with thinner wall thicknessis available for fragmentation. Hence, most of the propellant pieces will beclustered at the small end of the size spectrum. The CD and ballistic factorsfor the pieces change somewhat with time because of the Mach number dependenceof these factors.

ET BREAKUP

After initial longitudinal ruptures of the LOX and LH2 tanks by theLCS's, the breakup analysis of the ET is similar to that of the SRB breakup.What differs are the magnitudes of the forcing functions producing the fragmentsand the structural parameters of the two tanks. For instance, the LSC rupturesof the ET are relatively small, about 20 feet along the LH2 tank and 8 feetalong the LOX tank. This compares with an about 72-foot cut in the SRB skin.

Although the initial rupture of the LOX skin is only 8 feet long, a maximumhole size of about 160 ft 2* is predicted for dumping the LOX. Throughcircumferential crack propagation of the original LSC cut and gross yielding ofthe tank brackets and cable tray pads, the tank skin and structure will bepeeled back about a quarter of the circumference of the tank. Superior strengthof the barrel panels forward of the SRB beam limits the extent of this initialhole size. The extent of subsequent damage and breakup are controlled by theenergy in the tank, the damage to the LH2 tank, and the lateral thrust on ETresulting from the expelled LOX and LH2.

The initial hole size in the LH2 tank depends on essentially the samefactors as those influencing the LOX tank hole: size of the LSC cut and linearcrack extension in th., skin. At times of 50 seconds into flight and later, thehole size is calculated to be 620 ft 2 ;* at earlier times, e.g., 10 seconds,because of the lack of sufficient tensile axial stress, the initial hole size isonly about 300 ft 2 .*

These combined forces -- the LSC cut, the opening of the LOX and LH2tanks through crack propagation and internal tank pressures, the thrust of theLOX and LH2 jets -- coupled with the flight-induced loads, break the ET intomany pieces. Some are quite large, e.g., the forward section of the LOX tank(6,500 pounds), the mid-section comprising the intertank and part of the LH2tank (42,000 pounds), and the aft section of the LH2 tank (20,000 pounds).Other pieces, e.g., fragments of the cable tray and piping, longitudinalstringers, stability ring segments, etc., are considerably smaller but morenumerous.

*Area of skin removed.

2-2

Page 16: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The number and size of pieces of the ET breakup will not be influenced muchas a function of time into flight and altitude when destruct action is taken.The ballistic characteristics of the pieces, however, are influenced because ofMach number dependence. Loss of an SRB or the OV will not change the breakupmodel of the ET.

ORBITER BREAKUP

The orbiter does not have a dedicated destruct system; SRB breakup is notexpected to aifect the orbiter. However, even with the initial conditionsconsidered -- no LOX-LH2 explosion -- the OV will subtair damage and breakupthrough ET destruct. The impact force of the LH 2 jet, on the oeder of 106

pounds, exerted on the bottom of the orbiter will result in failures of tneOV/ET attach fittngs, and the OV fuselage will be failed in bending near themid-point of the cargo bay (juet forward of the wing).

If the orbiter is inadvertently lost prior to RSS activation, of course, nodamage will be sustained by the OV except that which may have contributed to theinadvertent loss.

LOX-LH2 EXPLOSION

The preceding discussions did not consider breakup in the presence of anexplosion of the vented LOX and LH2 . There are a number of such potentialsources of explosion when the LOX and LH 2 are dumped through the large holesin the ET tanks. In the nominal cluster with the orbiter still attached, theLH2 in hitting the underside of the orbiter can expand laterally in apancake-like fashion. The leading edge of this high velocity mass of LH2 willintersect the LOX jet forward of it, and, through auto-ignition, On explosioncan take place (Fig. 2-1, Item 1). The evaporating and stripped LOX and LH2can mix with the air underneath the orbiter, and in the presence of some"ignition source (e.g., a burning piece of propellant) and explosion can occur(Fig. 2-1, Item 2). A third possibility exists in the vaporous hydrogen mixingwith the air in the wake of the cluster and, with some ignition source,resulting in an explosion (Fig. 2-1, Item 3).

If the OV is lost to the cluster before RSS activation, there are severaladditional scenarios for possible explosions. The jetting LOX and LH2 streamscan mix at high velocity when the ET distorts during its destruct so that thejet intersect; through auto-ignition, the mixture will explode (Fig. 2-1,Item 4). Items 5 and 6 in Figure 2-1 indicate the other possibilities formixing the LOX and LH2 . In Item 5, the hydrogen mixes with air and strippedoxygen in the wake of the jets and cluster, and in Item 6 mixing occurs aftergross ET breakup. In each of these two cases, a source of ignition is requiredto initiate the explosion.

The largest explosion in terms of TNT equivalence and the one most damagingin its ability to produce additional fragments from the already broken-upcluster is that illustrated by Item 1 in Figure 2-1 -- the high velocity

laterally expanding pancake of LH2 impacting on the LOX stream. Since thismixing model does not invoke the necessity for an outside ignition source, it isa probable model. It is estamated that this explosion will have an upper limitTNT explosion energy equivalence of 7,400 pounds.

2-3

Page 17: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

(L

FIGURE 2-1 LOX/LH2 MIXING AND EXPLOSION SITES

This is a rather large explosive force; however, there are factors whichmitigate its effects somewhat in terms of further cluster breakup. At earlytimes into flight, it takes about 1-1/4 seconds for sufficient LH 2 to mix withthe LOX to produce auto-ignition. In this time, the SRB pieces have movedsufficiently far from the explosion source to reduce the effect to only modestadditional damage. Because of the proximity of the LOX tank and intertanksections of the ET to the blast, they are expected to sustain considerably moredamage. However, these structures are capable of absorbing the blast energythrough large deformation (plastic flow) and while distorted will not be furtherfragmented. At later times into flight and at the higher altitudes attained,the blast pressures are greatly reduced (at 100,000-foot altitude it is onlyabout 1/10 of that at sea level). Thus, little adeilional damage occurs to theSRB and ET pieces. The orbiter, however, fares differently. Because of theproximity of its nose to the explosion origin, sub.,tantial damage and breakup inthis area is expected. For instance, the forward landing gear and parts of thenose skin and structure will come off. But much b..yond about 10-feet,particularly at the higher altitudes, the OV is eApected to sustain only modestblast damage.

2-4

Page 18: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The other models for potential sources of explosion, treated in some detailin the text, are not considered to be as significant as the pancaking LH2 -LOXmodel. Down-stream mixing (Models 3 and 5) is not significant in terms ofcluster breakup because it occurs at too great a distance from the cluster.Similarly, Model 4 is not particularly important because it occurs at too great

$47 a distance from the cluster debris. Models 2 and 6 present probable sources ofexplosions at distances of concern, but the resulting explosion or explosionsare expected to be relatively smaller than the largest explosion predicted,i.e., considerably less than the 7,400-pound TNT equivalence. Model 2 willcontribute to debris production mainly by loosening pieces of the thermalinsulation tile from the OV. This, however, will be but a small addition to thetotal debris production.

GuNCLUSIONIn both nominal and aberranL Lit • - h ripex RSS explosive

destruct system will break the components of the Space Shuttle cluster into manythousands of pieces, some large, but most relatively small. Major breakup ofthe SRB and ET components is initiated by the LSC's mounted on thsescomponents. Subsequent breakup occurs largely through failure of the skin andstructural members under the impetus of normal internal pressures, flight loads,and mechanical stress. The OV will break just forward of the wing under theforces of the jetting LH2 and will also sustain blast damage to its nose.

The blast force considered most probable is that generated by theauto-ignition of the high velocity, lateral pancaking expansion of the LH2stream impinging and mixing with the LOX jet forward of it. The maximumcredible explosion is expected to be about 7,400 pounds TNT equivalence. Thisblast will fracture and break the nose section of the orbiter and will causesome additional damage to the previously fractured ET tanks and SRB~s.

The time into flight when destruct action is initiated influences theballistic characteristics of the structure fragment pieces more than it doestheir number, size, and shape. The propellant pieces, however, are in allcharacteristics dependent on time of flight and the amount of propellantavailable for fracturing.

The characteristics of all the pieces of the Space Shuttle cluster formedby the destruct action are listed in the text of this report for both nominaland aberrant configurations and for flight times of 10 to 450 seconds.

2-5

Page 19: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CHAPTER 3

BLAST EFFECTS FROM ET DESTRUCT

INTRODUCTION

In this chapter, effects on the LOX and LH2 after ET rupture are calculated andexplosive effects that might arise from their mixing are estimated.

The LOX and LH2 jets are exposed to the airflow about the cluster. This air-flow generates capillary waves which crest and break into droplets that are sweptback with the airflow. The LOX droplets quickly evaporate, and the oxygen-air

mixture sweeps back toward the LH 2 . The LH 2 jet impacts the bottom of the orbitervehicle (OV) and spreads out in all directions as a pancake under the OV. Onlyabout two meters of the LOX jet contribute to the flow that gets under the OV andreaches the LH2 . Most of the LOX is carried beyond the OV and never comes intocontact with hydrogen.

The potential sources of explosion when the orbiter is still present are, Fig. 2-1:

1. The hydrogen-oxygen-air mixture under the orbiter.

2. The LH 2 -LOX mixture at the LOX jet when the expanding pancake of LH2

strikes it.

* 3. Mixing of hydrogen with air in the wake of the cluster. This is regardedas being too far back to have significant effects on the breakup or trajectories ofthe cluster fragments.

The potential sources of explosion after the orbiter has left the cluster are,Fig. 2-1:

4. The mixing of the LH2 and LOX jets when the ET distorts causing intersectionof the jets.

5. Mixing of hydrogen with air and stripped oxygen in the wake of the jets andcluster.

6. Mixing of LOX and LH2 after gross ET breakup.

3-1

Page 20: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Thrust versus time for the LOC jet is illustrated in Figure 3-1, and thethrust versus time for the LH2 jet is shown in Figure 3-2.

JET OUTFLOW

The method of calculating the two-phase flow from the ruptured tanks wasdescribed in Phase II. The cyrogen properties are shown in Table 3-1 and theflight conditions in Table 3-2. The calculations are based on ullage pressuresof 21 psig for the LOX tank and 33 psia for the LH 2 tank. The vapor pressuresof both liquids were taken as 15.7 psia. Tables 3-3 through 3-10 present theinitial outflow conditions. The initial high outflow rate is caused by the

pressure of the ullage gas. When the pressure in the tank drops below the vaporpressure, the liquid boils and the outflow is driven by the vapor pressure. Thetime-dependent outflow is presented in Tables 3-11 through 3-26.

The LH2 tank vents more rapidly than the LOX tank (the hole is larger andthe flow velocity is higher). Table 3-27 gives the vent times and final ventfractions. The venting stops when the pressures inside and outside the tankbecome eqttal. Any further dumping will be incidental sloshing through the ventor by gross breakup of the tank. At the lower altitudes, a large traction oathe LOX and LH2 is still in the tanks when venting stops and will not come outunless there is gross tank rupture due to ground impact or aerodynamic or blastforces. At flight times of 350 and 450 seconds, about 4000 pounds of hydrogenwill freeze in the tank. The amount of frozen LOX in the LOX tank is under100 pounds. The LOX jet will continue for several seconds after the LH2 jethas stopped. If there is gross breakup of the tanks, the amount of mixing nearthe cluster will depend strongly on the details of the breakup.

JET BREAKUP

The exiting jet is subjected to the airflow about the vehicle. The liquidpart of the jet is subjected to stripping by tearing off of small droplets fromcapillary waves on its sides. The bubbly part of the jet (due to boiling) has arough surface that gives the airstream a good grip on it, and is probablystripped faster than a liquid jet. Stripping rather than bag breakup will occurbecause the Weber number is about 106, and stripping breakup occurs for Webernumbers above about 20.

When the vehicle is supersonic (beyond about 50 seconds into flight), therewill be a bow shock on each of the jets. Its effects are not consideredsignificant. Therefore, its presence will be ignored in this analysis.

After moving out some distance, the jets are completely broken up byboiling and stripping and are swept back with the airflow to form plumes. Ifthe cluster is in approximately normal flight, the oxygen plume will impact theLH2 jet and plume (or the LH2 pancake, if the orbiter is still attached).Some LH2 will evaporate, and part or all of the oxygen and entrained air maycondense to liquid or solid. As evaporation of the LH 2 proceeds, the plumewill increase because of the expansion of the hydrogen gas. The plume diameterwill expand until its internal pressure equals the ambient air and eventuallydissipates, if it is not burned or detonated before then.

3-2

Page 21: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

4.no x oll4.l

4A1

InA'46

10

FIGURE 3-1 THRUST VS. TIME

FOR LOX JET

3-3

Page 22: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

ir NSWC TR 80-417

360

a o

3-4

FIUE - THRUST VS. TIME 'RLI JE

1 ~2 3

• _ 3-4

Page 23: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-1 CRYOGEN DATA

DENSITY VISCOSITY SURF TENS P BOIL T BOILG/CM3 G/CM.S DYNE/CM BAR K

L02 1.147 .00870 13.2 1.0822 90.81LH2 .070 .00024 2.0 1,0822 20.47

BOILING POINTS AT AMBIENT PRESSURE

TIME PRESSURE ---- BOILING POINTS (K)---(S) (BAR) LOX LH2 N2

10 9.833-1 89.89 20.16 77.1020 8,816-1 88.87 19.79 16.1830 7.234-1 87.08 19.17 74.5940 4.867-1 83.72 18.02 71.6150 3.844-1 81.85 17.36 69.9760 2.510-1 78.69 16.31 67.5565 1.956-1 76.97 15.76 65zt7 1 1.404-i 75.17 15.18 64.0980 8.003-2 71.39 14.02 63.15(S)90 3.887-2 67.48 13.96(S) b3.15(S)

100 1.719-2 63.58 13.96(5) 63.15(S)110 6.989-3 59.80 13.96(S) 63.15(S)115 3.675-3 57.37 13.96(S) 63.15(S)120 2.813-3 56.42 13.96(S) 63.15(S)350 2.967-8 54.35(S)450 3.903-8 54.35(S) (S)=SOLID

TABLE 3-2 FLIGHT DATA

TIME ALTITUDE SPEED SPEED PRESSURE DENSITY TEMP L02 P LH2 P(S) (FT) (FT/S) (CM/S) (BAR) (G3/CM3) (W (PSIA) (PSIA)10 831. 184. 5608. 9.833E-01 1.196E-03 286.5 35o3 33.020 3800. 430o 13106. 8.8IbE-01 1.095E-03 280.6 33o8 33.030 9037. 677. 20635. 7,234E-01 9.325E-04 270.3 31o5 330.40 18957. 887. 27036. 4.867E-01 6.765E-04 250.6 28.1 33.050 24490. 1073. 32705. 39844E-01 5.589E-04 239.7 2bob 33.0

360 33915. 1277. 38923. 2.917E-01 3.957E-04 221.0 24.6 33.065 39196. 1412. 43053. 1.9b6E-01 2*568E-04 216.7 23.8 32.070 44905. 1578. 48097o 1*4$8E-01 2,393E-04 216.6 23.2 33.080 57881. 1997. 60869. 89003E-02 1.287E-04 216.6 22.2 33.090 73036. 2540. 77419. 3*887E.-02 6,18BE-05 218.8 21.b 33.0

* 100 90572. 3219. 98115o 1.719E-02 2,672E-05 224.1 21.2 33.0110 110372. 3978,121249o 6,989E-03 1,046E-05 232.7 21.1 33.0115 125290o 43229131735o 3.675E-03 5.218E-06 245.4 21.0 33.0120 131743. 4501.137190. 2*81SE-03 3.907E-06 250.8 21.0 33.0350 388000. 15000. 4,57.5 2*967E-08 3,011E-11 333.7 21.0 33.0450 378000. 24000. 7.32+5 3.903E-08 4.488L-11 308.6 21.0 33.0

3-5

Page 24: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSTJC TR 80-417

TABLE 3-3 DUMPING OF LOX TANK

OUTFLOW OUTFLOW HOLE OUTFLOW LATERAL MASS PER JETTIME VELOCITY MASS FLUX AREA RATE THRUST FT PATH DIAMETER(S) (CM/S) (G/CM2*S) (FT2) (G/S) (DYNE) (LB) (CM)

10 1,590E+03 1,824E+03 145.0 1,524E+01 2*423E+II 19825E+03 3,261E+0220 1.589E+03 1.823E+03 145.0 1.523E+08 2.420E*1I 7,807E+02 3,261E+0230 1,589E+03 19823E+03 145.0 1,522E+08 2,419E+1I 4,958E+02 3,2blE+0240 19590E+03 1,824E+03 145.0 1,524E+08 2*423E*11 3.787E+02 3,2blE+02

S50 1,590E+03 1*824E*03 145.0 1*523E+08 2,421E11 3.129E÷02 3.261E.0260 1.587E*03 1.821E+03 145.0 1.521E+08 2,414E+11 2,625E+02 3,261E+0270 1.591E*03 1,824E+03 145.0 1°524E*08 2,423E*11 2,129E+02 3.261E+0280 1.590E+03 1.824E+03 145.0 1.524E+08 2.423E*11 1.682E+02 3.9b2E+0290 1.590E+03 1.824E+03 145.0 1.523E+08 2,423E+11 1.322E+02 39261E+02

100 1,587E+03 1,820E.03 145.0 1.520E+08 2.413E.11 18041E.02 39261E+02110 1.589E.03 1,822E+03 145.0 1.522E+08 2.418E*11 8.436E+01 3.261E+02115 1,587E+03 1,820E+03 145.0 1.520E.08 2.412E*11 7.755E+01 3.261E+02120 1°587E+03 1.821E+03 145.0 1,521E+08 2,414E+11 7,448E.01 3°261E+02353 1,589E.03 1.822E.03 145.0 1,522E+08 2o419E÷11 2,237E+01 3*261E+02450 1,589E*03 1,622E'03 145.0 1.522E+08 2,419E+11 1.398E*01 3.261E+02

DEFINITIONS OF TABLE COLUMNS--"(1) FLIGHT TIME. (2) VELOCITY OF OUTFLOW FROM HOLE.(3) MASS FLUX FROM HOLE. (4) HOLE AREA.(5) RATE OF OUTFLOW FROM HOLE.(6) LATERAL THRUST ON EXTERNAL TANK DUE TO JET.(7) MASS OUTFLOW PER FOOT OF VEHICLE TRAVEL.(8) EQUIVALENT CIRCULAR DIAMETER OF JET,

STABLE 3-4 AERODYNAMIC STRIPPING OF LOX JET

MAYER MAYER MAYER DROP DIAM STRIP RATETI.ME F V TAU 0 BAR M DOT

(S) (I/S) (CM) (G/CM2/S)10 3.635E.03 5.989E-01 3.528E-05 1.818E-03 6.067E-0120 1.818E.04 5.989E-01 4.126E-O b.218E-04 1,774E+0030 3.837E+04 5,989E-01 1.524E-06 3,779E-04 2,919E+0040 49.778E+04 5.989E-01 1.137E-06 3.2b4E-04 3.379E+0050 5.777E+04 5.989E-01 8.830E-07 2.876E-04 3.835E+0060 5.793E+04 5.989E-01 8.797E-07 2.871E-04 3.842E+0070 5.349E.04 5,989E-01 9,762E-07 3.028E-04 3,643E*0080 4.608E+04 5.989E-01 1.194E-06 3.344E-04 3,298E+0090 3.584E+04 5.989E-01 1.669E-06 3,954E-04 2,789E00100 2*.486E04 5.989E-01 2.718E-06 5,047E-04 2,186E+00110 1.486E.04 5.989E-01 5.397E-O 7.112E-04 1.551E*00115 8.750E+03 5.989L-01 1.094E-05 1.012E-03 1.090E+00120 7.106E+03 5.989E-01 1.443E-05 1.163E-03 9.485E-01350 6.080E-01 5.989E-01 3.828E+00 5.989E-01 1.842E-03450 2*.322E+00 5,989E-01 6,414E-01 2.o452E-01 4.499E-03

DEFINITIONS OF TABLE COLUMNS--(1) FLIGHT TIME. (2) MAYER PARAMETER F. (3) MAYER PARAMETER V.(4) EXPONENTIAL GROWTH RATE OF FASTEST-GROWING WAVELENGTH*(5) MEAN DROPLET DIAMETER.(6) GRAMS STRIPPED PER SUUARE CM PEH SECOND BY AIRFLOW.

3-6

Page 25: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-5 DUMPING OF LH2 TANK

OUTFLOW OUTFLOW HOLE OUTFLOW LATERAL MASS PER JETTIME VELOCITY MASS FLUX AREA RATE THRUST FT PATH DIAMETER(S) (CM/S) (G/CM2.S) (FT2) (G/S) (DYNE) (LB) (CM)

10 69076E+03 4.253E+02 271.0 6.639E+07 4.033E+11 7.954E÷02 49458E+0220 6.310E-03 4.417E+02 572.0 1,41t5E+08 9.183E+11 7.462E+02 b.477E+0230 6.659E+03 4.661E÷02 572.0 1.53bE+08 1.023E+12 5,001E÷02 6.477E÷0240 7°149E+03 5,004E+02 572.0 1,b49Ei08 1,179E÷12 4,098E+02 69477E÷0250 7,350E+03 5,145E+02 572.0 1,695E+08 1,246E÷12 3*483E+02 6,477E*0260 7.605E+03 5.324E+02 572.0 1°754E+08 19334E+12 3.028E+02 6.477E+0270 79795E+03 5°456E+02 572.0 1°798E+08 1.401E+12 2.512E+02 6e477E+0280 7,920E.03 5,544E+02 572.0 1*827E+08 1.447E+12 2,016E+02 b.477E+0290 7°994E+03 5,595E+02 572.0 1*844E+08 19474E+12 1°600E+02 b6477E÷02

100 8,032E+03 5,623E+02 572.0 1,852E+08 1,488E+12 1,269E+02 b,477E+02110 8.050E+03 5.635E+02 572.0 1,857E+08 1.495E÷12 1,029E+02 b.477E+02115 8,056E+03 5.639E+02 572.0 19858E+08 1,497E+12 9,478E+01 b.477E÷02120 8,058E+03 5,640E+02 572.0 19858E+08 1,497E+12 9,102E÷01 69477E÷02350 89063E+03 5,644L+02 572.0 1,860E+08 1,499E+12 2,733E÷01 b,477E+02450 8,063E+03 5,b44L÷02 572.0 19860E+08 19499L+12 1,708E+01 6,477E+02

Definitions are same as for Table 3-3.

TABLE 3-6 AERODYNAMIC STRIPPING OF LH2 JET

MAYLR MAYER MAYER UROP DIAM STRIP RATETIME F V TAU D BAR M DOT

(S) (u/S) (CM) (G/CM2/S)10 3,780E+04 2,707E-01 1,193E-0b 2,248E-04 1,354E-0120 1°890E÷05 2.707L-01 1.395E-07 7.687E-05 3*959E-0130 3.990E+05 2,707L-01 59152E-08 4*671E-05 69514E-01

40 4o969E+05 2*707L-01 3,845E-0O 4,036E-05 79540E-0150 6o007E÷05 2o707E-01 2°985E-06 3.556E-05 8.557E-0160 b,024E÷05 2*707E-01 2,974E-08 3,549E-05 8,573E-017'0 b°563E05 2°707E-01 3,307E-08 3°"43E-05 8130E-0180 4.792E*05 2.707E-01 4°036E-08 4°135E-05 7*360E-0190 3,7271÷05 2°707E-01 5,642E-08 4°888E-05 6*225E-01

100 2.585E+05 2,707E-01 9.190E-08 6*239E-05 49877E-01110 Io545E÷05 2°707E-01 1.825E-01 8,792E-05 3,461E-01115 9,100E÷04 2,707E-01 3,697E-07 19251E-04 2o432E-01120 7°389L.04 2,707E-01 4,880E-07 1°438E-04 2.116E-01350 69323E÷00 2,707E-01 1*294E-01 7°404E-02 4.11OE-04450 2•414E01 2.707E-01 2.168E-02 3o031E-02 1°004E-03

Definitions are same as for Table 3-4.

3-7

Page 26: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-7 PROPERTIES OF PLUME FROM I CM SECTION OF LOX JET

TIME LIQ MASS AIR MASS VEL OUT VEL LONG V RATIO LOX UNDER 02 UNDER(S) (G/S) (G/S) (CM/S) (CM/S) OV (G) OV (6)

10 2.184E÷02 6o225E+03 5.391E+01 5.418E+03 9.950E-03 2*419E+04 1,827E÷0520 6.386E+02 1.332E+04 7,273E+01 1.251E+04 5o815E-03 3o064E+04 1@776E+0530 1.051E+03 1.786E+04 8.833E+01 1.949E+04 4.533E-03 39236E+04 1,588E÷0540 1,216E+03 1,697E+04 1,064E+02 2.523E+04 4.256E-03 2.893E+04 10218E÷0550 1.381E+03 1*696E+04 1.197E+02 3.024E+04 3.956E-03 28739E+04 11048E+0560 1,383E+03 1,429E+04 1.401E+02 3,549E+04 3,946E-03 2.338E+04 79896E+0470 19312E÷03 1.o0b8E+04 1.739E+02 4.284E+04 4.061E-03 1.837E+04 5.278E.0480 1.187E+03 7,270E+03 2.233E+02 b.232E+04 4.267E-03 19362E+04 39279E+0490 1.004Ee03 4o446E+03 2.930E+02 6.315E+04 4.640E-03 9.541E+03 1.926E÷04

100 7o868E+02 29433E+03 3.878E+02 7.414E+04 5.231E-03 6ý368E÷03 1.090E÷04110 5.584E+02 1,177E÷03 5.112E+02 89224E+04 6.217E-03 4.074E+03 6.049E+03115 3.923E+02 6,379E÷02 6.043E+02 8.157E+04 7.408E-03 2.885E*03 3*965E+03120 3.414E+02 4,974E402 6.461E.02 8.135E+04 7.943E-03 2,518E+03 3.362E+03350 69630E-01 1.277E-02 1,559E+03 8.640E+03 1.804E-01 4,604E÷01 49624E+01450 1,620E+00 3.048E-02 19560E+03 1.351E+04 1.154E-01 7,193E+01 7*224E÷01

DEFINITIONS OF TABLE COLUMNS--(1) FLIGHT TIME.(2) MASS OF LOX STRIPPED FROM JET PER SECOND PER CM OF JET.(3) MASS OF AIR PER SECOND INVOLVED IN THE STRiPPING.(4) RADIAL VELOCITY UF LOA-AIR MIXTURE IN PLUME*(5) LONGITUDINAL VELOCITr OF LOX-AIR MIXTURE IN PLUME*(6) RATIO OF RADIAL TO LONGITUDINAL VELOCITY.(7) MASS OF LOX IN 2-M BY 30-M REGION UNDER ORdITER.(8) MASS OF TOTAL OXYGEN IN 2-M BY 30-M REGION UNDER ORBITER.

WIDTH OF LOX PLUME IS GIVEN BY LAST COLUMN OF TABLE VIII.

TABLE 3-8 COMPOSITION OF PLUME FROM 1 CM SECTION OF LOX JET

TIME PLUME MASS FRACTIONS OF SOLID9 LIQUID, AND VAPOR EXPANDED(S) TEMPiK) LIQ H VAP H SOL 0 LIQ 0 VAP 0 SOL A LIQ A VAP A SIZE(CM)10 280.50 0.000 0.000 0.000 0.000 1,000 0.000 0.000 1.000 9.746E÷0220 272.74 0,000 0.000 0o000 0.000 1.000 0.000 0.000 1.000 99907E+0230 261.26 0.000 0.000 0.000 0.000 19000 0.000 0.000 1.000 19005E>0340 240.90 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1022E+0350 229.53 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.C36E+0360 210.56 0.000 0.000 0,000 0.000 1.000 0.000 0.000 1.000 1.059E÷0370 204.07 0.000 0,000 0.000 0.000 1.000 0.000 0.000 1.000 1,095E.0380 200.46 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.151E+0390 197.15 0.000 0.000 0,000 0.000 1.000 0.000 0.000 1.000 1.239E+OJ100 194.02 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.379E÷03I10 190.20 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.603E÷03115 190.27 0,000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.814E.03120 189.6S 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.924E+03350 PLUME NEGLIGIBLE NEAR ET.450 PLUME NEGLIGIBLE NEAR ET.

LOX PLUME WIDTH BEFORE P EQUILIBRATION WAS 2X589 = 1179 CM.

3-8

Page 27: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-9 AERODYNAMIC STRIPPING OF LH2 BY LOX-AIR PLUME

MAYER MAVCR MAYER DROP STRIP STRIP AIR-LOXTIME F TAU DIAM RATE 1 RATE 2 DENSITY

(S) (I/S) (CM) (G/CM2/S) (G/CM2/S) (G/CM3)10 3.599E+04 2.707E-01 1.273E-06 2.322E-04 1.310E-01 3.571E-01 1.220E-0320 1.770E+05 2.707E-01 1.522E-07 8.030E-05 3.789E-01 b.533E-01 1.126E-0330 3.686E+05 2.707E-01 5,727E-08 4.925E-05 6.178E-01 9.143E-01 9.657E-0440 4.511E.05 2,707E-01 4.373E-08 49304E-05 7.070E-01 9.860E-01 7.054E-0450 b.379E+05 2.707E-01 3.459E-08 3.828E-05 7.950E-01 1.063E+00 5.853E-0460 5.279E.05 2.707E-01 3.547E-08 3.876E-05 7.851E-01 1.017E+00 49171E-0470 4.715E+05 2.707E-01 4.123E-08 4.179E-05 7,281E-01 9.099E-01 2.557E-0480 3,863E÷05 2.707E-01 5.378E-08 4.773E-05 6.375E-01 7.693E-Ol 1.404E-0490 2.792E+05 2.707E-01 8.293E-08 5.927E-05 5.134E-01 6.018E-01 6.966E-05

100 1.739E+05 2,707E-01 1.558E-07 8.125E-05 3.745E-01 4.296E-01 3.149E-05110 8.946E.04 2.707E-01 3.782E-07 1,266E-04 2.404E-01 2.723E-01 1.316E-05115 4.655E+04 2.707L-01 9,037E-07 1.957E-04 1.555E-01 1,763E-01 6*961E-06120 3.565E+04 2.707E-01 1,290E-06 2.337E-04 1.302E-01 1.477E-01 5.361E-06350 b.323E-02 2.707E-01 6.008E+01 1.595E+00 NEGLIGIBLE

* 450 2o414E-01 2.707E-01 1.006E+01 b.529E-01 NEGLIGIBLE

Definitions are same as for Table 3-6.TWO STRIPPING RATES ARE SHOWN.

RATE I IS FOR LH2 AT REST WITH REFERENCE TO THE ET.RATE 2 IS FOR LH2 MOVING AT ITS EXIT VELOCITY TOWARD THE LOX JET.

COI jMN 8 GIVES THE DENSITY OF THE IMPINGING LOX-AIR PLUME.

TABLE 3-10 DETONATION PROPERTIES OF LOX+AIR FLOW ON LH2 PANCAKE

---- NO FORWARD LH2 VELOC ----.---- FULL FORWARD LH2 VELOC--TIME 6L VLL DEl H2 TNT EQUIV 8L VEL UET H2 TNT EUJIV

(S) (CM/S) (G) (G/CM2) (CM/S) (6) (G/CM2)10 2.709L+03 4.568L+03 4.218E-O2-3.287E+02-3.765.*04-3.477E-0120 b.253E+03 4.440E+03 4.033E-02 3.u98E+03 8.9b1E+03 B.140E-0230 9.744E+03 3.970E+03 3.557E-oe 6.415E+03 b. 03!E03 5.403E-0240 1.261E+04 3.044L+03 2.681E-02 9.040E+03 4.248E+03 3.741E-0250 1.512L+04 2.620E.+03 2.275E-02 1.145E+04 3.461E+03 3.00bE-02

r 60 1.774E+04 1.974L+03 1.678E-0 1.394E+04 2.512E+03 2.136E-0270 2*.142E+04 1.319E+03 1.085E-02 1.752E+04 1.613E+03 1.326E-020O 2.616E.04 8.197E+02 6.410E-03 2.220E*04 9.659E+02 7.553E-03

90 3.158E+04 4.814L+02 3.497E-03 2.758E+04 5.511E+02 4.004E-03100 3.707l+04 2.724L.02 1.718E-03 3.305E+04 3.055E+02 1.994E-03110 4.112E+04 1.512E+02 8.491E-04 3.709E+04 1.676E+02 9.413E-04115 4.079E÷04 9.911E+01 4.917E-04 3.676E+04 1.100E+02 5.456E-04120 4.067E+04 8.405E+01 3.933E-04 3.665E*04 9.330E.01 4.365E-04350 4.320E*03 1.156b00 1.121E-07 2.888E+02 1#730E+01 1.677E-06450 b.756E+03 1.806L+00 1.752E-07 2.724E*03 4.479E+00 4.344E'07

?0 CM THICKNESS OF LOX-AIR PLUME MIXED WITH LH2.3L VEL = VELOCITY RELATIVE TO ET IN CENTER OF bOUNDARY LAYER.nET H2 = TOTAL STRIPPED LH2 IN LOX-AIR SWATH ON, LH2 PANCAKE.

TNT EUUIV EUUIVALENT TNI ENERGY OF STRIPPED LH2.

3-9

Page 28: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-11 VENTING OF LOX TANK AT 10 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 145 SQ FT9 VAPOR PRESSURE=15*7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (6/S) (CC/G) THRUST P(BAR) FRAC.0000 1*598E*03 2.439E+08 8,826E-01 2*417E.11 2.430 .0000o0441 1*288E#03 1*966E.08 89826E-01 1.569E411 1.923 .0100.0992 1.O18E+03 1.554E*08 8*826E-01 9.804E+10 19570 .0200*1715 79641E+02 1.166E.08 89826E-01 5*525E+10 1.314 .0301.2713 4.991E+02 7*618E+C7 8,826E-01 2*358E.10 1.124 .0400

BEGIN SUBSONIC FLOWo3192 4.180E+02 6*381E+07 8.826E-01 1.654E*10 1.082 .0434.4199 4*192E*02 6*346E.07 8#899E-01 1*649E*10 1.082 .0501.5728 4*207E*02 6#296E+07 9*001E-01 1.642E+10 1.081 .0601.7257 4*222E.02 6o247E.07 9*103E-01 1*635E*10 1.081 .0701.8803 4*236E*02 6*197E.07 9o209E-01 1*628E.10 1.081 .0801

190367 4o251E*02 6.146E*07 9o316E-01 1.620E*10 1.080 .09011.1930 4*265E*02 6*095E.07 99426E-01 1*612E+10 1.080 .1000103511 4,279E+02 69043E+07 99538E-01 le603E+10 1.079 .11001.5127 4.292E*02 5o990E+07 9o653E-01 19594E+10 1.079 .12011.6726 4*306E*02 5o937E.07 99770E-01 1*585E.10 1.078 913001.8359 4.319E.02 5*883E+07 9.890E-01 19575E*10 1.078 .14002.0009 4o332E.02 5.828E+07 1.OO1E+00 19565E*10 1,077 915012,1660 4.344E*02 59772E+07 1*014E+00 1*555E+10 1.076 e16002.3345 4*356E.02 5.716f+07 1*027E+00 1*544E+10 1.076 *17012.5031 4.368E*02 5*659E+07 1.040E+00 1*532E+10 1.075 .18002.6751 4.379E*02 5o601E+07 1*053E*00 19520E+10 1.074 .19012e8471 4,.189E*02 5e542E.07 19067E+00 l.508E+10 1.074 .20003.0243 4*400E.02 5o483E+07 1*081E+00 1.496E+10 1.073 .21023.1980 4.409E*02 5.423E*07 1,095E+00 1*483E+10 1.072 922003.3787 4*418E.02 5o361E.07 1.1IOE~o0 19469E*10 1.071 o23023o5594 4o427E+02 5*299E+07 1*125E+00 1*454E.10 1.071 o24023.7401 4o434E*02 5*237E*07 1,141E*00 1*440E#20 1.070 .25003.9243 4*441E.02 5*173L*07 1.157E+00 1.424E.10 1.069 .26004.1119 4o447E.02 5.108E+07 1*173E+00 1*408E+10 1.068 92700403030 4o453E+02 5.041E.07 1*190E+00 1.392E+10 1.067 .28014.4942 4.457E+02 4*975E.07 lo207E+00 1.375E+10 1.066 .29004.6888 4*460E+02 49907E#07 1*225E+00 1*357E410 1o065 .30005.0884 4,463E+02 4*767E+07 1*261E*0O 19319E+10 1.063 .32015.4984 4.461E+02 4*622Ev07 1.300E+00 1.279E*10 1.060 .34015,9223 4,453E402 4*472E.07 1*341E.00 1*235E*10 1.058 o36016,3602 4,438E+02 4.317E+07 1,,385E+00 1*188E+1O 1.055 .38016.8154 4o414E+02 4*155E*07 16,431E+00 1*137E+10 1.-052 .40017.7814 4*334E+02 39809E+07 1*533E+o0 1.024E+10 1.045 .44018,8447 4.195E*02 3*428E.07 1.648E.00 8*917E+09 1.037 .4801

11.4439 3*590E*02 2*498E+07 1*936E+00 5,559E+09 1.017 :560013,09243 3.95E402 2.998E+07 21178E+00 739403E09 1.0027 o5201

13.7513 2*698E.02 1,676E*07 2,169E*00 2.804E.09 1.000 o610014.3698 2.403E+02 1.457E+07 2.222E+00 2*171E+09 .996 .620115.0926 2*036E.02 1,204E+07 2.277E~oO lor&21E*09 .992 .630116.0238 1,519E*02 8,757E.06 2*336E.00 8o245E+08 .988 .640117.6640 5*556E*01 3*122E*06 2*397E.O0 1*076E.08 .984 .650118.3868 8.615E.OO 4&824E+05 2*406E+OO 2*576E+06 .983 .6514

3-10

Page 29: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-12 VENTING OF LOX TANK AT 20 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =145 SQ FT, VAPOR PRESSURE=15.7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTED'((S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC

.0000 19599E+03 2*440E+08 8.826E-01 29419E.11 2.330 e0000,0896 1*197E+03 1*828E+08 8.826E-01 1*357E*11 1.694 .0200*2112 89650E.02 1*320E.08 89826E-01 79080E+10 1.306 .0401

BEGIN SUBSONIC FLOW*3633 5o944E.02 9o065E+07 8*833E-O1 3.341E+10 1.082 *0577.3873 5.951E+02 9*049E+07 8.858E-01 3o338E+10 1.082 .0600.5970 6*008E*02 8.913E+07 9*080E-01 39320E*10 1.081 .080098101 6.066E*02 8*775E.07 9*312E-01 3*300E.10 1.080 .1000

1.0266 6*124E.02 8o635E.07 99554E-01 3*279E410 1.079 .12011.2466 6*184E.02 8o494E.07 9*807E-01 39256E+10 1.078 .14011.4700 6*243E.02 8.351E+07 1*007E*00 3*233E*10 1.077 o16011.6980 69303E+02 8*207E.07 19035E*00 39207E+10 1.076 o18011.9294 6o363E+02 8o060E+07 19063E.00 3@180E+10 lo075 .20012.1654 6*424E+02 7*912E*07 19094E+00 3*151E+10 1.073 .22012.4060 69485E*02 7.761E*07 1*126E.00 3*120E+10 1.072 .24012.6512 6o546E*02 7*607E+07 1.159E*00 3*088E+10 1o070 926012.9010 69607E*02 7.452E+07 1*194E.00 3#053E+10 1.068 e28013.1553 6o668E+02 7*295E+07 1*231E+00 3.016E+10 1o066 e30003.4165 6.729E+02 7*134E+07 1*270E*00 2o976E+10 1.064 .32003e6846 6*789E*02 6*970E+07 1*312E+00 2*934E+10 1.061 e34013.9573 6o848E+02 6*805E+07 1*356E*00 2.889E*10 1.059 936014o2368 6*905E+02 6*636E+07 19402E*00 2*841E+10 lo056 .38004.5255 6o962E+02 6o462E.07 1*451E+00 2@789E+10 1.053 .40014.8211 7.016E+02 6.286E+07 1,504E*00 29734E+10 1.050 .42015.1236 7.067E.02 6*107E+07 1*559E*00 2*676E+10 1o047 .44005.4375 7,116E+02 5o922E+07 1*619E+00 29613E+10 1.043 .46015.7606 7*160E.02 5.733E*07 1*682E+00 29545E+10 1.039 .48016.0951 1.198E.02 59539E.07 1*750E.00 2*472E.10 1.034 .5001

*6.4411 7*230E+02 5*340E*07 1*824E+00 29394E+10 1.029 *52016s8009 7*253E+02 5ol35E*07 lo903E+00 2o309E.10 1.024 .54017.1744 7.266E+02 4.924E+07 1*988E+00 2*218fE*10 1.019 5b6007,5662 7*266E*02 4*704E+07 2*081E+00 2*119E+10 1.013 .58017.9763 7,249E*02 49476E*07 29182E+00 2*012E+10 1.006 .60018.4094 r*211E*02 4*238E.07 29292E+00 1*895E+10 .999 .62018,8677 7,145E+02 3.990E.07 2,412E*00 1*768E*10 o991 .64019.3534 7,044E*02 3*729E+07 2*545E.00 1*628E+10 .982 o66009.8804 6*894E*02 3*448E.07 2.693E*00 1.474E+10 .972 .6801

10.4533 6*679E.02 3#148E+07 2*858E*00 1o303E+10 o962 .700111.0811 6*374E+02 2.823E*07 3*042E*oO 1*115E.10 .950 .7200

1176 5*934E+02 2o458E+07 3*252E*00 9*043E*09 *937 .740112#692 o28EoO 2o39E07 *49E+0 6*77E09 9Z2 .7602

13.6933 4.248E*02 1.521E*07 3*764E+00 4.005E+09 .906 .780115.3980 2*138E*02 r*051E+06 4,085E+00 9*348E.08 0888 .8001

16.7366 2*357Ee01 79590E*05 4,183E+00 1*109E.07 .882 .8056

3-11

Page 30: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-13 VENTING OF LOX TANK AT 50 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =145 SQ FT9 VAPOR PRESSURE=15*7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC.0000 1.598E*03 2.439E+08 8.826E-01 2#415E.11 1.830 .0000*0768 1.426E+03 2o177E.08 8.826E-01 l.924E~11 1.536 .0200.1625 19281E+03 1*955E.08 8o826E-01 19552E*11 1.313 .o46,1.2579 1*155E*03 1.763E*08 8o826E-01 1.263E*1l 1.140 90600

BEGIN SUBSONIC FLOWo3024 1.111E+03 1,692E+08 89839E-01 1*165E.11 1.082 .0687.3623 1*120E*03 1.663E+08 9*068E-01 1.155E.11 1.082 .0801*4706 1.136E*03 1#614E+08 9*482E-01 1*137E*11 1.081 .1002o5816 1*153E*03 1*566E+08 99914k-01 1*119E*11 1.080 91201.6959 1*170E*03 1*520E+08 19037E+00 1ol03E*ll 1.079 o1401.8135 1.187E.03 1.476E.08 1*084E*00 1.087E.11 1.078 .1600.9354 19205E*03 1*433E+08 1*133E+oO 1.07lE.11 1.077 .18011.0606 1*224E*03 1*391E+08 1.185E.00 1*056E.11 1.075 .20011.1690 1*243E*03 1.351E+08 1.239E*00 lo04lE.ll 1.074 .22011.3215 1.262E#03 1.312E.08 1.296E+00 lo027E4ll 19072 *24011.4590 1.283E+03 1.274E+08 1*356E+00 1*013E.11 19071 *26011,5994 1*303E+03 1*237E.08 1*419E+00 9@995E+10 1,069 .28011.7442 1*324E*03 1@201E+08 1*485E+00 9o863E.10 1.067 .30011.8933 19346E*03 1*166E+08 1*555E+00 9o734E+10 1.065 .32002.0468 1.369E.03 1-132E+08 1*629E+00 9.608E+10 1.063 *3400

BEGIN SONIC FLOW2.1088 lo379E+03 19119E*08 1.659E*00 9*566E*10 1.062 .34792.2057 1*3S6E*03 1*099E+08 1.699E.00 9.445E+10 1.060 .3601293690 1.400E.03 1*067E+08 19768E+00 9*256E+10 1.057 .3801295366 1.414E+03 19035E*08 lo840E+00 9o076E+10 1.054 940002.8893 1*446E.03 9*743E+07 2*000E400 89736E+10 1.048 e44013.2627 1*483E+03 9.160E+07 2*180E*O0 8o420E+10 1.040 .48003.6611 1.524E*03 8*593E+07 2*389E+00 8*121E.10 1.031 .52004.0867 1,572E+03 8o039E+07 2.633E.00 7*833E+10 1.021 .56014.5417 19626E*03 79491E+07 2*924E+00 7.550E*10 1.008 .60015.0316 19'688E+03 6.944E.07 3*276E#00 7.269E*10 .993 e64015.5628 1*762E+03 6*393E*07 3.712E*00 66982E+10 e975 .68016,1397 1*848E.03 59835E*07 4*266E+0O 6.685E*10 .954 .72006*7776 le952E-003 5.261E*07 4.998E*00 6*368E*10 e927 .76017,4895 2*081E.03 49665E+07 6*008E+00 6*018E+10 .893 .80007.8814 2*158E*03 4*356E*07 6*612E+00 5o828E#10 .872 .82018o3038 2*245E+03 *4o037E*07 7,493E*00 5.619E*10 .849 .84018.7610 29348E403 3o702E+07 89543k..o0 5o388E+10 .821 *86019.2617 2*468E.03 3*352E.07 9*920E*00 5*129E.10 .788 .8801

BEGIN SUBSONIC FLOW9.8060 2*610E*03 2#989E.07 1,176E.01 49836E*10 .750 o89969.8190 2*611E*03 29980E*07 1*180E+01 4*825E*1O .749 .900110.4548 2*678Eo03 2*577E*07 1*400E.01 4*278E.10 o701 .920011s2080 2*707E.03 2*116E*07 1*723E~o1 3*551f.10 .639 .940012.1747 2*597E.03 19548E+07 2.259E.01 2*492E*10 .554 .9600

13.8119 1,595E+03 6*302E*06 3*409E.01 6*231E*09 .423 .980114.8685 1*336E.02 4*672E*05 3,852E.01 3*870E*07 9384 .9841

Fl 3-12

Page 31: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

'TABLE 3-14 VENTING OF LOX TANK AT 65 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 145 SQ FT, VAPOR PRESSURE=1597 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/5) (CC/G) THRUST P(BAR) FRAC

.0000 1.597E+03 2*437E+08 8*826E-01 2o4l3E.11 1.640 .0000#0729 1,476E+03 2*253E+08 89826E-01 2*061E.11 1.430 .0201.1510 1.372E+03 2.094E*08 89826E-01 1.781E+Il 1.262 .0400.2355 1.280E+03 1@954E+08 8*826E-01 1,550E+11 19124 08601

BEGIN SUBSONIC FLOW.2692 1*252E+03 19906E+08 8o848E-01 1*479E.11 1.082 .0677.3250 1.265E*03 1*843E+08 9o245E-01 19445E~11 1.082 .0800.4205 1.287E+03 19748E+08 9*922E-01 1*395E.11 1.081 *1002.5201 1*310E+03 1*661E.08 1.062E*oO I.349E.11 1.080 .1201

BEGIN SONIC FLOW.5209 1*310E*o3 1#661E+08 1.063E+00 1*349E.11 1.oBO *1202o6253 le307E+03 1.586E+08 1*111E+oO 1,285E411 1.079 .1402.7346 1*307E.03 1.521E.08 1*1SBE.O0 1.233E.11 1.078 o1601.8487 1*310E+03 1.464E+08 1*2OSE+00 [email protected] 1.077 .1801.9668 1.314E+03 1@412E+08 1.253E~o0 le150E~11 1.075 .2001

1.0891 1.319E+03 1*364E'08 1*302Ee00 1.116E*11 1.074 .22001.2161 1*325E*O3 1.320E*08 1.353E~oo 1*085E*11 1*072 .24001.3473 1*333E+03 19278E+08 1.405E+00 1.057E*11 1.071 *26011.4824 1*342E.03 1.239E*08 1.459E+00 1.031E*11 1.069 .28011.6216 1.352E*03 1.202E#08 1.515F+00 1*007E.11 1#067 .30011.7657 1.362E+03 1.166E.08 1.574Ee00 9*849E+10 1o065 .32011.9138 1*374E+03 1*132E+08 1,636E+00 9o639E+10 1.062 .34012.0660 1.386E+03 19098E*08 1.700E.00 9,441E+10 19060 .36002.2230 1&400E+03 19066E+08 1*769E+0O 9*253E+10 1.057 o38002.3857 1.414E+03 lt035E+08 1.841E.00 9e073E+10 1.054 .40012o5524 1*430E+03 1.004E+08 1*918E.o0 89901E+10 19051 .4201

2*9021 19464E+03 7.9*449E+ 2#087E+00 897E1 1.044 40

3o2728 1.502E+03 8*878E*07 2*280E+00 89270E+10 1.036 .50013o6694 1*547E+03 8*319E+07 2o505E+00 7*977E410 1.026 .54014.0919 1#597E*03 7*770E+07 2*769E~oO 7*694E*10 1.015 *58014.5467 1*655E+03 7.224E.07 3.087E+0O 7*413E+10 1.001 .62015,0356 1.722E+03 6.679Es07 3*474E~oO 7*131E+10 .985 o6601595665 1*801E.03 6e131E+07 3*958E+00 69846E+10 .965 .70006,1493 1*895E.03 5*567E.07 4*586E.00 6*540E*10 .941 .74016.7952 2.009E+03 4o986E+07 5*428E#00 6*211E+10 .912 .78017.1481 2*077E+03 49685E.07 5*971E+00 6*031E*10 .894 o80027.9251 2.239E+03 4*057E.07 7*434E+00 59633E.10 .850 .84008.3621 2*340E+03 3*725E+07 8*461E*00 5*404E+1Q o823 .86008.8413 2,459E+03 3*377Ee07 9,808E*00 5o148E.10 e791 .88009o3755 2*603E*03 3*008E+07 1,166E~ol 4*854E*10 .752 .90009.9841 Z*784E*03 2.612E.07 1*436E.01 4.509E410 .705 .920110.6964 3*022E*03 2.178E+07 1.869E.01 4*O82E~10 .643 o940111.5770 3*362E+03 1.691E.07 2*679E~o1 3*523E+10 .560 o960112.8072 3*931E*03 1*105E407 4*791E.01 2o694E+10 .432 .9802

BEGIN SUBSONIC FLOW13.3511 4.221E*03 8e819E.-06 6*448ý+01 2e308E+10 .372 .9865

ULLAGE GASES HAVE REACHED VENT14.2188 3o571E+03 5*426E+06 8,867E.01 1*201E*10 .277 .9937

3-031

Page 32: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

v-r

NSWC TR 80-417

TABLE 3-15 VENTlNG OF LOX TANK AT 100 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 145 SQ FT, VAPOR PRESSURE=1597 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (Cc/G) THRUST P(BAR) FRAC

.0000 1.60IE+03 29444E+08 89826E-01 2.427E.11 1.470 .0000

.0656 1*530E+03 29335E+08 8.826E-O1 2.215E*11 1.343 .0200

.1341 19465E+03 2*236E+C8 89826E-01 2*032E*11 1.233 .0401

.2057 1.406E*03 2*147E+08 8*826E-01 1.872E~ll 1.138 .0602BEGIN SONIC FLOW

o2569 1*371E*03 2*064E.08 8*946E-01 1.754E*11 1.082 *0740o2803 1*347E*03 1.954E*08 9*286E-01 l.632E.11 1.082 .080093648 19322E*03 1*790E+08 9*943E-01 lo467E.1l 1.081 e1001.4545 1.312E'103 1*688E.08 1.047E+o0 l.373E*11 1.080 .1200o5501 1.306f+03 1*607E.08 le096E+00 1*303E*11 1.079 91402.6489 1*307E+03 1*539E+08 l.144E+00 1*247E*11 1.078 .1600,7526 1.309E+03 1*480E+08 1.191E*00 19201E.11 19077 .1801,8605 1#312E+03 1.426E.08 1.239E*00 1*160E.11 1.076 *2001.9717 1*317E+03 1.377E+08 1*288E*00 1,125E.11 1.074 .2201

1.0870 1.324E#03 1.333E.08 1*338E.00 1.094E~11 1.073 .24001.2064 1*331E+03 1*290E+08 1*390E+00 lo065Eell 1.071 .26011.3291 lo339E+03 1*250E.08 1,443E+00 lo038E.1l 1*0b9 .28001.4568 19349E+03 1.212E+08 19499E+00 lo014E.11 1.067 .30011,5877 lo359E*03 1.176E*08 1.557E+00 9o907E*10 1.065 .3201197220 1.371E*03 1*141E'08 1,618E+00 99695E+10 1.063 .34001.8612 1*383E*03 1*107E+08 1,682E*00 99493C.10 1.061 .36002.0045 19396E*03 1*075E.08 1,750E+00 9*302E.10 1.058 s38002.1527 1*410E+03 1*043E*08 1*821E.00 9*119E*10 1.055 .40012,4615 1,442E*03 9*820E*07 lo978E#00 8*777E+10 19049 .44012.7893 1,477E+03 9,238E.07 2*154E+00 8*461E+10 1.041 .48003.1385 1*518E+03 8*674E+07 2o358E+00 89165E*10 1*033 .52003.5107 1*565E*03 8*119E*07 2*596E+00 7.876E.10 1.022 .56003*9093 1*618E.03 7*571E+07 2*878E+00 7*593E*10 1.010 .60004.3392 1'*679E*03 7*024E+07 3,220E+00 7*311E.10 o996 o64014.802i 19750E+03 6*477E+07 3.640E+00 7*027E*1O .978 .68015o3061 1*834E+03 5*922E*07 4,172E+00 6*732E*10 .957 .72005.8611 1*934E+03 5o352E+07 4*869E+00 6*419E*10 .931 *76006#4805 2*059E*03 4*760E+07 5.827E*00 6*075E+10 o898 .80016.8198 2*132E*03 4o456E*07 6,446E*00 5*890E+10 9879 .8201

7.1854 2*217E*03 4*136E+07 7,220E*00 5*604E*10 .856 .84027.5774 29314E.03 3*807E.07 8*18SE400 5*461E.10 .830 .86018.0090 2.429E.03 39459E+07 9,458E+00 5*210E.10 .799 e88018*48-66 2*5018E+03 3*o93E+07 1*118E.01 4*924E*10 .762 .90019.0236 2*739E*03 2e7o1E.07 1*366E+01 4*587E+10 .716 .92009.6561 2*965E+03 2*274E*07 1*757E.01 4*179E.10 .658 .940110.4269 3.283E*03 1*790E.07 2*470E.01 3o645E+10 .579 .9601

3-14

Page 33: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-16 VENTING OF LOX TANK AT 115 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =145 SO FT. VAPOR PRESSURE=15.7 FSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC.0000 1.598E+03 2o439E*08 89826E-01 2.416E.11 1.450 *0000.0630 1.537E403 2*346E.08 8o826E-01 29236E*11 1.342 o0201o1283 1*482E+03 2o261E.08 8*826E-01 2.077E+l1 1.247 .0401.1961 1.430E+03 2*183E+08 8.826E-O1 1,936E+1! 1.163 .0601*2659 1.384E+03 2.112E+08 8o826E-01 1.812E+li 1.088 060O1

BEGIN SONIC FLOW.2744 1.371E*03 29065E+08 8.943E-01 1.755E411 1.082 .082593428 1.329E*03 19847E+08 9*693E-01 1*522Ee11 1.081 .1000.4275 1.315E*03 1*726E+08 1*026E+o0 1*407Ee11 1*080 .1201o5167 1.309E+03 1.638E.08 1.077E+00 1,329E.11 1.080 .1401.6107 1.307E*03 1.565E+08 1*125E*oO 1.268E.11 1.079 91601.7085 1*308E+03 1.502E+08 1*173E+0O 1*218f.11 1.077 .1801.8106 1*311E+03 1,446E+08 1.221E.00 1*175E*11 1.076 *2001.9164 1.315E+03 1#395E*08 1*270E+00 19138E.Ul 1.075 .22011.0260 1.321E+03 lo349E+08 1.320E+00 1.105E+11 1.073 .24011.1392 1.328E*03 1.3o5E.08 1.371E*0O 1.075E+1l lo072 .26011.2562 1*336E*03 1*264E+08 1.424E*00 19047E*11 1.070 e28011.3769 1.345E*03 1.225E*08 1.479E+00 1@022E*11 1.068 .30011.5019 1*356E.03 1*188E+08 1*537E*00 9*985E*10 1.066 o32021.6294 1*367E*03 1.153E+08 1.597E*00 9*766E.10 1o064 .34001*7618 1.379E*03 1.118E*08 19660E~oO 99559E+10 1o062 .36001.8992 1*392E+03 1*085E+08 1,728E.00 9.362E+10 1.059 .38022.0390 1.406E+03 1*053E*08 1*798E+00 9*17-rE*10 1.056 .40012.1839 1.420E+03 1.022E+08 1*873E+oO 8*999E+10 1.053 *42012e4871 lo454E+03 9*614E+07 2.037E*00 8.665E+10 1.046 o46012.8089 1.492E*03 9*038E*07 2o223E'O0 8.357E.10 1.038 .5000391530 1*534E#03 89470E+07 2o440E+00 89058E+10 1.029 e54013.,5193 1*583E*03 7e916E.07 2#694E+00 7%770E*10 1.018 .58003.9129 1.639E.03 7*366E+07 2o998E.00 7o4A7E+10 1.005 .6200

4.3375 1o705E+03 69816E+07 3o369E+00 7*203E+10 e989 .6601I,4.7967 1.781E+03 6o263E*07 3.830E*00 6*914E+10 .971 .70005o2992 1.871E+03 5.702E+07 4o420E+00 6*613E*10 .948 .74005.8561 1.981E*03 5.122E.07 5*210E+00 6o290E*10 .919 .78016.1581 2o045E.03 4*821E*07 5,714E+00 6.113E+10 .902 080016*8240 2*200E+03 4*196E.07 7.063E+00 5*723E+10 9861 .84007.1978 2.295E+03 3*864E+07 8o003E*00 5,499E+10 .835 .8601II7.6038 2*408E*03 3*519E+07 9.216E*00 5*253E+10 .805 .88008.0543 2,543E+03 3.153E+07 1*086E.01 4*971E+10 .768 .90008*56*2 2,710E*03 2*762E+07 1..322E.01 4*642E+10 .724 .92019.1534 2,929E+03 2o336E+07 i,689E.01 4*243E+10 o667 .94009.8713 3*236E+03 1.855E*07 2.350E+01 3*722E410 .590 .9600

ULLAGE GASES HAVE REACHED VENT10.7971 3.711E+03 lo303E*07 3,838E.01 2o997E+10 .479 .979410.8367 3*734E.03 1.28IE.07 3.928E.01 2*965E+10 .474 .980012.6091 b.039E.03 4*520E*06 1.502E+02 1*412E*10 .228 .9998

L 3-15

Page 34: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-17 VENTING OF LOX TANK AT 350 SECONDS FLIGHT TINE

EFFECTIVE HOLE AREA = 145 SO FT9 VAPOR PRESSURE=15*7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (6/5) (CC/G) THRUST P(BAR) FRAC

BEGIN SONIC FLOW.0000 2.247E.03 4o027E+07 7.516E.00 59609E+10 o848 .0000.0883 2*263E*03 3.972E+07 7.673E+00 59572E+10 .844 .0200*1779 2*279E+03 3o918E+07 7o836E*00 5.536E*10 9839 *0401*2688 2,296E+03 3*862E.07 8*008E.00 59498E+10 .835 .060193609 2.313E*03 3*806E+07 8*188E.00 5.459E+10 *830 *0801.4544 2*331E+03 3.TSOE+07 8*375E.00 59419E+10 .825 .1001.5491 2*349E+03 3.693E+07 8.570E+00 5*379E.10 .820 .1201.6451 29368E+03 3*636E+07 8o773E*00 5*338E+10 .815 91401

r 7430 2*387E403 39578E*07 8*988E+00 5*296E+10 .810 *1601*8422 2*407Ee03 3*520E+07 9.211E+00 5*253E.10 .805 .1800.9433 2o428E+03 3.461E+07 9*447E.0O 59210E+10 .799 .2000

1.0464 29449E+03 3*402E+07 9o695E+00 5*165E+1O o794 o22011.1507 2o470E+03 3*343E+07 9o955E*00 5*120E+10 9788 e24001.2576 2*493E*03 39282E+07 1*023E.01 59073E*10 .782 .26011.3657 e*516E+03 3.222E*07 19052E.01 59026E+10 .776 .28001.4765 29540E403 3ol61E*07 1.083E.01 4.977E+10 9769 .30011.5891 29564E+03 39099E+07 1.115E*ol 4*927E+10 .763 .32001o7043 2.590E+03 3.036E*07 1*149E.01 49876E+10 .756 .34011.8214 2o617E+03 2.973E+07 1*186E.01 4*823E+10 o749 .36001.9417 2.644E+03 2*909E*07 1.225E*01 49769E+10 .741 .38012.0646 2o673E.03 29844E*07 1.266E+01 4*713E*10 .734 .4001-I2.1901 2,703E+03 2*779E+07 1*310E.01 4*656E*10 .726 .42012.3181 2.733E+03 29713E+07 1*357E.01 49598E+10 .718 *44002o4499 2*766E+03 2.647E.07 1*407E*01 4o540E*10 .709 .46002.5856 2*800E+03 2*579E+07 1*462E.01 4.477E*10 o701 o4801297238 2o835E+03 2*511E+07 1*521E.01 4.412E+10 .691 950013.0131 2o910E*03 2e370E.07 1*654E.01 4*276E.10 .672 .5401r363203 2o994E*03 2*225E+07 1*813E*ol 4el29E+10 .651 o58013.6493 3.086E+03 2.074E+07 2o004E+0i 3*970E+10 .627 .62014*0025 3*191E+03 1.919E+07 2*240E.o1 3*796E+10 .601 .66014.3865 3*309E+03 1.756E407 2o538E.01 3.603E*10 o572 .70014.8089 3*447E*03 1.586E.07 2*927E.01 3o389E.10 .540 o74015.2800 3*608E+03 1.407E.07 3.455E.01 3*147E.10 .503 .78005.8189 3*803E+03 1*216E+07 4*213E+01 2*868E*10 .459 .82006,4537 4,049E.03 1*OIOE*07 5*398E.01 2*537E.10 .407 .86007.2448 4*377E*03 7.842E.06 7o519E.01 2*128E+10 .343 .90017.7363 4,591E*03 6*612E+06 9*353E.01 1.882E*10 *303 *92028.3251 4,857E+03 5*301E.06 1*234E.02 1*596E.10 .258 .90009.1033 5,216E+03 3*847E*06 1*826E*02 1*244E*10 .201 .960010o2963 5o750E.03 2*?OOE.06 3.522E.02 7o842E*09 *127 .980114.1875 6,475E*03 29018E405 4,323E*03 89102E.08 .013 .9994

3-16

Page 35: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-18 VENTING OF LOX TANK AT 450 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =145 SQ FT. VAPOR PRESSURE=15.7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(SAR) FRAC

BEGIN SONIC FLOWoO.000 39580E+03 19437E+07 3*356Ee01 3o189E+1O 0509 .0000.0569 3*599E.03 1*416E.07 39424E-ool 3.160E+10 0505 .0200.1145 3.619E+03 1.395E.07 3*495E.01 3el3OE+10 s500 90400,1734 3.640E.03 lo374E.07 3.570E+01 3eIOOE.10 .495 o0601.2326 3*661E.03 1*352E.07 3t647E.01 3.070E+10 .491 e0800.2931 3.683E.03 1*331E.07 39727E+01 3o039E+10 .486 .1000.3545 3.705E+03 1*309E407 3*812E.01 3*007E+10 .481 91200e4169 3*727E+0 o.287E+07 3.903E.ol 2*975E+10 .476 .1400e4806 3o750E+03 1.265E+07 3.992E.01 2o942E+10 .471 e1601e5453 3*774E+03 1*243E+07 4,089E.01 2*909E+10 *466 .1801.6112 3*798E+03 1*221E.07 4*191E.o1 2*875E*10 *460 .2001.6784 3*823E+03 1*198E+07 4*298E.01 2o840E+10 o455 .220171469 3,849E*03 1*176E+07 4*410E.01 2*805E+10 .449 *2402

.8160 3*875E+03 1*153E+07 49528E+01, 2*769E.10 e444 .2600o8870 39902E+03 1.130Ee07 4*653E.01 2*733E.10 9438 o2800o9600 39930E+03 1*106E+07 4*786E.01 2*695E*10 .432 .3001

1,0342 3.958E+03 1*083E.07 4*926E.01 2.657E*10 *426 .32021.1097 3*987E+03 lo059E+07 5*073E.01 2*618E+10 o420 .34011.1872 4*018E*03 1*035E.07 59230E.01 2.578E+10 .414 .36011.2665 4*049E#03 1*O11E+07 5*398E.01 2o537E+10 .407 .3801193478 4o081E+03 9.860E*06 S.576E.01 2*495E*10 *401 s40011.4310 4*115E*03 9*612E+06 5*766E.01 2*452E+10 e394 o42011,5161 4,149E*03 9o363E*06 59969E.o1 2*408E*10 .387 .44001,6045 4.185E+03 9o108E.06 6*189E.01 2.363E+10 .380 .46011.6947 4*222E+03 8*852E.06 6.425E.01 29317E+10 .372 .48011.7875 4*260E.03 8o593E+06 6,678E*01 2o270E.10 .365 .50011.8835 4.300E+03 8.330E*06 69954E~ol 2*221E+10 .357 .52011.9821 4*342E+03 8-065E+06 7*251E.01 2.171E+10 o349 .54002,0845 4.385E.03 7#796E*06 7.577E.01 2.119E410 .341 o56012,1901 4.430E*03 7o523E*06 7*932E.01 2*066E.10 .333 .58002.3001 4*477E+03 7.246E+06 8,324E+01 2*011E410 .324 .60012*4141 4.526E.03 6,965E+06 8,754E.01 1*955E+10 .315 .b2002,5331 4,578E+03 6*680E*06 9o233E.0l1*I896E.10 .306 .64012,6573 4,633E*03 6*389E+06 9,768E.01 1.835E*10 .296 .66012.7878 4*690E+03 6*095E+06 1,037E*02 1*772E+10 .286 .68022.9235 49751E+03 5*796E*06 1*104E*02 19707E*10 .275 .70013.2192 4*884E4.o3 5,179,E406 1,270E+ 02 1.568E*10 s253 .74003.5533 5*035E*03 4,535E+06 1*496E+02 1*416E+10 .229 e78003.9411 5.212E+03 3*859E.06 1*819E*02 1*247E+10 .201 .82014.4045 5*421E+03 3,149E+06 2,319E.02 1*058E*10 .171 .86004.9933 5*680E+03 2*387E.06 3,206E+02 8*406E.09 .136 .90005.3670 5.837E+03 1.9aOE+06 3o970E*02 7*166E*09 .116 .9201

*5o8304 69016E+03 1.555E+06 5*213E+02 5*7i99E+09 .094 .94026.4448 6*225E*03 19103E.06 7.603E.02 4*258E+09 .069 .96017.4073 6*455E+03 6*175E+05 1*408E+03 29471E.09 .040 .98019,6909 6*351E*03 1.304E.05 6*560E+03 5*135E+08 *008 .9979

3-17

Page 36: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

'~ NSWC TR 80-417

TABLE 3-19 VENTING OF LH2 TANK AT 10 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 271 SQ FT

VENT FLOW OUTFLOW SPEC VOL ~JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC.0000 6*088E+03 1.073E*08 1,429E'01 4.04,9E.11 2.280 .0000:0165 5.043E*03 8o886E+07 19429E.01 29778E~11 1.873 e0100*0366 49095E+03 7.217E*07 1*429E.01 1*832E.11 1.570 o0200*0619 39203E*03 5e644E+07 1.429E.01 1.121E.11 1.342 *0301*0952 2*3COE+03 4s053E+07 14*429E~01 5*779E*10 1.168 .0401

BEGIN SUBSONIC FLOW.1406 1.683E*03 2*966E+07 1*429E.01 3e095E+10 1.082 .0493o1452 1.685E+03 2o955E+07 1.435E*01 3*087E.10 1.082 .0502.1996 1.668E403 2.893E+07 1.451E.01 2*991E*10 1o079 .0601.2559 1*649E+03 29830E*07 1*467E.01 2.893E*10 1.076 *0701.3130 1*630E*03 29766E+07 19484E~ol 2*795E+10 1.073 .0800.3721 1.609E+03 2e700E+07 1*501E.01 29694E+10 1.069 .0901.4320 1.588E+03 29634E+07 1*518E~o1 2.593E+1O 1.066 .100004938 19565E*03 2*566E+07 1.535E.01 29490E+10 1.063 .1100.5575 1.540E.03 2@491E+07 1*553E~ol 2.384E.10 1,060 91201:6229 1*514E+03 2*426E*07 1*571E~o1 2*278E+10 1.056 .130196903 19486E.03 29354E*07 1*589E.o1 2*169E+10 1.053 e1401.7594 19457E*03 2o28lE+07 19608E.01 2@060E*10 1.049 o1501.8305 1*425E+03 2*206E.07 19627E~ol 1*950E+10 1.046 e1600*9052 1.391E+03 2.128E+07 1*646E.01 1*836E+10 1o042 .1701.9817 1.355E+03 2*048E.07 1*666E.01 1*721E*10 1.038 .18011.0620 1.316E*03 1.966E.07 1.686E.01 1*604E+10 1*035 919011.1450 19275E+03 19881E.07 1,706E*01 1*487E+10 1*031 *20001.2326 1*229E+03 1*792E+07 1*727E*01 1*366E*10 1o027 *21001,3257 1*180E*03 19699E+07 1*749E.01 19243E+10 1*023 *22021.4217 1*127E+03 19603E+07 loT70E.ol 1*120E.10 1.019 923001*5268 lo067E+03 1.499E.07 1*792E~ol 9*916E.09 1*015 924021.6375 1.002E.03 1*390E.07 1*815E.01 8o632E*09 1.011 *25011*7574 9.287E*02 1.272E+07 1.838E~ol 79327E*09 1.007 .26001.'8902 8*452E.02 1*143E+07 1,861E.01 5o992E+09 1*002 *27002,0414 7*469E.02 9.976E.06 1.885E.ol 4.620E409 .998 *28012.2185 6.297E.02 8*302E.06 1*909E.01 3*241E.09 .993 *29022,4399 4*759E.02 69193E+06 1*935E.o1 1,627rC.09 .989 .30012,7977 2,207E+02 2*835E+06 1*960E.Oi 3.881E*08 .984 .31013,0486 4*505E.01 5*767E.05 1*967E.01 1.611E+07 .983 .3127

3-18

Page 37: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-20 VENTING OF LH 2 TANK AT 20 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 572 SQ FT9 VAPOR PRESSURE=15*7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTED

T(S) VEL(CM/S) G/S) (CC/G) THRUST P(BAR) FRAC

.0001 69320E+03 29351E+08 lo429E.01 9.212E.11 2.280 .0001* 0072 5*561E.03 2.068E.08 1*429E~o1 7ol32E.11 1.964 9010190153 4,882E+03 1.816E+08 1*429E.01 5.497E+11 1.716 90201*0245 4,264E+03 1.586E.08 1*429E.01 4.193E+11 1.518 e0300.0352 3,681E+03 19369E+08 1.429E.01 3*125E+l1 1.356 .0400*0478 3,107E+03 1*156E+08 1.429E.01 2e227E+11 1.220 .0501.0628 2o533E+03 9*423E+07 1.429E.01 1.480E.11 1.107 .0601

BEGIN SUBSONIC FLOWe' 0728 2.396E+03 8.874E+07 1,435E.01 1.318E*11 1.082 .0658.0805 2*394E.03 8.822E+07 1*442E.01 1.309E.11 1.081 .0701.0984 2,388E+03 8*696E.07 1*460E..01 1.288E.11 1.078 .0802.1164 2*383E.03 8*572E.07 1,477E.01 1.266E.11 1.075 .0900.1350 2*376E.03 8*445E+07 1,495E.01 1*244E.11 1.071 .1001.1538 2*370E+03 8.317E+07 1.bl4E.01 1*222E*11 1.068 .1101.1727 29362E+03 8.191E+07 1.533E~ol 1*200E~l1 1.065 .1200e1921 2*354E+03 89062E+07 1,552E+01 1.177E*11 1.062 91301.2118 2&346E+03 7.932E*07 1,571E~ol 1.154E.11 1.058 .1401.2316 2*337E.03 7*804E+07 1*591E.01 1.13lE+11 1.055 o1500*2519 2,327E+03 7.673E+07 1*611E~ol 1*107E.11 1.051 .1600.2725 2*316E+03 7.542E+07 1,632E+01 1,083E*11 1.048 .1700o2937 2*304E+03 7*409E+07 1*653E.01 1*058E*11 1.044 .1801e3149 2*292E*03 7e277E+07 1.674E.01 1.034E.11 19040 .1900.3367 2*279E+03 7*142E+07 1*696E~ol 1*009E.11 1.037 .200043591 2.265E+03 7.005E+07 1*718E~o1 9.837E*10 19033 .2101.3818 2#250E*03 6o868E*07 1.741E.01 9*580E+10 1.029 .2201,4048 2,234E+03 6.731E+07 1*7b3E~ol 9*321E410 1.025 e2300o4283 2.216E+03 6,591E407 1.787E~ol 99057E*10 19021 .2400.4525 2,198E+03 6*450E.07 19811E~ol 8*788E*10 1.017 o2500.4772 2.178E.03 6*306E+07 1*835E.01 8.515E+10 1.013 .2601.5023 2,157E+03 6ol62E+07 1,860E.01 8.240E*10 1.008 .2700.5282 2.134E*03 6o015E+07 i.885E~ol 7*958E*10 1.004 .2801.5547 2*110E+03 5*865E+07 1.911E.01 7.672E+10 1.000 .2901,5818 2,084E*03 5#714E+07 1.938E~ol 7.382Ee10 .995 .3001.6383 2*026E+03 5*403E.07 1*993E.01 6*786E*10 .986 .3201.6981 1.960E*03 5*082E+07 2o049E.01 6*175E+10 .977 93400

.7623 1.882E.03 49743E*07 2*109E~ol 5e534E.10 .967 .3601I 8313 1.792E*03 4.385E+07 2*171E~ol 4*871E*10 .957 .3801

.9061 1.685E+03 4.004E+07 2.237E.01 4-183E+10 e946 .4001

.9461 1*625E*03 3e803E,07 21.270Ee01 3*830E-10 .941 94100

.9891 1*557E+o3 3*589E+07 2o305E4-01 3.464E+10 .935 .4201

1.0339 1*483E+03 39368E+07 2o340E.01 3*098E+10 e929 .43001.0822 1,401E*03 3.132E+07 2o377E.01 2*721E*10 .924 .44001,1347 1,308E*03 29878E+07 2,414E+01 2*334E.10 .918 .4500

1.1930 1,201E+03 2.602E+07 2o453E+01 1.938E*10 o912 .46021.2566 1.079E*03 2*300E*07 2.492E.01 1*538EtlQ 905 .47011.3308 9o293E+02 1*950E.07 2,533E.01 1.12*E+10 .899 .48011.4204 ro4l8E.02 1*532E+07 2,574E.01 7*045E*09 e893 .4900I1,5488 4*639E+02 9o421E+06 2,617E~o1 2*709E.09 .886 .50011.7345 49469E*01 8.985E*05 2.643E.01 2*489E+07 .882 .5061

3-1

Page 38: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-21 VENTING OF LH 2 TANK AT 50 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =572 SQ FT

VENT FLOW OUIFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC.0000 7.360E*03 2.738E+08 1*429E.01 1,249E+12 2.280 .O000.0114 6,653E+03 2*474E.08 1*429E.o1 1*021E+12 1.933 90201*0239 6*059E+03 2.254E+08 1*429E~o1 8.465E.I1 19669 *0400o0376 5*544E+03 29062E+08 1,429E.01 7,087E.11 1.460 *0600*0525 5.091E+03 1*894E+08 1#429E.01 5*978E~11 1.291 90801e0688 4o690E+03 1.745E+08 1#429E.o1 5*073E*11 1.154 .1001

BEGIN SUBSONIC FLOW.0821 4*477E.03 1.653E+08 [email protected] 4.588E.11 19082 o115390863 49488E+03 19639E+08 1.455E.01 4.562E.11 1.081 .1201.1046 4.535E*03 1.584E+08 1.522E~o1 4.454E.11 1.074 .1400.1236 4.583E*03 1*531E.08 1,591E.01 4*349E.11 1.068 .1600.1432 4*630E*03 le480E+08 1.6b3E.01 4.248E.11 1.061 .1800.1635 4.678E+03 1.431E.08 1,7JIE.o1 4.151E.11 1.054 .20004:*1844 4*726E*03 1.384E+08 1.814E~ol 4*057E.11 1.046 .2200.2062 4o775E*03 1*339E*08 1*895E.01 3*964E.11 1.039 &2402.2287 4,823E*03 1.296E+08 1,978E401 3*875E.11 1.031 .2602.2517 49872E+03 19254E+08 2*065E.01 3o788E.1I 1.023 .2800.2757 4.921E+03 1*213E.08 2*155E.01 3.702E.11 1.014 93001o3003 49970E*03 1*174E+08 2*249E.01 39618E.11 1.006 *3200.3259 5*019E+03 19136E*08 2*348E.01 3*535E.11 .997 .3401.3524 5o068E#03 1*099E.08 2*450E.01 3*454E.11 .987 o3601.3796 5*117E*03 19063E+08 2.557E~o1 3*373E~11 .978 .3801.4079 5.166E.03 1*028E*08 2*669E.01 3*293E.11 .968 .4001.4370 5*214E*03 9.943E+07 2*786E~ol 3*214E.11 .957 .4200.4672 5*262E+03 9*608E.07 2*910E.01 3.135E.11 .946 o4401, 4985 5.309E#03 9*282E*07 3*040E.01 3.055E.11 .935 .4601.5308 5*356E+03 8*962E.07 3,176E.01 2.976E.11 .923 .4801,5643 5,401E+03 8o648E*07 3.319E.01 2*896E*11 .911 .5001

.5991 5,446E'+03 8*339E*07 3.470E.01 29815E.11 .898 .5200*6352 5#489E+03 8*033E.07 39631E.01 29734E.11 .884 .5401.6725 5*530E*03 7.733E*07 3.800E.01 2*651E.11 .870 .5600.7115 5,568E*03 7.434E+07 3.980E.01 2o566E*11 .855 .5801*7523 5*604E+03 7*138E+07 4*172E.01 2.480E.11 .840 .6002.7943 5.636E*03 6*845E*07 4*375E.01 2.392E.11 .824 .6201.8383 5*663E*03 6*552E*07 4,594E.01 2*300E*11 .807 .6400.8843 5*685E*03 6*258E*07 4.828E~ol 2#206E.11 .789 .6600.9327 5.701E*03 5*962E+07 5o081E.01 29107E.11 .770 .b80l.9836 5.707E..03 5*664E+07 5*354E~ol 2.004E.11 .750 .7001

1.0369 5.702E*03 5.365E+07 5.649E.01 1.897E.11 .728 .72001.0938 5,684E*03 b.057E.07 5*973E~o1 19782E.11 .706 .74011.1540 5,647E+03 4*744E..07 6*325E.01 1*661E.11 .682 .76011,2182 5.586E.03 4.422E*07 6,713Eao1 1*532E.11 .656 .7800

1,3631 5,356E*03 3*732E*07 7,627E*01 1*239E11 *59 .82001,2876 5*493E.03 4.086E+07 8*7.14E..0 1.392E.1 .5629 84000

1.6497 4*417E.03 2*468E*07 9*5IOE.01 6.760fE.10 0.495 .88011,7846 3.698E.03 1.898E*07 1.03§E~o2 4o353E.10 .454 .90001,9840 2,288E.03 lo069E+07 1*137L.02 1&517E*10 .407 .92002.2266 1*033E+02 4*604E+05 1,192E*o2 2*949E+07 .384 .9293

3-20

Page 39: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-22 VENTING OF L112 TANK AT 65 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 572 SQ FT9 VAPOR PRESSURE=15.7 PSIA

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENIEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST PCBAR) FRAC

.0001 7.717E+03 2*870E+08 1*429E+oi 1*373E+12 2.280 .0002

.0104 7,165E+03 2*665E+08 1.429E.0l1*i184E+12 1.992 .0201

.0215 6,688E+03 2.488E+08 1,4e9E.01 1.031E+12 1.761 .0401

.0334 6o270E.03 2.332E.08 la429E~01 9.067E.11 1.572 .0601

.0460 5,904E+03 2.196E.08 1.429L.01 8o038E.11 1,416 e0801

.0594 5.,576E+03 2.074E.08 1.429E.01 7.170E*11 1*284 .1001

.0736 5.2811.03 1.9b4E.08 1.429E.01 6*431E*11 1.172 .1201

.0885 5*033E+03 1*8721.08 1e.429E+01 5.843E.11 1.083 .1401BEGIN SUBSONIC FLOW

,0898 5,047E.03 19855E.08 1.446E.01 5.8031.11 1.082 .1418.1043 5.114E.03 19757E.08 1.546E.01 5.5721.11 1.076 .1601,1210 59188E.03 1.661E.08 l.b60E.ol 5o344E*11 1.070 .1801

BEGIN SONIC FLOW.1307 5.2301.03 l.612E.08 1.724E.01 5.2271.11 1.066 .1912,1387 b.218E.03 1.575E+08 1,760t.01 5.0971.11 19063 .2001.1572 5o196E+03 1,502E.08 1.839E.01 49838E.11 1.056 .2200.1767 5,185E+03 1.437E.08 1.917E.01 4*620E.11 1.048 .2400.1971 5.1821.03 1.379E.08 1*996E~ol 4o431E.11 1.041 o2601.2182 5,184E.03 1.327E.08 2.076E.01 4e264E.11 1.033 .2800.2401 5,190E+03 1.278E.08 2.158E.01 4*112E.11 1.025 .3000.2629 5.201E.03 1.232E+08 2.243E.01 3.973E.11 1.016 o3200,2865 5.217E.03 1.1891.08 2.3311.01 3.846E.11 1.007 o3401e3110 5.2351.03 1.148E.08 2.423E.01 3.725E.11 .998 o3b01o3364 5,255E.03 1.108E.08 2*519E*01 3.6111.11 .989 .3801,3626 5,278F.03 1.0711.08 2.620E.01 3.5041.11 .979 .4001.3897 5.304E.03 19034E+08 2*725E.01 3*4011.11 .969 .4200.4470 E.365E+03 9.644E+07 2*956E.01 3.208E.11 .947 .4601.5083 5.435E.03 b.982E.07 3,216E.01 39027E~11 o924 .5000.5744 b.517E+03 8o346E.07 3*513E.01 2.8551.11 .898 .5400.6455 5.6101.03 79729L+07 3.857E.01 2.688E*11 o870 .5800.7226 5.715E+03 7.126E.07 4.262E.01 2.5251.11 .839 .6201.8064 5,834E+03 69533E.07 4.7451.01 2*363E*11 .805 *6601

4.8980 5.968E+03 5.9431.07 5.3361.01 2.199E.11 .767 .7000.9474 6.0431.03 b*648E+07 5.68bL.01 2.116E~l1 .747 .7200.9994 6.122E.03 5.351E.07 6.080E.01 2.0311.11 .725 .7400

1.0543 6.2071.03 5*054E..07 6.527L.01 1.945E.11 .701 .1600

1.1127 b.299E.03 4.7531.07 7.0421.01 1.8561.11 .677 .7801I1.1749 6,397E.03 4.4501.07 7.6391.01 1*765E*11 .650 e80011.2414 6,504E+03 4.1451.07 8*337E.01 1*6711*11 .621 .82011.3130 6.6181.03 39834E+07 9.174E.01 1.573E.11 .591 .84001.3909 6*743E.03 3.515E+07 1.019E*02 1.470E*11 .557 .86011.4162 6.879E.03 3*191E*07 1.145E.02 1*3611*11 .521 .8801I1.5708 7.029E.03 2.8561.07 1*308E.02 19245E.11 .481 .90011*6773 7.1941.03 L.510E.07 1*523E*02 19119E~11 .437 .9200

ULLAGE GASES HAVE REACHED VENT1.6918 7*216E+03 2.4651.07 1.5561.02 1*103E~11 e431 .92251,8008 7.3801.03 2,146E+07 1.8281.02 9.8181*10 .386 .9401

tffGIN SUBSONIC FLOW1.8111 7.390E.03 e.1171.07 1,855E+02 9.699E+10 o382 .94161.9474 6.796E.03 1.741E+07 2.074L.02 7.335E+10 .330 .96002.1417 5.395E+03 1.199E*07 2.3921.02 4.010E+10 .263 .98002,5184 4.3521.02 8.3201.05 2.779E*02 2#245E+08 .196 .9969

3-21

Page 40: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-23 VENTING OF LH2 TANK AT 100 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA =572 SO FT

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC90000 8*041E+03 2*991E.08 1*429E+0l19l491E+12 2.280 .0000.0090 7*695E*03 2*862E.08 1*429E.o1 1.365E.12 2.089 .0201.0183 7.380E+03 2.145E.08 1&429E.01 19256E+12 1.923 *0401.0280 7.095E+03 2*639E.08 1.429E.01 1.161E.12 1.779 .0601.0381 b.836E+03 2*543E.08 1.429E401 1.078E+12 1.653 .0800o0486 6.597E+03 2.454E.08 1#429E~ol l.on4E+12 1.540 .1001.0594 bo378E+03 29372E+08 lo429E.01 9.382E+ll 1.441 o1201o0706 b,176E+03 2o297E+08 1.429E.01 8.795E.11 1.352 .1401.0821 5.988E*03 292?7E+08 1*429E.01 8.270E.11 1.272 o1600.0940 5,814E+03 2*162E.08 1,429E.01 79794E.11 1.200 .1800.1063 5.650E.03 2.102E.08 1,429Et01 7.362E.11 1.134 .2001.1189 5*516E.03 29052E+08 1.4?9E.01 79018E.11 1.082 .2201

BEGIN SUBSONIC FLOW91191 b.516E+0.3 2*052E.08 1*429E.01 79017E.11 1.082 o2203

BEGIN SONIC FLOW~:.1191 b.458E.03 1*962E.08 1,478E.01 6*639E.11 1.082 92203

.1330 5,308E+03 1.764E+08 1,599E.')1 5*803E.11 1.075 .2401.1484 5*247E+03 1*648E*08 1*692E.01 5.3bOE.11 1.068 .2601.1647 5.212E*03 le559E+08 1,177E.01 S9o3bE~l1 1.061 .2801.1819 5.192E+03 1*484E+08 1*859E.01 49777E*11 1.054 .3000.2000 5.183E+03 1*4!8E+08 17.?42E.01 4*558E.11 1.046 .3201.2187 5*181E.03 1*360E+08 2*024E.01 4*369E~11 1.038 .3400.2383 5*187E+03 19307L+08 2*109E.01 4*203E.11 1.029 .3600.2587 5*196E+03 1*257E+08 2.197E.01 4.049E*11 1.021 .3800.2800 5o209E.03 19210E+08 2&288E.01 3*908E*l1 1.012 .4001.3019 5.226E+03 1-166E+08 2,381E.01 3*778E.11 1.002 o4200.3247 5*246E+03 1-124E+08 2.480E..01 3*656E*l1 .993 .4400.3731 5o296E+03 1.045E+08 2.693E+01 3.431E.11 .972 .48031.4249 5o358E.03 9.713E+07 2.931E~o1 3*226E.11 .949 .5201.4808 5*431E+03 9*014E+07 3.202L*01 3*035E~ll .925 .560195411 5*517E.03 8*345E+07 3.513L.01 2*854E.11 .898 .6001.6062 5*616E+03 7,699E+07 3.876E.01 2*681E.11 e868 .6401,~ 6771 5o728E*03 7*063E+07 4*309E+01 2*508E.11 .835 .6801.7545 5*855E+03 b*437E.07 4,834E.01 2*337E4'11 .799 .7200,8400 6*OO1E.03 5*812E.07 5.487E.01 2*163E~11 .758 ./601.8861 6.083E+03 5#499E+07 5*878E~ol 26074E.11 .736 .7800

ULLAGE GASES HAVE ftEACHEO VENT.9314 6*163E+03 5.207E.07 69290E.01 1.990E.11 .714 .7985.9353 6,170E.03 5.182E*0I 69328L.01 1.982E~11 .712 .8001.9d72 6*264E*03 4.864E*07 6.844E.01 1,889E.11 .b86 .8201

1.0431 6*367E*03 4.541E.07 7.45,2E+01 1*792E.11 .658 .84011.1025 6.478E.03 49215E.07 8*166E.01 1*693E.11 .628 .86001.1672 6,599E+03 39881E.07 9*035E*01 1.588E.11 .596 .88011,2377 6.7321.03 3*539E.07 1.O11E+02 1.4771.11 .560 .90011.3152 6*8791.03 3o1881.07 1,147E+02 1.360E*11 .521 .92001.4026 7.044E.03 29824E+07 1.3251.02 1.2331.11 .477 .94011.5018 7.2281.03 2.442E.07 1,573E.02 19094,E.11 .427 *96011.6189 7.438E.03 2.035E+07 199421.0O2 99385E+10 .370 .98011.7315 7.6291.03 1*686E.07 2.404E+02 7*976E.10 .317 *99o1

3-22

Page 41: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-25 VENTING OF LH2 TANK AT 350 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 572 SQ FTULLAGE GAS ESCAPES IMMEDIATELY,

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC

BEGIN SONIC FLOW.0000 6.531E+03 4,067E+07 8.533E+01 1.647E.I1 .614 .0000.0212 6.556E*03 39998E+07 8.715E+01 1.625E+11 .607 90201*0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400.0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593 *0600.0870 6.635E+03 3.787E*07 99310E+01 1,558E÷11 ,586 .0801,1098 6.662E+03 39716E+07 9.527E+01 1.535E+11 .579 .1001.1330 6.690E+03 3.645E+07 9*752E.01 1.512E+11 .571 .1201,1567 6.718E+03 39574E+07 9,988E÷01 1.489E÷11 .564 .1401.1807 6.747E.03 39503E+07 1.024E*02 1,465E÷1I .556 .1601.2053 6.777E÷03 39433E+07 1.049E+02 1,442E÷11 .548 .1800.2305 6.806E+03 3.360E+07 1.075E÷02 1.418Ell .540 .2001,2563 6.837E+03 3.288E+07 1.105E+02 1*394E*11 *532 .2201.2824 6.867E*03 3.215E÷07 1.135E÷02 1.369E+11 .524 .2400

3.092 6.898E÷03 3.141E+07 1.167E+02 1.343E+11 .515 .2bOO.3369 6,931E.03 3,068E+07 1.200E÷02 1.319E.11 .507 .2801.3651 6.964E÷03 2,995E+07 1.236E÷02 1.293E+11 .498 .3001.3937 6.997E+03 2.921E+07 1.273E÷02 1.267E÷l1 .489 .3200.4234 7.031E.03 2,847E*07 1.313E÷02 1.241E÷II .480 .3401,4539 7.066E+03 2.772E÷07 1.355E+02 1.214E.11 .471 .3601,4851 7o102E÷03 2.696E+07 1.400E*02 1.187E+11 .461 .3801,5171 7.138E+03 29621E+07 1.*447E+02 1.160E11 .451 .4001.5501 7.175E#03 2,545E÷07 1.498E+02 1.132E*11 .441 .4200.5842 7.213E+03 2.468E+07 1.553E÷02 1.104E11 .431 .4400.6193 7.251E+03 2.391E+07 1.611E+02 1.075E11 .421 o4600,6556 7.291E.03 2*314E+07 1.674E÷02 1,046E.11 .410 .4800,6932 7,331E*03 2,235E+07 1,743E*02 1,016E1ll ,399 .o001.7322 7.372E.OJ 2*157C÷07 1*817E+02 9.857E+10 .388 .5201.7724 7,414E+03 2.077E.07 1.896E*02 9*549E.10 .377 .5400.8143 7.456E+03 1,99"E*07 1*984E*02 9*233E+10 .365 o5601.8579 7*501E÷03 1.918E+07 2*079E÷02 8*918E*10 .353 o5800.9034 7*545E.03 1,836E÷07 2.184E*02 8.589E*10 .341 .6001.9510 7.590E÷03 1.754E+07 2.300E+02 8.254E.10 .328 .6201

1.0007 7,636E+03 1.671E+07 2.428E÷02 7.913E+10 .315 .64001.0532 7.682E+03 1.588E÷07 2.571E÷02 7.563E+10 .302 .66011.1085 7.730E÷03 1,503E+07 2*732E÷02 7*204E10 .288 .68011.1668 7.777E+03 1.418E+07 2o915E+02 6,837E+10 .274 .70001.2293 7.825E*03 1.331E÷01 3.124E÷02 6.457E+10 .259 .72011.3665 7.920E+03 1.155E+07 3.643E+02 5.674E.10 .228 .7001.5273 8011E.03 9.747o.06 4.367E+02 4*841E+10 .195 180011.6189 d.052E*03 8.829E+06 4.846E+02 4,408E+10 .178 ec.jO1.7213 8.088E*03 7.d97E06 5.44JE*02 3.960E10 .160 .84001.8371 8.116E+03 6.943E+06 6.212E+02 3.494E+10 .142 .86011,9692 8#132E*03 5*981E+Ob 7.225E+02 3*015E+10 o123 .88012.1248 U.126E.03 5.002LOb 8.b33E÷02 2*.520E+10 .103 .90012.3153 8.086E+03 4.011E+06 1.071L+03 2.O11E*1O .082 .92012.4405 8.038E+03 3.454E*06 1.237E*03 1.721E+10 .070 .9310

3-24

Page 42: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-25 VENTING OF LH2 TANK AT 350 SECONDS FLIGHT TIME

EFFECTIVE HOLE AREA = 572 SQ FTULLAGE GAS ESCAPES IMMEDIATELY,

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTEDT(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRAC

BEGIN SONIC FLOW.0000 6.531E+03 4,067E+07 8.533E+01 1.647E.I1 .614 .0000.0212 6.556E*03 39998E+07 8.715E+01 1.625E+11 .607 90201*0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400.0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593 *0600.0870 6.635E+03 3.787E*07 99310E+01 1,558E÷11 ,586 .0801,1098 6.662E+03 39716E+07 9.527E+01 1.535E+11 .579 .1001.1330 6.690E+03 3.645E+07 9*752E.01 1.512E+11 .571 .1201,1567 6.718E+03 39574E+07 9,988E÷01 1.489E÷11 .564 .1401.1807 6.747E.03 39503E+07 1.024E*02 1,465E÷1I .556 .1601.2053 6.777E÷03 39433E+07 1.049E+02 1,442E÷11 .548 .1800.2305 6.806E+03 3.360E+07 1.075E÷02 1.418Ell .540 .2001,2563 6.837E+03 3.288E+07 1.105E+02 1*394E*11 *532 .2201.2824 6.867E*03 3.215E÷07 1.135E÷02 1.369E+11 .524 .2400

3.092 6.898E÷03 3.141E+07 1.167E+02 1.343E+11 .515 .2bOO.3369 6,931E.03 3,068E+07 1.200E÷02 1.319E.11 .507 .2801.3651 6.964E÷03 2,995E+07 1.236E÷02 1.293E+11 .498 .3001.3937 6.997E+03 2.921E+07 1.273E÷02 1.267E÷l1 .489 .3200.4234 7.031E.03 2,847E*07 1.313E÷02 1.241E÷II .480 .3401,4539 7.066E+03 2.772E÷07 1.355E+02 1.214E.11 .471 .3601,4851 7o102E÷03 2.696E+07 1.400E*02 1.187E+11 .461 .3801,5171 7.138E+03 29621E+07 1.*447E+02 1.160E11 .451 .4001.5501 7.175E#03 2,545E÷07 1.498E+02 1.132E*11 .441 .4200.5842 7.213E+03 2.468E+07 1.553E÷02 1.104E11 .431 .4400.6193 7.251E+03 2.391E+07 1.611E+02 1.075E11 .421 o4600,6556 7.291E.03 2*314E+07 1.674E÷02 1,046E.11 .410 .4800,6932 7,331E*03 2,235E+07 1,743E*02 1,016E1ll ,399 .o001.7322 7.372E.OJ 2*157C÷07 1*817E+02 9.857E+10 .388 .5201.7724 7,414E+03 2.077E.07 1.896E*02 9*549E.10 .377 .5400.8143 7.456E+03 1,99"E*07 1*984E*02 9*233E+10 .365 o5601.8579 7*501E÷03 1.918E+07 2*079E÷02 8*918E*10 .353 o5800.9034 7*545E.03 1,836E÷07 2.184E*02 8.589E*10 .341 .6001.9510 7.590E÷03 1.754E+07 2.300E+02 8.254E.10 .328 .6201

1.0007 7,636E+03 1.671E+07 2.428E÷02 7.913E+10 .315 .64001.0532 7.682E+03 1.588E÷07 2.571E÷02 7.563E+10 .302 .66011.1085 7.730E÷03 1,503E+07 2*732E÷02 7*204E10 .288 .68011.1668 7.777E+03 1.418E+07 2o915E+02 6,837E+10 .274 .70001.2293 7.825E*03 1.331E÷01 3.124E÷02 6.457E+10 .259 .72011.3665 7.920E+03 1.155E+07 3.643E+02 5.674E.10 .228 .7001.5273 8011E.03 9.747o.06 4.367E+02 4*841E+10 .195 180011.6189 d.052E*03 8.829E+06 4.846E+02 4,408E+10 .178 ec.jO1.7213 8.088E*03 7.d97E06 5.44JE*02 3.960E10 .160 .84001.8371 8.116E+03 6.943E+06 6.212E+02 3.494E+10 .142 .86011,9692 8#132E*03 5*981E+Ob 7.225E+02 3*015E+10 o123 .88012.1248 U.126E.03 5.002LOb 8.b33E÷02 2*.520E+10 .103 .90012.3153 8.086E+03 4.011E+06 1.071L+03 2.O11E*1O .082 .92012.4405 8.038E+03 3.454E*06 1.237E*03 1.721E+10 .070 .9310

3-24

Page 43: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

4 TABLE 3-26 VENTING OF LH TANK AT 450 SECONDS FLIGHT TIME2

EFFECTIVE HOLE AREA = 572 SQ FTULLAGE GAS ESCAPES IMMEDIATELY.

VENT FLOW OUTFLOW SPEC VOL JET ULLAGE VENTED

T(S) VEL(CM/S) (G/S) (CC/G) THRUST P(BAR) FRACBEGIN SONIC FLOW

.0000 7.978E+03 1.043E+07 4,065E602 5.158E+10 .208 .0000

.0180 7#987E*03 1.023E+07 4.148E+02 5.068E.10 .204 .0200,0365 7,997E+03 1.003E+07 4.235E+02 4o976E.10 .201 .0401.0552 8.007E+03 9&838E+06 4.325E+02 4.883E+10 o197 .0601.0742 8,016E+03 9.640E+06 4.419E.02 4.791E+10 .193 .0801.0937 8o025E,,03 9.441E.06 4.517E+02 4.697E+10 .190 .1000.1137 8.034E+03 9.241E+06 4.620E+02 4.603E+10 .186 .1201.1340 8.043E.03 9.04!E06 4,727E+02 4.508E610 *182 e1401.1548 8.0516E03 8.841E606 4.840E+02 4.413E610 .178 .1600.1761 8.060E+03 8,639E+06 4.958E.02 4@317E+10 .175 .1801.1979 8.068E+03 8.437E.06 5.082E÷02 4.220E÷10 .171 .2001.2202 8.076E603 8*235E+06 5,212E+02 4o123E+10 .167 .2201.2431 8e083E+03 8@031E+06 5.349E÷02 49025E+10 .163 .2401.2665 8.090E603 7.827E+06 5.493E+02 3•926E*10 .159 .2601.2906 8.097E603 7.623E+06 5.645E.02 3.827E610 .155 .2800.3153 8.104E÷03 7.418E.06 5.805E.02 3.727E+10 .151 .3000

.3409 8,109E+03 7.212E+06 5.975L*02 3.626E+10 .147 .3202

.3670 8.115E603 7.006E606 6.155E.02 3.525E610 .143 .3401

.3939 8.120E603 6.799E*06 6.346E+02 3.423E+10 .139 .3601

.4218 8.124E.03 b.590E.06 6.551E*02 3.319E.10 .135 .3801

.4504 8.127E603 6.381E÷06 6.768.E02 3.215E610 .131 .40014.799 8.130E603 6.173E+06 6.999E.02 3.112E+10 .126 .4200

.5106 8.132E+03 5.963E.06 7o247E+02 3*006E*10 .122 .4400

.5423 8.133E603 5.752E.06 7.514EE02 2a900E610 .118 .4600

.5754 8.133E+03 5.540E.06 7.801E.02 2.793E610 .114 .4801

.6097 8.131E+03 5.327E*06 8.111E+02 2,686E+10 .109 .5001

.6452 8.128E+03 5.114E06 89446E+02 2.577E610 .105 .5201.682k4 8.124E+03 4.901E.06 89809E+02 2.469E.10 .101 .5401o7210 8.118E*03 4.687E.06 9.204E602 2o359E610 .096 .5600.7617 8,110E.03 4.472E+Ob 9.638E602 2.249E+10 .092 .5800.8045 8.100E603 4.255E+06 1.012E603 2.137E+10 .087 .*001.8493 8.087E*03 4.039E+06 1.064.E03 2.025E610 .083 .6201.8966 8.072E*03 3.822E+06 1.i22E'03 -1.913E+10 .078 .6401.9468 8.053E603 3.605E+06 1.187E.03 1.800E+10 .073 .6601.9816 8.038E+03 3.461E*06 1.234.E03 1.725E+10 .070 .6733

3-25

Ir .... ... _

Page 44: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-27 VENTING TIMES FOR LOX AND LH2 TANKS

FLIGHT ------------ LOX TANK ----------------TIML(S) T(0O9) T(STOP) F(STOP) T(ULL)

10 12.6 18.4 ,65 NONEI, 20 11.3 16.7 081 NONE30 - - - NONE40 - - - NONE50 9.4 14.9 *98 NONE60 >9o6 >15.2 .949 15021:70 - 99 -80 -- >099-

90 -- >099 -

100 >8.5 >13,: >,99 11.9350 7.2 14.2 >.99 0450 5.0 9.7 >.99 0

FLIGHT ------------ LH2 TANK-- --------------TIME(S) T(0.9) T(STOP) F(STOP) T(ULL)

10 1.03 3905 .31 NONE20 1.13 1,73 .51 NONE30 1.28 1.93 o70 NONE40 1.39 2.14 08h NONE

50 1.43 2.23 .93 NONE60 >1.62 >2.43 .98 1.81I 70 - - >099 -80 >,9990 - - >099 -

100 1.24 l,7J >.99 0.93350 1.71 2o44 ,93 0450 .82 .98 967 0

(.Uo9) = TIME NELUED TO VENT 90 PEHCLNT OF WHAT wILLEVENTUALLY VENT.

T(STOP) = TIME WHEN FLOW STOPS (PHtSSUREb BLCOML EUUALIZLI).F(STOP) = FRACTION VENTED WHEN FLOW STUPS.T(ULL) = TIME WHEN ULLAGE GA.ES HEACH VENT AND ESCAPE.

ULLAGE ESCAPES IMMEUIATELY Ar T=350 AND 450.

3-26

lk.

Page 45: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

RATE OF BUBBLE GROWTH

In the following, the rate of bubble growth in the cryogens is considered.The growth of a vapor bubble may be written as follows:I

ii .C

R 2A ..L. D 1 t (TL -TB)S~pL

where

R = bubble radius (cm)A = proportionality constant LH2 LOX

L = liquid density (g/cc) 0.070 1.147

v = vapor density (g/cc) 1.314-3 4.43-3c = liquid specific heat (cal/g/deg) 2.0 0.398

L = latent heat of evaporation (cal/g) 108.0 50.9D = liquid thermal diffusivity (cm 2 /s) 2.01-3 7.85-4

t = time since beginning of bubble growth (s)

TL = liquid temperature (K) 20.47 90.81

TB = boiling temperature (K) at desired pressure

TL- TB - degrees of superheaL

The factor in brackets may be compared with other liquids:

water 0.121

LOX 0.0567

LH2 0.0442

ethanol 0.044

From experiments on water 2 , the constant A is about 0.216 (see Figs. 4 and 9in footnote 2 below). The bubble growth rates are then

for LH2 R = 0.080 (TL - T) B -

for LOX R = 0.102 (TL - TB) A-

with R in cm, TL - TB in OK, and t in seconds.

The superheats are as follows, where TB is the boiling point at ambient

pressure:

IDergarabedian, P., "Observations on Bubble Growths in Various SuperheatedLiquids," Journal of Fluid Mechanics Vol. 9, 1960, p. 39.

2 Dergarabedian, P., "The Rate of Growth of Vapor Bubbles in Superheated Water,"Journal of Applied Mechanics Vol. 20, 1953, P. 537.

3-27

*W4

Page 46: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

LH2 LOX

Flight time (sec) TL TB TL - TB TL TB TL - TB

0 20.47 20.25 0.22 90.81 90.18 0.6310 20.47 20.16 0.31 90.81 89.89 0.9250 20.47 17.36 3.11 90.81 81.85 8.96100 20.47 Freezes 90.81 63.58 27.2

TL is the boiling point at 15.7 psia (1.0822 bar).

The nucleation rate is estimated by Bog s at 106 nuclei/sec/m3(U nucleus/sec/cm3 ). 3 If one nucleus per cmi were present at time zero,the volume of the bubble would be

Vbub = 74 R3

3

where R is as above.

Some times for bubble growth at a flight time of 50 seconds are shown below:

Time (sec) to grow

VL + Vbub Vbub Rbub

(cm) (c) (cm) LH2 LOX

1.0 0.0 0.0 0.0 0.01.1 0.1 0.29 1.34 0.000131.5 0.5 0.49 3.92 0.292.0 1.0 0.62 6.22 0.46

The LOX bubbles grow about ten times faster than the LH 2 bubbles.

The growth in volume of a large mass of superheated liquid is much slowerthan indicated in this table, because the inner part of the mass continues tofeel its Vapor pressure until the outer part moves out. The full superheat isfelt only on the outside of the mass at first, and gradually moves in as theouter layers expand. There is also a lag of about 0.1 seconds (see footnote 2,p. 3-28) between a drop in pressure and the beginning of rapid bubble growth.This means that while the jet is being pushed by ullage pressure and there is noboiling in the tank, there is little boiling in the first few meters of jet.After the liquid in the tank has begun to boil, the jet already has bubbles init when it exists, and bubbles will grow as described here.

Thus, the critical part of the LOX jet (within the first few meters of theET), from which the part of the LOX plume passing under the orbiter originates,will not be expanded much by boiling. The expansion by boiling of the pancakeof LH2 covering the bottom of the orbiter will also be small until the bulk ofthe LH2 has moved out clear of the orbiter.

3 Boggs, W. H., "Physical Processes Causing LOX/LH Autoignition," Minutes ofthe Seventc-!nth Explosives Safety Seminar, Denver, Colo., Vol. 1, Sep 1976,p. 135.

3-28

Page 47: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

STRIPPING OF LIQUID JET. The stripping analysis of Mayer was followedherein. 4 Assume that the airflow raises those capillary waves of wavelengthof maximum growth rate and these waves crest, forming a ligament that breaksinto droplets. Let each element of liquid area X2 produce one droplet of meandiameter D - 0.14 T every T seconds. Then the droplet formation rate per cm2

of surface exposed to the airflow is

n 1/(X2 T) = (0.14) 2 /(5 2 T) (3-1)

where T is the time modulus calculated from

lIT fXl/ 1 2 - v/72

with

f Viii2 ýpg Vg//oPL (forcing parameter)

v = 8r2 11L/L (viscous damping parameter)

= sheltering parameter = 0.3

Pg = density of gas flow (g/cm 3

V = velocity of gas flow (cm/s)

a = surface tensien of liquid (dyne/cm)

PT - density of liquid (g/cm3 )

11 = dynamic viscosity of liquid (g/cm/s)Li The mean droplet diameter D is given by• /3

r 16 B (3-2)SD = 9r lb1/3 B L g/PL g

where

B =0.3

The mass per droplet is

md D P L/ 6

The mass loss rate per cm2 of liquid surface is then

- (0.14)02 /6 . D PL/T

4 Mayer, E., "Theory of Liquid Atomization in High Velocity Gas Streams,"American Rocket Society Journal, Dec 1961, p. 1783.

3-29

__N

Page 48: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The sides of the approximately rectangular LOX jet are subject to stripping.The stripped area per cm of jet length is about twice the hole length, orAs = 2 x 229 cm. The mass loss rate per centimeter of jet length is them m

S~As.

"The wake of the LOX plume when it reaches the orbiter is roughly four timesthe diameter of an equivalent circular jet, or 4 x 326.1 = 1304 cm. The amount• or air involved in the wake (per cm of jet) is ma = 1304 Pa. A momentum

balance gives the direction and speed of the wake relative to the orbiter.

The outward velocity component of the air-oxygen mixture is

-•" Vout = VL mL/(mL + ma)

j The longitudinal component (parallel to the ET axie) is

Vlong = Va ma/(mL +' ma)DROPLET EVAPORATION TIME. Next, available time for the stripped LOX

droplets to evaporate before they reach the LH2 was considered.

The time required to evaporate a droplet in a still gas was estimated asfollows: 5

I0 p, r 2 RT• 0=0 (3-3)whre2M 6 P (Yi - Y,,)

S~where

P£ - drop density

Sro = initial drop radius

Yi = mole fraction in interface gas

Yo = mole fraction at infinity

R = gas constant

T - temperature

M molecular weight of liquid

6 diffusion coefficient

P pressure

5Perry, J. H., Ed., Chemical Engineer's Handbook, 3rd ed. (New York:

McGraw-Hill 1950.)

3-30

Page 49: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The diffusion coefficient is obtained from

0.0043 T3/ 2 +r

( v'/ 3 + V 2 1 2(34

where

S = diffusivity (cm 2 /s)

T= temperature (K)

P= pressure (atm)

Ml, M2 = molecular weights of materials 1 and 2

VI, V2 = molecular volumes at normal boiling points (cm 3 /mole)

= 13.0 for air, 7.15 for hydrogen, 7.4 for oxygen

For the conditions of interest here, Equation 3-3 may be written

28= Ct do (Ct in s/cm2 ) (3-5)

The Ct values and times to evaporate a 0.001 cm droplet are as follows:

Time to EvaporateSFlight Time Ct Ct 0.001 cm drop (sec)

(sec) LOX LH2 LOX LH2

10 665.0 224.0 0.000665 0.00024450 700.0 256.0 0.000700 0.000256100 802.0 269,0 0.000802 0.000269

The evaporation times for the drops of 0.001 cm diameter expected from strippingof the jet are short enough to make thermodynamic equilibrium in the plume areasonable assumption.

CLUSTER WITH ORBITER

If the orbiter is still attached to the ET at destruct time, the LH2 jetwill impact the bottom of the orbiter and will spread out laterally in alldirections as an expanding sheet that covers the bottom of the wings before any

LOX arrives.

The orbiter tends to separate the stripped LOX from the LH2. The LOX iscarried out beyond the orbiter, but the LH2 spreads out under the orbiter.However, this spreading caused by the orbiter allows the LH2 stream to impactthe LOX jet and cause an explosion. Figure 3-3 shows the shape of the LOX plumeunder the orbiter. Figure 3-4 shows the shape of the LH2 jet deflected by theorbiter.

3-31

Page 50: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

LOXJET

I. {LH2JET

FIGURE 3-3 PORTION OF LOX PLUME PASSING UNDLHR ORBITER

3-32

Page 51: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

OV.

tg

LOXJET

FIGURE 3-4 SHAPE OF LH 2 JET UNDER ORBITER

MIXING UNDER ORBITER. The boundary layer thickness of a sheet at zer.angle of attack may be estimated as follows: 6

= 1.729 ýV/7 g Vx

where

= effective boundary layer thickness at distance x

v f kinematic viscosity of the gas (oxygen-air mixture)

6 Schlichting, H., Boundary Layer Theory, 4th ed. (New York: McGraw-Hill,1960).

3-33

Page 52: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Ug = velocity of gas relative to sheet

x = distance back from leading edge of sheet

Some results from this equation are:

T (sec) V(cm2 /s) Ug (cm/s) 6* (cm) at x * 103 cm

10 0.21 4000.0 0.4050 0.33 21000.0 0.22

100 1.0 28000.0 0.33

The boundary layer is only 2 to 4 millimeters thick at 10 meters away from theleading edge of the sheet.

However, this does not include the effects of roughness due to capillarywaves oc stripped droplets. The roughness due to capillary waves is smallbecause of their short wavelengths (about 0.001 centimeter). The distance towhich droplets are thrown by wave breakup depends on the scale of the waves, noton the scale of the jet. Therefore, from experiments on breakup of waterdroplets, the LH2 droplets move out only a few millimeters due to wavebreakup. This keeps down the amount of the mixing with the oxygen and air bykeeping the mixing layer thin and by loading the airflow. This reduces itsvelocity so the stripping is less as one moves downstream along the LH2pancake. Because this shielding of the LH2 by its own droplets (and owngaseous hydrogen) is rejected, the amount of mixing calculated is anoverestimate. It is assumed that the mixing thickness is 10 centimeters. TheTNT equivalence of the mixture is insignificant (Table 3-10, last column).

IMPACT OF LH2 PANCAKE ON LOX JET. If the LH2 spreads out uniformly inall lateral directions after impacting the orbiter, part of it will move-,towardthe LOX jet. If there were no air resistance or LH2 removal by stripping, thefraction of the total existing LH2 impacting the LOX jet 25 meters away wouldbe

fi - (LOX jet width)/(pancake perimeter at 25 m) = 5.89/(211(25)) - 0.037

Thus, a maximum of 3.7 percent of the existing LH2 could impact the LOX jet.The leading edge of the 2H2 pancake is about 20 centimeters thick when itreaches the LOX jet; less than 1 centimeter has been stripped from it by theairflow.

The effects of air resistance can be estimated by calculating what minimumsize sphere of LH 2 can travel 25 meters upstream against the drag of theairflow. The results are shown in Table 3-28. It can be concluded that sincethe pancake has a smaller ballistic coefficient than a sphere, it will not bestopped from reaching the LOX jet by airflow drag.

Since neither stripping nor air drag can significantly reduce the amount ofLH2 reaching the LOX jet, we may use the 3.7-percent figure; the resultingmixing parameters are given in Table 3-28.

3-34

Page 53: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

TABLE 3-28 IMPACT OF LH ON LOX JET2

FLIGHT TIME(S) 10 20 50 65 100 lis

TOTAL LH2 EXITING (6GLQRAM) 31.1 49.3 85.0 88.3 81.0 77.6

MAX LH2 HITTING LOX JET(LB) 2535. 4020. 6930. 7200. 6600. 6330.

THICKNESS OF LH2 SHEET (CM) 10. 22. 22. 22. 22. 22.

TIME WHEN LH2 FIRST HITS LOX(S) 0.39 0.38 0.33 0.32 0.31 0.31

MINIMUM DIAM SPHERE OF LH2ABLE TO REACH LOX (CM) 1.8 8,4 18.6 15.1 5.0 1.3

LOX JET VELOC (M/S) AT 1 SEC 4.2 6.1 12.1 13.2 13.2 13.2

LOX JET TRAVEL (M) WHILE 256 LBOF LH2 MIXES WITH LOX 3.7 3.1 4.6 4.9 4.8 4.5

$ TIME INTERVAL(S) NEEDED TO MIX

256 LB LH2 WITH LOX 0.87 0.51 0.38 0.37 0.36 0.34

TIME(S) WHEN 256 LB LH2 HAS

MIXED (AUTOIGNITION OCCURS) 1.26 0.89 0.71 0.69 0.66 0.65

DISTANCE (M) OF CENTER OFEXPLOSION FROM ET 3o9 3,9 4.6 4.5 4.4 4.3

TABLE 3-29 MIXING OF JETS WITH ORBITER SEPARATED

FLIGHT.TIME(S) 20 65 115 350 450

TIME (S) WHEN ONE OF THE TANKSBREAKS AND ITS FLOW STOPS 1.58 0,94 0.96 1.36 1.02

MAX ANGLE BETWEEN JETS (DEG) 7.79 10.4 19.2 22.1 26.2

DISTANCE (M) FROM ET TOJET INTERcECTION 176 131 71 61 52

SHOCK PROPERTIES AT Er FOR7400 LB TNT CHARGE AT JETINTERSECTION--

PEAK INCID OVERPRESSURE(PSI) 1.2 0.83 1.0 NEGLIGIBLE

POS OVERPR IMPULSE (PSI.S) 0,070 0.062 0.050 NEGLIGIRLE

3-35

Page 54: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Autoignition occurs with 100 percent probability when 256 pounds of LH2

mix with 2,044 pounds of LOX. Since the amount of the LH2 impacting the LOXjet is considerably above 256 pounds, an explosion with a maximum energyequivalent of 7,400 pounds TNT is expected. This is an upper limit; smaller

explosions are possible by earlier autoignition or ignition by flame. More thanone explosion is possible since an explosion will not necessarily stop the jets.

CLUSTER WITHOUT ORBITER

Mixing of the liquid cryogens can occur if the ET deforms so that the LOX

and LH2 jets intersect. Table 3-29 lists the blast effects, assuming thatautoignition occurs when 2,300 pounds (equivalent in energy to 7,400 pounds TNT)are mixed. This is an upper limit because autoignition or ignition bypropellant fragments can occur before 2,300 pounds are mixed. The loading of

the ET is not enough to cause significant damage to the ET or significant effect

on the fragment trajectories.

TURBULENT MIXING IN WAKE OR CLUSTER

* The plume formed from the LH2 jet is assumed to be jet moving into a

coaxial secondary stream of air. Forstall and Shapiro developed empiricalrelations for a jet faster than the secondary stream. 7 No one seems to haveconsidered the case wanted here: a jet slower than the secondary stream.However, it is plausible to assume that the velocity ratio is the importantquantity, regardless of which velocity is larger. Following Forstall and

Shapiro with this change and writing in a factor of 0.7 because convectionrather than stream velocity is wanted yields:

L/D = 0.7 (4 + 12X)

Cc = L/x for x > L

rh/a - (x/L)l-X

C/Cc -!( + cos 1r/h

where

X =Uplume/uair = ratio of velocities relative to ET

uplume = mixed plume velocity (from conservation of momentum)

Uair = airstream velocity

D diameter at breakup

a - D/2 - plume radius

L length of potential core

7 Forstall, W., Jr., and Shapiro, A. H., "Momentum and Mass Transfer in Coaxial

Gas Jets," Journal of Applied Mechanics, Vol. 17, 1950, p. 399.

3-36

Page 55: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

x = downstream distance

cc = mole concentration of jet matter on axis (r = 0) at x

C = mole concentration of jet matter at radius r at x

Srh = radius at which mole concentration is half of Cc

The fraction of the jet material lying between concentrations CU and CL(which may be the upper and lower detonation or burn limits) is obtained from

rH/rh = arc cos (CH/Cc/arc cos (0.5)

rL/rh = arc cos (CL/Cc/arc cos (0.5)

[H f (rH/rh) -f~rL/rh I] f(Q)

I where

w f(Y) 1 y +- [cos (I- 7TY - + 2y sin I. 7

2 7' 'L ' 2 "1

Next, detonable concentrations will be considered.

DETONABILITY OF HYDROGEN-OXYGEN-AIR MIXTURES

The deontation limits for gaseous mixtures were worked out using the theoryof Belles. 8 For liquids and solids, experimental data were used.

HYDROGEN-AIR MIXTURES. Figure 3-5 shows the theoretical results forgaseous hydrogen air mixtures. The effect of the low temperature in the plumeis to reduce the range of composition that can detonate. In Figures 3-6 through3-8, the theory is applied to the H2 air mixtures encountered for the flightconditions at 10, 50, and 100 seconds, respectively. These figures (whileintended for gases) suggest that mixtures of LH2 with liquid air or solid airmight not detonate. Indeed, Cassutt, et al were unable to detonate LH2 -solidair (at 1 atm pressure) by impact or by hot wire. 9 If the mixture is allowedto stand for a while, however, it becomes oxygen-enriched by boiling offnitrogen and thus becomes detonable.

Applying these detonability criteria to the turbulent plume gives thefraction of the H2 that is detonable within a cross section of the plume atany desired downstream distance (i.e., any chosen Cc value). The results areshown in Figure 3-7.

If a mixture is detonable, this simply means that there are conditionsunder which it can be made to detonate by a sufficiently strong initiator. It

8Belles, F. E., "Detonability and Chemical Kinetics: Prediction of Limits ofDetonability of Hydrogen," Combustion Symposium, Vol. 7, 1962, p. 745.

9Cassutt, L. H., Maddocks, F. E., and Sawyer, W. A., "A Study of the Hazards inthe Storage and Handling of Liquid Hydrogen," Advances in Cryogenic Engineering,Vol. 5, 1960, p. 55.

3-37

Page 56: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

4 NSWC TR 80-417

P (ATM), 0 "2 1 0 1 111 0 1 0 -

300-

100: // /

S, ,

0.9 1.0

"MOLE FRACTION H2

FIGURE 3-5 DETONATION LIMITS OF H2 AIR MIXTURES

Po o. M BAN

C L

Lu

100

_ I I I I . . ...

0.5 11.03 MOLE FRACTION H2

FIGURE 3-6 DETONABILITY OF H2 AIR MIXTURE AT ALTITUDE OF 831 FT (]0 SEC)

3-38 h all

Page 57: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0P.o 0364BAR

380

IAI

I-

" 100-

I Ii I I I I I

0.5 1.0MOLE FRACTION H2

FIGURE 3-7 DETONABILITY OF H2 AIR MIXTURE AT ALTITUDE OF 24.49 KFT (50 SEC)

Po 0.0172 BAR

300~

Ic

I I I 1 I 1 iO O.I 1.0

MOLE FRACTION H2

FIGURE 3-8 DETONABILITY OF 12 AIR MIXTURE AT AL.TITUDE OF 90.57 KFT (T = 100 SEC)12

~3-39

Page 58: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

may burn or not react at all under other .nitiation conditions. As shown infootnote 9, on page 3-37, 5-foot and 8-foot diameter ballons of H2 airmixtures were initiated with flames, sparks, hot wires, and blascing caps. Inall cases, there was burning rather than detonation. A 2-gram HE charge wasneeded to cause detonation. This means that the H2 air plume can be ignitedbut not detonated by burning SRB propellants, hot gases, or hot pieces ofmetal. The shock waves from th SRB explosion are long gone by the time theplume forms. There is every indication that the plume will burn rather thandetonate.

HYDROGEN-OXYGEN MIXTURES. Figure 3-9 shows the theoretical detonationlimits for gaseous H2 -0 2 mixtures. The theory agrees well with experimentsat I atm pressure and temperatures near 300 K. Cassutt, et al (see footnote 9,p. 3-38) were able to detonate an LH2-solid 02 mixture with a hot wire andfound an impact sensitivity like RDX. Kaye was able to detonate confined dumpedmixtures of LH 2 and LOX with hot surfaces, hot wires, spark, and flame, butgot burning rather than detonation for unconfined mixtures.I0 He was unableto detonate mixtures of solid hydrogen with solid oxygen or liquid oxygen whenthe pressure was below 0.013 bar (10 mm Hg).

P (AT1M)

10"21#4 1 1 10-1

w I

MOLE FRAcTION H2

FIGURE 3-9 DEONTATION LIMITS OF H2-02 MIXT'IJRES

10Kaye, S., "Hazard Studies with Hydrogen and Oxygen in the Liquid and Solid

Phases," Advances in Cryogenic Engineering, Vol. 11, 1966, p. 277.

3-40

1W ~ II I

Page 59: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The large-scale PYRO tests showed spontaneous detonation when largequantities of LH2 and LOX were dumped together. The "critical mass" abovewhich detonation is inevitable is about 2,300 pounds of mixture. 1 1 It is notclear how the PYRO experience can be applied to the situation where a fine mistof LOX impacts an LH2 jet and an LH 2 mist at low ambient pressure. Thearguments leading to the 2,300-poind critical mass should apply, however, to themixing of LH 2 and LOX jets.

LH2-LOX MIXTURES. The next point of consideration is gross mixing ofliquidhydr-ogen with liquid oxygen.

The size of the possible explosion is self-limited by spontaneous sparkignition which occurs when (or before) about 2,300 pounds of LOX and LH 2 havebeen mixed (see footnote 11). This figure is based on mixing energized by thepdV work of boiling the LH2 . If additional energy such as that of groundimpact were present, this would increase the amount of mixing before spontaneousspark ignition and the 2,300-pound figure would increase. Farber, et al (seefootnote 11) find for LOX-LH2 or LOX-RPI,

Mcrit(lb) = 1870/(E/Eb) + 940 (E/Eb) 2

where Eb is the boiling energy and E is the total mixing energy. (Thisequation gives 2,810 rather than 2,300 for E/Eb = 1 because it includesLOX-RP] mixtures.) The kinetic energy of the jets is small compared to Eb.Thus, the maximum amount of the LOX-LH 2 mixture that can detonate is 2,300pounds (256 pounds LH 2 and 2,044 pounds LOX). Using an energy equivalence of3.2 pounds TNT per pound of LOX-LH2 mixture gives an upper-limit explosionenergy of 7,400 pounds TNT.

PROPAGATION OF BURNING. The burning velocity of H2 -0 2 -N2 mixtures isless than 10 m/s at room temperature and atmospheric pressure, and decreaseswith decreasing pressure. 1 2 Because the airflow velocity considerably exceeds10 m/s, as does the LH 2 exit velocity during most of the outflow, a flamecannot work its way upstream and spread radially, but is swept downstream fromeach point of ignition. (The ignition sources are the burning propellant piecesfrom the SRB's, the rocket engine exhausts, and the LSC.)

A For destruct with the orbiter attached, there is a thin region in theboundary layer on the LP 2 pancake below the orbiter that has a low enoughvelocity to hold a flame steady relative to the orbiter. However, this regionis probably too thin to sustain a flame.

Although flame propagation speeds are small, any object in a high-speedcombustible flow can act as a "flameholder" because of the low velocities in itsnear wake. Because of the large number of ignition sources, the hydrogen plumeis expected to ignite, and the flame will be held by the cluster and by the

llFarber, E. A., Smith, J. H., and Watts, E. H., "Prediction of Explosive Yieldand Other Characteristics of Liquid Rocket Propellant Explosions, FinalReport," University of Florida, N74-20589, Jun 30, 1973.

1 2 Lewis, B., and von Elbe, G., Combustion, Flames and Explosions of Gases, 2nd

ed. (New York: Academic Press, 1961), pp. 382, 399.

3-41

r.t•-- - - _ _ _ _ _ _ ___

Page 60: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

hydrogen jet. An illustration of a fraction of H2 detonable in a turbulentplume is presented in Figure 3-10.

BLAST

Because the upper-limit explosion for LH2 -LOX mixing has the energyequivalent of 7,400 pounds TNT, the shock pressure and impulse versus distanceare given for this charge in Figures 3-11 and 3-12. It is recognized that thisequivalence applies strictly only at large distances from the explosion.However, the exploding mixture is far from spherical; e.g., the LH2 impactingthe LOX jet is spread out nonuniformly along the aft side of the LOX jet.Furthermore, the actual yield will be some unpredictable number less than 7,400"pounds. Therefore, there is no point in trying to fine-tune the blastparameters to account for the type of energy source.

I'

I

3-42

Of-~

Page 61: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

~0.1

N0.6

iit

0.2

23 4 15 67X/1L DOWNSTREAM DISTANCE OIN CORE LENGTHS)

FIGUE 3-0 FRCTIO OF2 DETONABLE IN TURBULENT PLUME

3-43

( ~1 4

Page 62: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

SI NSWC TR 80-417

FUM•TTIM (USC)

1020

j i 1o3 -\

06

101

U\

mio

Ic1 115

0

i 101

1o1 D1r1,AME 10r l2

FIGURE 3-11 PRESSURE VS. DISTANCE FOR 7,400-LB TNT CHARGE

3-44

Page 63: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

"NSWC TR 80-417

1012 ~lHr

FLIGHT.10

20

50

iis

++ ~102-4

"I DISANCE (FTI 0

FIGURE 3-12 IMPULSE VS. DISTANCE FOR 7,400-[.B TFNT CHARGE

•;++++3-45/3-46

++ +:., .+. °°?+ +++ • ++ : , +,++ ++-.+ +..... .+S.•

Page 64: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CHAPTER 4

SRB, ET, AND ORBITER BREAKUP

INTRODUCTION

The physical breakup of the shuttle ascent vehicle logically divides into threesegments associated with the three major components; the solid rocket boosters

(SRB's), external tank (ET), and orbiter. While coupling does exist, it does nc•materially alter the general fragmentation pattern and allows for one basic breakupanalysis for each component. Interactions are then considered as perturbations tothe basic breakup pattern. The rationale for the breakup analysis is presented inthe following sections with the detail calculations attached as appendices.

SRB BREAKUP

The SRB consists of the solid rocket motor (SRM), a forward frustum and skirt,an aft skirt, and SRB/ET attach hardware. The Command Destruct System (Fig. 4-1),intended to terminate the thrust of the rocket, is applied solely to the SRM. Itconsists of a dual linear-shaped charge (LSC) running longitudinally along the out-board side of the cylindrical case from the intersection with the forward dome(XB 531) to the ET attach ring (XB 1491). The LSC's are housed in the equipmenttunnel which is fragmented by the cutting action of the backside LSC sheath(Fig. 4-2). The sheath segments are accelerated to a velocity of about 2,300 ft/secby the charge and lose little velocity in penetrating the tunnel wall. Tile tunnelfragments in turn, are accelerated by the pressure generated by the explosive chargebut attain a much lower velocity due to the reduction in delivered impulse withdistance. However, those fragments caught in the flow of the propellant gas ventedthrough the LSC cut will achieve a velocity comparable to the LSC sheath segments.

The LSC (750 gr/ft HMX/aluminum) is sufficiently energetic to cut the SRM wall,except at the clevis joints connecting the individual case segments. This initialperforation pattern is shown in Figure 4-3. The internal pressure in the rocketproduces a hoop load which is now reacted by the remaining ligaments at the joints.The load exceeds the ultimate capability of the case material (D6AC), and theligaments fail in the hoop direction allowing the case to clamshell open. Simul-taneously, the perforation pattern produces extremely high local axial loads at thetips of the cuts causing local axial clevis joint failures. As each individual pinfails, the adjacent pin becomes overloaded and the failure propagates from the ISCcut to the opposite side of the case, separating the segments.

4-1

Page 65: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

,e4

1"4..a)4 fuUOMav

M as.a- b all lAct

IK

1I *_I u -i.

,t wilm i 1 ce

IKOM M t Ia I-0 A0"

FIGURE 4-1 SRB COMMAND DESTRUCT SYSTEM

LSC ASSEMBLYSYTMUNE2-750 GR/FTSSEMTNECHARGE$ ( CABLING

SUm CAN

FIGURE 4-2 FRAGMENTATION OF SYSTEM TUNNEL BY LSC'S

4-2

Page 66: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

FIGURE 4-3 INITIAL SRB PERFORATION PATTERN

t 4-3

Page 67: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

As the case opens, the propellant begins to develop cracks and breaks up. Anexponential distribution has been found to fit test data reasonably well. There-fore, the size distributions given in Figure 4-4 are assumed to characterize thefragmentation of the propellant at the times given in the analysis matrix. Thelargest fragment allowed at any time is limited to a cube having one side equal tothe radial thickness of the propellant at that time. The smallest fragment dimensionis chosen as 1 inch, consistent with experimental observations. The equation plottedon Figure 4-4

(L - LMIN)

N N (L° LMIN)NL oe

where No is the total number of fragments, LMIN is the minimum fragment dimension(I inch) and Lo is a characteristic dimension dependent upon the maximum fragmentdimension and the number of fragments. No is selected such that the total mass offragments equals the total mass of fragmenting propellant. NL is then interpretedas the number of cubic fragments having a side dimension of L or greater, up to themaximum dimension for which the distribution predicts only one fragment. No appreci-able consumption of the propellant occurs during the duration of SRB breakup, butburnup of the small firebrands could occur before ground impact.

Note that no fragment distribution is presented for a destruct action at

115 seconds into flight. At this time, the radial thickness of the propellant hasbeen reduced to the order of 1 inch and no fragmentation is predicted. It isreasonable to assume that in this situation the propellant remains adhered to themotor case and adds to the mass of the case fragments.

As the propellant fractures and new burning surfaces develop, the flame spreadsto these surfaces producing additional combustion products. Initially the pressurein the motor increases. However, as the case opens, venting overtakes the increasein combustion rate. The pressure curve peaks and then falls to ambient pressure.The peak pressure is dependent upon the venting process and the generation of newburning surfaces. Figure 4-5 illustrates the sensitivity of the pressure to therate of increase in burning surface. The prediction of new burning surfaces requiresknowledge of the flame spread rate into the cracks. Locking this information, theassumption is made that the flame spread rate equals the crack velocity. The crackvelocity is on the order of 2,000 in/sec for PBAN propellants when loaded dynamically.Hence, the upper bound on the flame spread rate is taken as 2,000 in/sec yielding thepressure-time curves given in Figure 4-6 for the selected times.

During the venting process, cracked propellant (inert chunks and firebrands) isejected from the SRB through the clamshell slit. The resulting velocities of thefragments are imparted by the gas flow in a direction normal to the SRM centerline.The smaller fragments, having lower ballistic coefficients, attain higher velocities.The maximum relative velocity imparted to a fragment of a given size is attained bythat fragment which is ejected when the slit width just equals the fragment dimen-sion (Fig. 4-7). A normal distribution is then assumed for the velocity distribution.

4-4

. - --#4•• •

Page 68: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWG TR 80-417

10,000 -FLIGHT TIME10000(SEC)

IMLN

100

10

0 10 20 30 40FRAGMENT SIZE (IN)

FIGURE 4-4 PROPELLANT FRAG1EINT SIZE DISTRIBUTIOINS

4-5

Page 69: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

2,000-

+to

1500

11.000

50

S0II I l I

10.000 10.005 10.010 10.015 10.020 10.026

TIME (SEC)

FIGURE 4-5 EFFECT OF FLAME SPREAD RATE ON CHAMBER PRESSUREDURING PROPELLANT BREAKUP

As the case opens, the shell flattens and begins to hinge about a linediametrically opposite to the cut. The hinge eventually becomes fully plastic andruptures producing two large flattened plate fragments from each case segment. Thevelocity imparted to the case fragments is derived from the lateral thrust on theSRB and the momentum transfer from the propellant ejected in the outboard direction.This velocity is normal to the SRM axis.

The forward fritstum, skirt, and forward dome of the motor (Fig. 4-8) remain asone large fragment propelled forward by the pressure in the SRB following clevisjoint failure at the SRM dome-cylinder interface. In most instances considered, theSRB is attached to the ET at the time of destruct system initiation. Since theforward skirt contains the forward SRB/ET attach fitting, the fragment is constrainedby the ET until the attach fitting breaks. The design of the fitting only allows a3-degree rotation before failing t'-ý 'eparation bolt. Therefore, failure of thefitting occurs .ery quickly, and the only major difference between response of aseparated SRB and that of an attached SRB is the addition of a rotational velocityto the fragment in tie latter case.

4-6

Page 70: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

FSR - 2,000 IN/SEC

S-•rn FLIGHT TIME

((SEC)

700

N,

300

* 300

• I0.010 0.030 L030 .040 0.060

TIME (SEC)

FIGURE 4-6 CHAMUBER PRESSURE VS. TIME AFTER DESTRUCT ACTION

4-7

Page 71: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

I NSWC TR 80-417

V 04

9-

0

F'I I L

0

4-8I

Page 72: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

FIGURE 4-8 FORWARD FRUSTUM AND SKIRT

The aft motor case segment, aft skirt, and nozzle (Fig. 4-9) remain as one largefragment. The aft case is not cut by the LSC's and is strengthened for SRB/ET attachloads and water recovery loads. Therefore, propagation of the damage inflicted uponthe other sections of the SRB into the aft section is not predicted. Similarly, thepropellant in the aft case is cast as one section, independent of the propellantcastings of the forward and mid-sections and, hence, fragmentation is not expected.The result is one large, heavy fragment which is accelerated in the aft direction bythe internal motor pessure but resisted by the nozzle thrust. The aft SRB/ET attachstruts are free to rotate at the ends and will not retard the motion of the fragment.The struts will fail at the monoball joints after a rotation of 8 degrees, creatingthree strut fragments (Fig. 4-10).

Explosion damage, created by any of the postulated sources presented ink Chapter 3, will be minor due to the physical distance between the susceptible SRB

fragments (forward frustum and aft case) and the source. The delay between the timeof destruct initiation and the time of explosion is sufficient to allow the SRBi/'I fragments to move out of the severe damage region.

I

FIGURE 4-9 AFT CASE, AFT SKIRT AND NCZZLE

FIGURE 4-10 AFT SRB/ET ATTACH STRUT

4-9

Page 73: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

ET BREAKUP

The purpose of the ET destruct system is to provide maximum dispersal of thefuel and oxidizer in the LH 2 and LOX tanks before ground impact. The ET system con-tains two simplex LSC's, each redundantly initiated. The LSC's are placed in the OFIcable trays along the barrel section of the LOX tank and the aft two bays of the LH2tank (Fig. 4-11). Upon initiation, the LSC jets cut the bottom of the cable traysand the majority of the length of the tank skin directly beneath the LSC's.

The cable tray support brackets and skin pads of the LOX tank will probably notbe completely severed. However, analysis shows that the brackets and pads will failby gross tension or crack propagation depending upon the hoop load generated by thetank pressure at any particular time. Experimental evidence suggests that the cutwill not propagate through the fore and aft integral ring frames of the barrelsection but will either turn or branch from the longitudinal to the circumferentialdirection. The crack propagates around the tank until arresting or again turning tothe longitudinal direction upon encountering the superior strength of the barrelsection forward of the SRB beam. The result is a hole in the LOX tank of about onequarter the circumference of the tank by the length of the barrel sections 160 ft 2 ofskin area.

The skin is removed in two unequal sections (Fig. 4-12), due to the location ofthe cable tray, but the hole is centered on the +Z-axis. The skin sections arerapidly accelerated to the exit velocity of the LOX along with fragmented sectionsof the cable tray (Fig. 4-13), a broken length of the GO2 pressurization line,lengths of vent valve actuation line and nose cap purge duct line, electrical wiring,brackets, slosh baffle debris, etc.

Similar response to the LSC cuts in the LH2 tank will result in a hole in theaft bay of that tank confined by the ring frames a': XT 1871 and XT 2058 and thelongerons spanning the aft bay (Fig. 4-14). The resulting hole has a surface areaof 300 ft 2 . The extent of holing of the bay between XT 1624 and XT 1871 is unclear.The hoop load will propagate the cut forward to the ring frame at XT 1624 where thecrack will either turn or arrest. At early times into flight (around 10 seconds),the orbiter. thrust load offsets the axial tension in the tank skin in the locationof the LSC cut. N6 axial stress is present to propagate the crack in the circum-ferential direction. However, as the orbiter thrust is terminated due to the lossof oxidizer or at later times into the flight when the orbiter thrust is throttled,the bay does experience axial tension around the full circumference. While initiallyat 10 seconds no substantial holing is predicted, crack propagation is expected atlater times. In this case, the extent of circumferential damage is difficult topredict. The forward end of the bay is of nearly uniform thickness. This presentsno major obstructions to the crack movement. However, at 10-inch intervals the entireskin is longitudinally stiffened with integral T-stiffeners. It is probable that thecrack, following paths of least resistance, will be caught between stiffeners andagain turned to the longitudinal direction. The hole is then assumed to be on theorder of the other LH2 tank hole size or about 320 ft 2 . Thus, sometime after10 seconds, a total of 620 ft 2 of LH2 tank skin is removed. Complete 3evering ofthis bay will not alter the fragment predictions for the ET but will i. fluence thepredictions for the orbiter.

4-10

Page 74: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417*1

"tW/IAE Sf' laII"*"

', : LK WAIL

€•AC llM/• • 1 (il *

IS -

/" . *Ilk#'

FIGURE 4-11 ET COMMAND DESTRUCT SYý,STEM

kK 4-11

I" _ _ _ _ _

Page 75: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0.187 TANK SKIN

FIGURE 4-12 ET SKIN FRAGMENTS

FIGURE 4-13 FRAGMENTATION OF CABLE TRAY

4-12

S. .. . .I-•.

Page 76: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

FIGURE 4-14 INITIAL HOLING OF LH 2TANK

The outflow of LH2 will break off sections of the LOX feed line, LOXpressurization line, LH2 pressurization line, and additional sections of the cabletray. All of the structural fragments from the LH2 tank will be caught in the flowand rapidly acceler'ted to the velocity of the LH2 jet.

High lateral thrust loads are created by the LOX and L112 jets. These loads donot induce bending moments in the ET structure of sufficient magnitude to fail theundamaged portions. However, the barrel section of the LOX tank and the 3rd bay ofthe LH2 tank, weakened by the loss of skin, are hinged. The lateral thrust, inertia,and aero loads eventually cause separation of the ET into three major segments(Fig. 4-15). As the LOX tank barrel section separates, additional debris fragmentsare produced from further breakage of the slosh baffles.

SRB breakup will not materially affect breaking of the ET. SRB clevis jointfailures will relieve the transfer of thrust loads to the fore and aft attach pointsand preclude SRB beam or ring frame XT 2058 failures. Venting of the SRB is dlirectedoutboard by the clamshell and eliminates any substantial overpressure on thle ET.Impact of the SRM case segments on the LH2 tank will be the primary interactivemechanism. However, holing is not expected since the contact area is large and thle

V impact will be oblique.

iz!

4-13

°•i he utflw o LH2wil brek of setios oftheLOX eedline LO

Page 77: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

, i, NSWC TR 80-417

r ,

I•! 4- __14j

Page 78: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Blast effects on the ET are modest when the orbiter is not attached to thetank. The LOX and LH2 jets propagate large distances before mixing. The resultingexplosion, created by auto-ignition or firebrands, is sufficiently distant to pre-clude further break up. However, when present, the orbiter blocks the LH2 jet,spreading it in all lateral directions. The aerodynamic flow is not sufficient toprevent the LH 2 from moving forward under the orbiter and mixing with the LOX jet.Auto-ignition occurs when enough fluids have mixed to create an explosion equivalentto 7,400 pounds of TNT. Because of proximity to the ET, the resulting pressure onthe LOX tank and the intertank (IT) is extremely high. The structure, however, canabsorb the energy of an exte-nal explosion through compaction of the TPS foam andlarge plastic deformation of the aluminum. Substantial damage may be incurred, butno major additional breakup will evolve.

ORB ITER BREAKUP

Breakup of the orbiter occurs from two sources, the LH 2 jet impact on the under-side of the fuselage and the LOX/LH2 explosion just forward of the orbiter nose(Fig. 4-16).

The LH 2 jet impacts with a velocity that produces a total pressure of from 18to 33 psi. This pressure will not catastrophically hole the underside of thefuselage but will result in plastic deformation of the skin panels, loss of somebending moment capability, ane removal of thermal protection tiles. The total loadwill cause breaking of the orbiter/ET attach joints, hinging of the fuselage in themid-cargo bay area, car 6 o bay door separation, and TPS tile removal.

LOX IJET BLAST WAVE

SECTION

FIGURE 4-16 BLAST LOAI)ING ON ORBITER

P .4-15

Page 79: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The explosion will precipitate extensive breakup of the nose portion of theorbiter ahead of the crew module (Fig. 4-17). The resulting debris consists of skinsegments, thermal protection tiles, structural beams, frames, and trusses; reactioncontrol system (RCS) nozzles, pressure tanks, fuel tanks, and piping; and landing

Sgear structure, operating equipment and doors. The remaining forward fuselage willcollapse on the crew module, absorbing the blast energy in so doing. Windows willbe blown in, but the crew section will remain essentially intact.

Orbiter response to SRB breakup will be modest. The venting of the SRB isdirected outboard, precluding high-pressure loads on the undersides of the wings.Impacting propellant and SRM case fragments will cause only local damage.

DEBRIS FRAGMENTS

Listings of the debris fragments are presented in table and chart form inAppendices A through C. These tables and charts were groupcd separately for theSRB's, and ET, and the orbiter, with Appendix A covering the SRB's, Appendix B theET, and Appendix C the orbiter.

In most cases, the fragments will tumble and no lift coefficient is presented.However, two SRB fragments and one orbiter fragment assume trim attitudes that pro-duce negligible lift. Three ET fragments develop lift over some range of Machfnumber. The CD and CL are defined as

C F/(i- PV 2A)cD = I( VA

CL F/(4. pV2A)

where FD and FL are the drag and lift forces respectively, p is the ambient atmos-pheric density, A is the fragment reference area, and V is the fragment velocity.

The range of ballistic coefficient (W/CDA) given for each fragment in the tablesis a result of the variation of drag coefficient with Mach number. For those frag-ments having a rangb of sizes and weights (i.e., SRB propellant cubes), the range ofballistic coefficient also reflects a variation of weight/area.

Since the scope of the work presented here does not include predicting thetrajectories of the fragments, no attempt has been made to ascertain the terminalvelocities. Therefore, the full range of ballistic coefficient is given in eachtable for destruct at any time. However, the actual range of ballistic coefficientfor any particular fragment produced at any given destruct time may be considerablyreduced for limited variations in Mach number as evidenced in the plots of dragcoefficient.

Note that the lists of debris fragments are essentially the same for bothnominal and aberrant flight conditions at all times during the ascent phz.e. Themain exception lies in the number, size and weight of SRM propellant fragments. Thiscommlonality exists because the breakup mechanisms are dominated by the internalpressures and lateral thrust loads imposed by the venting of the SRM, LOX tank, andLH2 tank. The effects of aerodynamic, inertia, and body forces ark seen predominantlyin the velocities (AV) imparted to the fragments.

4-16

Page 80: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

4f NSWC TR 80-417

4-17

- - r

Page 81: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The velocity AV is defined here as the vector change in velocity due to thedestruct action. The total velocity is the vector sum of the velocity V existingprior to destruct action and AV. The velocity V, angle of attack, and angle ofsideslip are given in Table 4-1 for both nominal and aberrant flight. In someinstances, particularly during the high-Q boost period of aberrant flight, theseparameters change rapidly with time (Figs. 4-18 to 4-24). In such cases, thosefragments achieving AV's of significant magnitude compared to V will experiencechanges in their total velocity vectors with small changes in At, the time intervalbetween inadvertent separation of the SRB or orbiter and initiation of destructaction. The At's used here were selected by the criteria presented in Chapter 1and do not necessarily maximize velocities or footprints.

The AV's of a number of selected fragments are plotted in Figure 4-25 withrespect to destruct action time. For most fragments the AV's can be interpolatedbetween successive times with reasonable confidence, regardless of nominal oraberrant conditions. Exceptions include, for example, the major ET tank fragmentsfor which aerodynamic forces due to pitch and sideslip play a significant role.

i TABLE 4-1 VELOCITY, ANGLE OF ATTACK, AND ANGLE OF SIDESLIP AT DESTRUCTACTION TIME FOR SELECTED TIMES

Time Velocity Angle of Attack Angle of SlipCase (sec) (fps) (deg) (deg)

Nominal 10 180 6.5 050 1,070 - 3.5 0

100 3,200 0.5 0350 13,800 0.0 0450 22,100 0.0 0

One SRB Lost 20 300/710* 10.0 -1052 1,070/1,160* 9.0 - 7

115 3,700/4,900* 30.0 -11

Orbiter Lost 20 360 4.0 1165 1,300 28.0 54

115 4,000 -10.0 -18

*Free SRB Velocity.

"RELOCATION OF LH2 TANK LSC

"1he original destruct system chosen for the LH2 tank and analyzed byNSWC/WOL consisted of a 20-foot linear-shaped charge (LSC) placed in the cabletray and centered at the XT 1871 ring frame. This system produces 10-footlongitudinal cuts in the 3rd and 4th bays of the LH2 tank which propagateaxially and circumferentially under a combined hoop and axial tensile stressstate to form vent holes for the LH2 . However, at early times during ascent,

4-18

4

Page 82: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

i,

+CN

+0 +0

S+Z V-

NOTE: VEHICLE ATTITUDE IS "TAIL-DOWN"DURING ASCENT.

FIGURE 4-18 ASCENT VEHICLE AXIS SYSTEM

4-19

Page 83: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

404-

11 -

20~-2 *0-'

10 11 ~TIME (SEC) 2 0TM SC

3- - -

010

4-0

TIME (SEC) TIME (SEC)

FIGURE 4-20 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH INADVERTENT

RIGHT SRB SEPARATION 50 SECONDS AFTER LIFT-OFF

4-20

Page 84: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

40 10

100 106 112 lie

3eg 6 o ,s

II

-10

oa10- -2

01.1 I -30 L100 106 112 118

TIME (SEC) TIME (SEC)

FIGURE 4-21 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH INADVERTENTRIGHT SRB SEPARATION 100 SECONDS AFTER LIFT-OFF

- 40-

10- 30-

a$

; 10 16s

-10 10

-20 0TIME (SEC) 10TIME (SEC) 22 2

FIGURE 4-22 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH INADVERTENTORBITER SEPARATION 10 SECONDS AFTER LIFT-OFF

4-21

Page 85: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0.10 120 -

0.06 90- /emu

w

S4,'

"-0.06 a 30

4.10 - 0 50M (5)O61 e2 aTME (SIC) TIME (SEC)

FIGURE 4-23 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH INADVERTENTORBITER SEPARATION 50 SECONDS AFTER LIFT-OIF

31m- 10

U 'O,

10 - 100 ` -og 112 113

a -- aII'I o-0

10 l6 112' 111 1

Io-

- 10 -'% . - 20

"-20 -30TIME ($ECI TIME (SEC)

FIGURE 4-24 ASCENT TRAJECTORY PARAMETERS FOR INTEGRATED VEHICLE WITH INADVERTENTORBITER SEPARATION 100 SECONDS AFTER LIFT-OFF

4-22

Page 86: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

PWD SRI FRU)STUM

A' 450

350

A

300• / LH2 TANK DEBRIS 1

:11

$1 00

H H H

F 100 oAFT ET TANK

LO THANK DETRIS

so - 0---- oo

AFT SRI CASE

x----¥'" I I 1 I

00

0 20 40 w so 100 120

TIME (SEC)

FIGURE 4-25 AV VS. DESTRUCT ACTION TIME FOR SELECTED FRAGMENTS

4-23

Page 87: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

the thrust load of the orbiter subjects the LH2 tank skin in the vicinity ofthe 3rd bay cable tray to a slight axial compressive load. Termination oforbiter thrust prior to destruct action would eliminate this condition. But forthis analysis, it will be assumed the thrust persists at the instant of LSCinitiation. Since the rationale for holing was predicated on preflawed pressurevessel test observations under a biaxial tension-tension stress state, branchingor turning of a longitudinal crack at the XT 1624 and XT 1871 ring framesunder a stress state of hoop tension and axial compression cannot be assured.However, local axial stresses at the tip of the crack will be tensile in allcases suggesting the possibility of circumferential extension regardless ofgeneral axial stress state.

Due tc the high heating environment for the cable tray along the aft bayduring reentry, elimination of the LSC from that area is necessary to minimizethe weight penalty imposed by insulation requirements. External tank (ET)response to an optional LSC destruct system for the LH 2 tank has been studiedand is presented here. The system consists of a 10-foot LSC centered at XT1624 and spanning 5 feet of each of the 2nd and 3rd bays (Fig. 4-26).

XT 1566 XT 16 8

CABLE TRAY /-LSC BRACKET

II I ' i _ _ I _!

05*I TANKSKIN

XT 139 XT1 464 XT 1529 XTl15 93 XTle6W XT 1722 XTl1787 XT 1952

XT 1377 XTI1 24 XT 1871

FIGURE 4-26 10-FT INSTALLATION SPANNING RING FRAME XT 1624

Figure 4-26 illustrates placement of the LSC and locations of the cabletray brackets along the 2nd and 3rd bays. Design changes in the LSC andbrackets now suggest that complete severance of the brackets will occur, butskin ligaments under the brackets will still remain. With orbiter thrusting,the AP across the tank wall will be in excess of 15 psi. A A? of 15 psi gives agross ligament stress of

4--24

Page 88: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

F AP R (2CI)Y•A A =139,000 psi

AA

where A 0.5 in 2 (ligament stress area for 0.143-inch wall thickness),R = 165 in (tank radius), and 2CI 28 in (length of each of four cuts inskin, separated by skin ligaments at cable tray brackets and XT 1624 ringframe). This is significantly above the 95,000 psi ultimate strength of the2219-T87 aluminum at LH2 temperature. Ligament failure will occur by grossyeilding, producing two 60-inch cracks separated by the ring frame at XT 1624.

Hahn, et al give the critical loop stress for crack extension inthin-walled cylindrical pressure vessels (R/t "• 50) with long cracks as: 1

-1/2

h -4)1/ 1 .6 (50 tanh 50t)]

where

*3 = 1.0 (* < o)2C = 2C2 = crack length (60 in)R = vessel radius (165 in)t = wall thickness (0.143 in)

For Kc = 110 ksi Tn- (maximum stress intensity factor for 2219-T87 aluminum)the above equation gives the critical hoop stress as

1h = 5900 psi

The AP across the tank wall required to generate this stress is

AP*= =5 psiR/t

At a Ap of 15 psi, the cracks will easily propagate longitudinally to theforward end of the 2nd bay and the aft end of the 3rd bay producing two 20-footcuts.

Recent tests have shown that the LSC will cut a total of about 1/2-inch ofaluminum in the cable tray installation; 0.125-inch cable tray bottom plus morethan 0.340-inch of tank wall. While this is not sufficient to completely severthe outer chord of the ring frame at XT 1624 (Fig. 4-27), the remaining crosssectional area of the web and chords is less than 3.025 in 2 . For conservatism,consider a cut of 0.340-inch in the tank wall. The stress on the uncut section is

lHahn, G. T., Sarrate, H., and Rosenfield, A. R., "Criteria for Crack Extensionin Cylindrical Pressure Vessels, "Journal of Fracture Mechanics, Vol. 5, No. 3,1969, p. 187.

4-25

Page 89: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0.9

hoc_&_ __ 1.500

° I

"".O -0010

0.4200j_ '1

FIGURE 4-27 XT 1624 FRAME CROSS SECTION AT LSC

4-26

Page 90: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

PF P R (2C 3 )- 3 196,000 psi

SA A

where 2C3 is now 240 inches. This is >2 times the ultimate strength of theframe material. Complete rupture of the frame will occur by gross yieldingresulting in one continuous 40-foot cut extending from XT 1377 to XT 1871.

Of course, the failure and subsequent response of the frame is predicatedon the assumption that the shear strength of the skin/frame intersection issufficient to transfer the pressure load to the frame. The circumferentialrunning load is

N = APC = 15 (120) = 1800 lb/in

The shear stress then becomes

T = 0 12,600 psit 0.143

Assuming the shear strength of the 2219-T87 aluminum is one-half of the ultimatetensile strength yields a shear strength of about 47,000 psi. The load will betransferred to the frame.

The previous section established the length of continuous crack formed inthe LH2 tank wall. The next step is to predict the hole size formed by grossdeformation of the severed skin and frame. The pressure load will apply abending moment to the frame and skin and will unroll them if the bending momentexceeds the fully plastic bending moment of the severed structure. The skin hasvery low bending stiffness and will not contribute significantly to thestiffness of the structure around XT 1624. Therefore, the XT 1624 framemust carry the total bending moment. While the frame cross section varies withcircumferential position, a good average value for the fully plastic bendingmoment of the section is about 500,000 in-lb.

Consider a short section of the frame, bounded on one end by the cut andfixed at the other end; that is, a cantilever beam having the cross sectionalproperties of the ring frame. At what distance from the free end will the fullyplastic bending moment be exceeded? The applied moment is given by

M = (NL)(L/2)

when N is the running load and L is the distance from tie free end. Equatingthe applied moment to the fully plastic btnding moment yields

Mp = NL2 /2

Solving for L gives

L=LR

4-27

Page 91: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

The running load is now twice that used in the shear calculation since the frameis loaded oy the skin on both sides. L then becomes

L - 17 in

SAll sections of the frame at distances greater than 17 inches from the cut wouldsee a bending moment greater than the fully plastic moment if the load remainedconstant. In reality, the load decays rapidly with time and the frame portalsopen, coming to rest when the driving force falls below the resistance. Thehole formed is illustrated in Figure 4-29. It has an area of about 500 feet.The corresponding vent times are given below.

(sec) (sec) (sec) (sec)

10 0.62 1.83 0.31

The escaping LOX and LH2 form lateral jets centered at XT 795 and XT1624, respectively. Initial thrust loads are high but decay with time. In. thecase considered here, the orbiter remains attached to the ET at the time of

destruct aetion and the LH2 jet i.mpinges on the underside of the orbiter. Adynamic analysis of the response of the orbiter to the LH2 jet formed usingthe original destruct system predicted failure of the forward orbiter/ET attachstructure within 35 msec of destruct action. The optional system presented herewill impose higher loads on the orbiter and locate them closer to the forwardattach point. Failure of the forward attach point will not occur in less

T, elasped time.

Failure of the forward orbiter/ET attach point permits rotation of theorbiter about the aft attach points. However, rotaticns in excess of 3.5degrees will fail the separation bolts and free the orbiter. Hence, the initialstructure to consider is that of the ET, hinged at the two hole locations, andcoupled to the orbiter at the aft attach point only. A dynamic analysis,tracking the motion of the various connected links, and incorporating thethrust-time and mass-time properties of the fluids, predicts relative orbiter toET rotation of 3.3 degrees in 0.2 second.

The subsequent response of the ET is predicted via a three-link model.Complete failure of the tank at a hinge is assumed to occur when rotations bringthe ends of the hole into contact and place the skin diametrically opposite thehole into tension. The failure criteria are 0.3 radians and 1.7 radians for theLOX and LH2 tanks, respectively. Failure of the LH2 tank at XT 1624 ispredicted first, occurring 2.7 seconds after destruct action. Failure of theLOX tank occurs immediately thereafter, at 2.9 seconds after destruct action.Hence, the ET breaks into three sections within 3 seconds of destruct action, ifdestruct action is initiated at 10 seconds after lift-off.

The optional LSC destruct system considered here is at least equivalent tothe original system in terms of rapid dispersal of fluids. The LOX is expelledat the same rate with either the original system or the optional system. TheLH2 is expelled more rapidly with the optional system. The fragments formedduring breakup of the ET are the same as those predicted for the originalplacement of the LSC.

4-28

Page 92: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

' INSWC TR 80-417

•• PLASTIC HINGE

FIGURE 4-28 LH2 TANK RESPONSE TO LSC CUT AT EARLYTIMES DURING ASCENT

4-29

Page 93: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

BIBLIOGRAPHY

Belles, F.E., "Detonability and Chemical Kinetics: Prediccion of Limits ofDetonability of Hydrogen," Combustion Symposium, Vol. 7, 1962, p. 745.

Boggs, W.H., "Physical Processes Causing LOX/LH 2 Autoignition," Minutes of theSeventeenth Explosives Safety Seminar, Denver, Colorado, Vol. 1, Sep 1976, p. 135.

Cassutt, L.H., Maddocks, F.E., and Sawyer, W.A., "A Study of the Hazards in theStorage and Handling of Liquid Hydrogen," Advances in Cryogenic Engineering, Vol. 5,1960, p. 55.

Deigarabedian, P., "Observations on Bubble Growths in Various Superheated Liquids,"

Journal of Fluid Mechanics, Vol. 9, 1960, p. 39.

Dergarabedian, P., "The Rate of Growth of Vapor Bubbles in Superheated Water,"Journal of Applied Mechanics, Vol. 20, 1953, p. 537.

Farber, E.A., Smith, J.H., and Watts, E.H., "Prediction of Explosive Yield and OtherCharacteristics of Liquid Rocket Propellant Explosions, Final Report," University ofFlorida, N74-20589, Jun 30, 1973.

Forstall, W., Jr., and Shapiro, A.H., "Momentum and Mass Transfer in Coaxial GasJets," Journal-of Applied Mechanics, Vol. 17, 1950, p. 399.

Kaye, S., "Hazard Studies with Hydrogen and Oxygen in the Liquid and Solid Phases,"Advances in Cryogenic Engineering, Vol. 11, 1966, p. 277.

Lewis, B., and von Elbe, G., Combustion, Flames and Explosions of Gases, 2nd ed.(New York: Academic Press, 1961), pp. 382, 399.

Mayer, E., "Theory of Liquid Atomization in High Velocity Gas Streams," AmericanRocket Society Journal, Dec 1961, p. 1783.

"Ordnance Options for a Space Shuttle Range Safety Commuand Destruct System," NavalSurface Weapons Center, White Oak Laboratory, Silver Spring, Maryland, forGeorge C. Marshall Space Flifht Center, Marshall Space Flight Center, ALabama,under NASA-Defense Purchase Request H-13047 B, Amendment 3, 8 Mar 1976. Reportdated 10 Dec 1976.

Perry, J.H., Ed., Chemical Engineer's H1andbook, 3rd ed. (New York: McGraw-Hill,1950.)

5-1

Page 94: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

t Schlichting, H., Boundary Layer Theory, 4th ed. (New York: McGraw-Hill, 1960).

"Study Report on Space Shuttle Range Safety Command Destruct System Analysis andVerification," Naval Surface Weapons Center, White Oak Laboratory, Silver Spring,Maryland, for George C. Marshall Space Flight Center, Marshall Space Flight Center,Alabama, under NASA-Defense Purchase Request H-13047 B, 15 May 1975. Report dated

i• 2 Feb 1976.

Hahn, G. T., Sarrate, H., and Rosenfield, A. R., "Criteria for Crack Extension inCylindrical Pressure Vessels," Journal of Fracture Mechanics, Vol. 5, No. 3, 1969.

5-2

Page 95: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

41Ff NSWC TR 80-417

'II APPENDIX A

9 LISTING OF SRB DEBRIS FRAGMENTS

A-I

Page 96: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N O4

HH>1

U) 0 0

0 0 4

>i ,4 W 0 0 0 0 a' U) r) C

E-4 N~ H N 00 0 0W0

0 0o 1. c 0 00

0 0, 0 0 C0 ' 14,U'.C -4 N 00 I .'4H- l

0: 0CY r- U - -0 II)

0 00 0 -I 01u 0 *ý0) Q jC- -. N 0 N N C)

04 P ~ (j H0 H4 N- I 00 I. -.4 0t -, ý C) C) I NYH0 44- 0% HD NO 0 H) 0 C%

C1 0 r -4

0 . C

a 41 000 0 H0 -I H C-4 UHI HH N- OD HO 0 0itC

00 0 0) N0 0 . LM H0 No1 f- 00 0O --4 IT It 0 I Q

04 LfI - 0 .400

N CCC- - H 0 '

00 04 00) U' ' 00 0 l 0 0 0 0 \ I

0 0 *N IT N r--4

m 04 Cý O H 0

0 u0) 0 I

44 0 0 \ 0 0 >C1 %iU0 1 0 0 c

LW 1 0 -04.1 00U 0 0r

N- (n 0 0*0) 000N*'U) U

WU) 0 Uqw NC441 4 ) 0) U) k :on -n 'r. i 0)P3

U-)u z C) .4 0Uu .0 r &

c to m a. 4A U) m ~ m 2 wC 00z 0 0 V- V 4M (0 1C 0) Q)U 1- C)- 110 )V d -4 w 41 P-4 C) (a N. LU) 1- 1CO (a U) H ) m < p 4U) Q) 0) W.4) C4 H :O> 41 u 4 C LC 0

-44 410- U i A : ) U) U) C '- u)- U) r-.4 0 0 ) 0

11 U)OO 0v. E-4 0.j E- I- C4~ coA V r I VJ

t. 00 -,4U~~jJ O

C) 0 *~0 ) ' i UHL)S. 0) ihd 0- c C ) .40 .I

A-2

Page 97: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC Th 80-417

CN '44

Nu w cc cc c c c

M) MS. C

a)4c,~ 0

0 - 4 I N I CY 4 .It

10 00 0T 0 0 0-n c.1 Ci $4

Cý 0

ID Ln HN N l Cl

HC 0'0.H 4j CDc -

- ~ a)'0 CD -L HC C Cl N ) rL

0N H1 00N C1 m C 0 cc H 0

> It 00 \4 I04 r-4 00 Ll -I a)

00 0

N H'

0 0

0 0" 0 0 c

14 0) 0

0 ow C' Q

0 ~ 4 0*'*~- ItN N00 0"i C14

00 r-q H0I. " H 0 0 Hj

0~ H 00"*

0i co I.jC 41o0 C: U)0 V :U

tu. ta 4 0o ua) a mu 0 r

1-4 0 1- o* -0 Nn mNUc

0 ci, 1-1 r-4 r-4 -4 COUi r-4

""-4 T a2) J Q)0) 41 a 0) 4 ) 41 ) " a

0) 0 0~ 1~ 0~ 1o 0~ 0~ 1 04.p 0 w 1-i 1.4 0 ~ 1-i 1.j C0 4 t

w ~ A4 -4 *04C4 *L4 C4 .1m'azHJ J =I 44 J - .0~c

H ~0 ~ LI OCI ~CI OCVO -~ ,~ CON1-4

HA- HH3

Page 98: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

nI IIoW z

.~ zcIn 0 '

O~~ C) CC 0'

O~O0 a) 0,t c f

H4J w 0 N Nl 0 0 0, --T 04~ 1- 1)'. 0 0 0

> 0 0 0 0 0 00 00 M~ Ln' -T

0 to 4r -A~ )I~ u m TC)-4 r 41. ýC

0 - :3 0" Lf cn H rq N Dl l

1- 0 1f 1" 1 1 N cli I 'A l N 0 0 It 10 1 co (H N 0% H- Nl H- 0v-4 0 HH

~4;4- 000 Hr

'0 C4 (7' 0N 0; Hý '0H 0 ; 0mO N H N H

0 0

m o .0 0 0) Nl

:3 0 0- 0o 0n4 ýT 0 N)C4-I 01 'C' r0 -It U4r4c 1 % n C4

00 0" C)~-r *H H C

'H HU UC)

H 0 0460 0 *N 0q -C ID0C) OI 0

:3 00 C14)I ' C

Nl N H- 1.0 0ý N1 OH 0; 0 0 N

0O04) 0) H

CJUC)

o3 H1 co 0 1.0Q) 0 %.0 1t-

4-r4

(V 0 4-0)*n 0 NN4 ýd 0- :1 1- ) ~ ) C O)J ) ~ 4~)

000

H C)4 N~ 1.j HJ 00 ' - H 4I 1 0 zH V)o En( 0) 0 ).49 W~ :3 c1I CVO 0

in a r.4 -~t' 0 N( H H

w0 w_ _ 44 w -uW f4- )r

A-4

Page 99: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N00

Wj .H ci 00) (.i 0 I "1 "I "1 "I,- z

- ) 0) ,.-

'~~~ F5 w • 0 - " 4 u•0 ) , o- :

W U 44

0• rfj 0 to Ln

,H 4• 0 00 -I" 0 0 o,4

H Ca fX -- H..4 - 00 -.1

U2 '.0

4 w4 "

a.'

.1 0 0

oo 4 C) 0 C)

U I I I C)

E-~~4 00 ') .0 0 H a

0 -" o ,I N--

00

0 0 ) HC .0 C L)

H-' ' 0.0 o C4 oC

4, ''l . '0 LI-- l o

>~~ 0 r10~~ 0 l

04 Hu 00 0 r,

0 -v 0 " 0 0 •0 I•

-CU- 0 m 0

w C, 4 ,-0 m -4 0 o

• o• . '0 I o I o I o .

0 A-

00)0 U %,a) 0. 4 0

'.4. I- 0 00)41 CV 0 I

a) 0- 0E-4 0 '.

(n4 0) '4-1 -Q)

0) 0

0C CLo 4do m cu au co u 0 CO

411 0) 0.. 1 " 10 ")0 .

010 m lO v C14 COU N O rn Mcn

z 1- *H 1 H 'A 0I(00 m Q) "J a)1 " ~ * J

C/) H. C. H>

E-4 H 0 I 0o,1 0ý,1 0!1 0 1

Hn 4 C -0ý r- q 0. C-4 rid

C1 cl - LI '.

A-5

Page 100: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

K NSWC TR 80-417

kC14 0

0 " 14 I 4) i

,-H H c*q en -It \0 co 0

0)

E- ~~U0 00 00 HQ 0 00

E-4 rH4- _: 0 4,JC' 0 0 0 -(V 44 1 0 1 1 0 0 0 1 44i> - 0 0 0 0 0 co 0 0 M~ t -T 0

4 H- -4 C'4 ,-4 C14 m' %D1J '

0 %D00 04j 1 0

.J4 CJ.~-c 0 nt 41 ;C4 q uCO o N.) enr- 0- N' C)

44 " 0 C0 '-E-1I ID CI oZ ~ 00i C4 0

. r-. ON 0-- -r * r-4 4

0) - -44 m' $4

0 00 a Cf) C U- 4-4

0 - a 0 0 - 0 0) C)

4-4-

0 CUr-4 ) 0

CO0 C C C -1405 0o 0 0 C ) c

E-4 I.0 0 f 0C C -14:3 0 ri 0 n 'A -.T0 a' a

41 N C4 .)r

.4 0) C

.-I COO

a0 C> C'O Nu0) -H 000 mI C )iý

:3: 00 r4JO 4-4

C4 C14 14O C/) C40 4 .J*

0 (0-4 CD 4--

H0 0 u

-4 CN 0) 0- '0 N. Co C' 0r4 z C14 ýD 1 '-) O

Page 101: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

W - - - --nV

NSWC TR 80-417

'4-J ja rX .11 14 -4

O

0

Ucn C)

I I4 4j -I .C

:D >0 0 0 0 044P4 -C H

F 4J C 00 I ) t

H Nt C4N nr

Q) 00 -IT) C.)ru r-.-m C4 Ln$

Z 0\IQ) a)' C4..

'.4 N 4' H 4

04 44 all .0 0.T L In

~~CLCfl 44h

-4-4 _ 0 0 0

0 rq 1-4. CO4 0p Q' 00 C %D

:3 C Ni cn H

1-4 0

0): 0- ) O

1c 0 W ow ow O

00

-0 000 0 -P.4 0- Q-)-iHU

-r4 z mz~ >H ~ ~ 4 00 t-0 ~ L~~0 c

o HO HO HO O O

a) 0

W 0-C

A-j 4mi -W 4 - 7 J C

Page 102: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

04 0N

0 $

4 0 ? I I1 n IT II %. 00 0

co, 04.H 4EA4 4-i 0 C00 0

CH. a ) 0 00O0 Ea n Ln Ltn ONH- co0N 0 00 -

o) aU 4 4 Il 0 1 1 0) 0) 0) I 4-4>O 00 C 0 0 0 0 CO 00 c? Lfl IT

HL CO 4 W HC 00 0

0 0 t0rl 4.3 rQ4 ~ 0

on IT0~ 4- r,~ rC O COSH - ' CO -n Nn H4 r- H

Ca 44 0l N,~ C' H N In 0N.r- %.0 0D IT7 00 C1 w H

H N ON 1H N4 H- OH 0ý Hý H- I

0* '0 044 ) N 0~ --

$:w400 0 1Q0 44-1O I H-- C:

'.4 '1.0 N" ON C 0 H. r-I H) 0 0 Ci

ca0 H _, C 0 0) 0 H)0I H NW.N 0HH0 0CD D 0 N

0 0j N

0 0 0 0- 0 0 Nn - - I

N N- -It -1 -4 HN '.D '.0 N

0t,~ Ln

0 4 -N 0 0 C;X w 0 0 C*.N I N4 N ' -4

to -4." CO I 0 C) - I'Da %00 C-. aY Ln1 0 0 a' 0

:CO HO 0 N -. *.

w N N H- Is0 0; N; OH 0 0.4,l0 Ql) 0 '0

'.1 -H. 0 0 Q':j NL C) 0 0 0 0- H

0 CN IT 00C L() *N a

0t CO 0) 8 1'Q) 0 ) Ci) > (n

En0 C ±) 10 0- 1. 4-1 4..H Cl) r. a ) u -- 141) a) 0 0 0 W (z (U

Q) a C) HJ- W- ; 4- 1

* u* 0D to I41 ~ i ~ C0 10 C4 m0 H N NN 41J 41J a 41~ a3 .Q) Q) ) a) - p $4u 0

A-8 __ _ _ _ j h c ) r uP 1 d.4 r4C . r

Page 103: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC IR 80-417

C* 0

0

N 0 to 1 0 co 00 CO 00

4.J '-, P1I Z_ _ _ _

E-4 4

0 0 0 0 0

H Ca 44 tI H

go N n 0 00

0i 1.0 c00 .0 -u

0 ~ Hn r N C n

a -N Ný Cl Co

44 VH ý cn Cl 4

.,jC -4 4r 0

0) 4. C) 00)~ HN N -1r

C- a) OD C ID 1

C14 '.0 LI ) N cli N* CC)

0 0

0 4 -1 00 Co r,

i C14 C a0

01 I 0 C4 r

a)L

0 0~

44 00. H 0a 0 00 Co ~

m 0 -4. -It

r4j

C: U) w : U

4j0W

a) g0 F=14 ~ ~ Co No: 0 3

C) m u Co 0 (ou cau c

4a ri a r- a. r* 0.;4 10

0. C:r 0 ,

M 1- l q mN zH) Y u

HU m a) ( .J -Q)4 ~ 4j~ 0)4.J a)J a

r4 0 1 0 0 1 0I 0 1-S cw w0 I4 uLI .4 0 w jLI .4 0

04 pý C14 N rlN Pa ý4 :

P4N Vl 4 I '.

A-9

Page 104: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Cp

44 Ln

0

1-4 C4J~ LAL I: Nn %D00 0V4 0Z 0 L

co-4 z .4 N N N ~ UL

0 4 0

0 C 0 11

0 CO0 4 r- 0 f$d~C)~4 0 0 0 *n ta-

N. '0 0) 0. co 0 1 L

w. --T r, -i 4 C'J - - 4,4 Ln I'E-1___ LAL r 1 iC

0 ) 0 to %D 0 000 r 0j 4 4 N. C0 C -r

VN 4 U dm -T r -4 r-I C4 04 0ý N.4 C4

1 ) -4 5 4:: % ) m -1 -4 N I C 5 5H. N. 0P 0 0 1 1.- 0 0 n N 1 0-1

E-4 _q c.%' -t 0 ci 0 j

0i 0044 0 0,- CD 4

a) 01 0 ' 04J 0 ) -11 r-I

1. - ol D 0 0- 0 0 CD a.4--- 4 0) ,-4 4.

-4 N C N4 -i 1 .- 1 r-i C. 0 '0 C; N

0U 0

.H m c 0 C-C C1

0 ~ '~ 0 rl 0- co 4(D Ln 0ý C0 I 0. '

0 1 0 0 0 -- 4- -T <T C m> t-4 0 ,-D %D

44 (D * 4

0 U zrC

0 P0 a 0 C)rZ0 0 0 0

'.0 N'0000 C0 I 0 N. '.1-1 Q) . N C1 0 V 0 0 C

,-4 '- -~~C4 -14 ?--I- .0- 4 -4 - C

0) CU0El J-q 0- 1H CD C A

(1) 44 cq 0a) ,-4 0i C1 00 0

0U V-) C, C A 0) . U0 )A"00 0~ U4 ) W -J > '-HC (n U ) (b1n

(1) PC 00 C)400-0 (n 4-SO 4-1. 4U-1

0A 1 0O 4- 'n . 0) z

4-j (ni 40 41~ (3 '-0 . )u- 4 0 4J *

-4, -44 o =ý

4 IT j 4. to4-r4 otv 0 m0 c 0 (0 - W N -i 0 j 0)- Q-4 ~ CU G U) *, 4-j 4 :I 1.4 U a

04 <4 0'- 0 U) V)-'- ,..) u 44- P

1-4 N C04 w ~ .j I. N. mO 0. 0: 0

0 M-- w '1-1 U q n a

0) 0 >___ 41u " I C

A-10

Page 105: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

c'l: 0

14~~~4 Z~0 I

0

> oj 0 3 0 C)44

0

r- co-- r- Ca4

U) Q)1.0 0 -I

Q) 0) coi t

C))

(N I NI o t C 0

-.w 0 C

100

P44

C) %- 0 i Ln Ca'

a4'a

14 Q) u

0 0

'C) 0L Q)()U -(1) t4-4 0

Q) U4 0 I'D

H a\

T$ 0 .4- -

0.4

m 1 ) U) Q)Q u :to -Y

o- 0 '-H '-w ' ý

0 00

clý4-j- -t

Page 106: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0 $

H0 1.) C4J m -41 LA) %0 P', %D %0 00 0

W 0 -

0 0 T

E- 04 4 0j C *0 0l LA aU. 0U)4. 4 C 01 C14 C) 0 0 0 4

>0C LA) 0 0 r-. I I Cý LAi Cý'H t C4 C' 4 'TJ -It LA L.E-4 I . I L Ln -7 N*r- CsJ C14 f\ - 0CJ)

0 o1

0 o-~ to S0- . 0 0I ~ ~ 0 0.c 10 ~ U

2 0 m r, I- I H N CýJ 04 C (N CNJ u

P4:3. -r LA m~ H- H- c'; I I I C %-0 -H ca ZýH 0 I I I I I o'*' L A C14 1 1

AQ ~ r, %D. 0 -IT 00 . I (NJ 0H , ON C 4 C1 -4J H HA C0 H H LA I

C2 0 0

44H CCC

H 0) O'

01 C0 0 0~

:: 0 r4000c)-- r-4 '0 HHH4 C1 ' r .0 %D I I

_ _ _ Vi

0 0 0I-4. 0 a

H) H. (*H HN H) C. H-. HIt

to r-4 0i C)C rIrq 1

0 a 0 C14 -I 44 0 H

0X H: H.) .CC) u/

Cl) 0 1 C1 a) ~0 0I14 :3 -J 0 00 Cl 14J 0C) C/) C) 0 >.

4.) C)H A 01 ID~l I '-C/) 0 0.

H~- 0C- Ii l / Cl C) 5C)

0ILI ~ J~ 0H C) CIt 00 0r H H A 0,

0~1- CID -i ODi H r-4 NLA .

0 0 CIO 0- a) r- :

C.) C.) u___ 41 ' H a V

Page 107: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Un''

C1 00 005 00C C

,~zCU) 0

1-4

0

* )~ 4 4 - .T -I T I

F-' U n U, 0CoC0

0 00

r-4 U C: - co -T~ 0a-I M

4~~- Co 44 .H '. ~

'.O Cor-i C4

) ID '00 --T

a) Q)*J - n -T4

44 0

0 C0

o C) C0 C00, Ci. ' 0 0 %. C

o 0 C14 C'

00 H- C14 r, (2)

4-i

0 0(1)' 41 -r- -H 0 4

> C 4 - 0 ON

C4 IHT 000

144

0)

C,) >-

Q) -4E-

0) 0- 0 - '.

Eni U) E-4ý6 4-1-' 0

4J ~ 0 fn 0ýu r0o a)Q) U) 3) U)C ;1 -

44 0 -1 c 0 0 t) r.-'4 wo 50.,

I-i S.~ HCC)r

0) C5 *4 (0 *f ) 0r-f

0 r1 H 1-4 C'j N V

) U) H- H0 0 -0r4

0 1 01 0 1

z p H H Hr ý

A-i13

Page 108: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

* N Nl

0)

En00HN

C) N C)LA C) HC-I NI C) '0

C 0~ .C) I I0 C)C. CA)

r'i0 C)) -l) CO Ia.Co *rH u 1 0 OH 04 H CH A 4

>o H. H, 0 a' 0N N Li C) Il '.0

0)~

0) w) ?C4I 0 D00 00.HO C) C) C) 0H- N H N ) HI OH IH C) C4 C14

Ca0 PC O N ) l

H 00 H a C) 44

H) C)1 .1, C) C)CL t) C) I' Ci.4- e - Co) C) 44 I

-q LAI '.0 -.1 C; o C

J-J N N C'- r- - HH '0 '.

C C0 C) C1H0 0~ CC

C) ý 00 C) It -IC41c) CNI *N) Iý N HH

0o ~ ) C 14 HH U'.0 IICo CoUI C .

> ) , -. * C C) L'0 C) C) '= C C4 H N 1 -t4 * *

N0 W H '0 C) NO C) C)i C0 I I

a) U) C) 4 0r4 V

0).Co C)CoO ' 0 C)C1C

P ., C4 N0 0 C ) \ C ) 00) '- N C -C`4 LO I C.

H4 H4 I'- H H 0. -t H -tC

41i 0)i XY -0 -

U) 0) p.. Z4

U)

pq C0 HH (1) 0'0 0 ( 0) U) -1U) 4-1 41

U) 0 4-1 4-1 H4 - z- 400o 0) M (jo ) C: 0 co .Q~ ) )U) (b

IJ 0) 0) U)~ - 0 * ~ U 04.' u 4-1 HLA r- a) boa4 0Cl Nc' CY w RT ýg H 5o 41 0 m o zO (1)00 04.o NHr 41' 41) 0) 4-1 ( 0) a) 0) U)a) 4--1J w u0 a)--4 Oa- r r U) Co Co 0) -1 H Co u ri -

Ug z V) ~o. -

H rX4 U U) 13 H E-4 -H 4-J P ý-- C A .I U0 a) M Cd 0O r. OW wI mO MO cPQ COO C

Z oUH ') 41J O U) (n 1C 0 0) H-'- HLA HHu .o C) 'r OH 1 4-1 HC) O NLA a ~ H1 Ha )

H co( 0) ( <4 V-) (H 0 ) H 1) Q) 0 Q) 0ýt > 1 c 4- 0 0. 4- CL 4-1

E-4~~~~~~14 4- 1 4 j a) tH)-z 4P . 0~ E'-4 0- C % (n-"-- -H Z 0. - H w I

0 Z -N

HX CN Cl1 It LA '.0 r, 00 m' C)0~

A-14

Page 109: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Jl N N

N 4J

-H Q

£ E-4

oC) 0 L

C) C

-H40., 0 00

S 44Jo o 0 C0 0 4J LI

%-~~0~ 01- -IHn r-. m

A 0

Q) Lr) C1 -4-

a) 14. cl, 11 01

C)C

C~ 00D

H C10

cu Q)

a.. IT) C a

$4 = I., N:3: 0O r -

to 04 L -

&j Q) 0

00 \- :

&O C ~ C C

HH $.a C). -H JU

01 040r4H Q-4 0N

P-4 0- .- 4 0 0N m~

0 -0 1- 0 1U w 0__ _ P__ __ __ __C1Lu A-z

Page 110: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N1 tri

w~J $4 L I I I I I IIH $4 w l .- L

In, 00 00

0)w __ __ _ __ _ __ _ __ __ _ __ _ __ _

ui 0 01

0- 0 0"1 14~0 0 00 CL00)- ~ 0

10 NN 00 N

-0 0a 0' c0 0 0~~a

0H 0)c 4

1 0 0- 0- i -n-41 ý CH. ::. 1 l *t 1- r- N IH 0 ) N N

H M I_ LII Cl H H N A N I 'Hý a\ r- j 04 -4 0 rI C) -4 O'4 L

N Ln

0. C) H0

0) 0I4* 1 COw <'-W C N I H i 0I N

H~~~~- Cl* L .

CI 0

0

't~ 0 0 HC.) 0 0 0 0N

wH3 0 1- co m H t -.to C Ln Ný a)H r- CN " ?-- H N %-0 V) H- H-

w 44 ) 0n

H 0 0 0

b0u 0 0 0 0 HH '0 o 0 a\ 0

-4 0 1 a C C Cl C,4. 0ý 0 0

wU, 00 Uc -

0) a 0o3 A40 00 C) ý 0 H4-4 0 C1 0 0C)I ) H4 Cl N 0 I 0 0

.4. 0N4:: ) I"H H- -. 0 H-. H- -4 Hý H4 6-

0) r

w0 11 CA U

0 ~~ M 0)>-H( UU(n Cq ~0 C h U) -4 w w w 0

ri (1) . . 4.) (1) 0 n a 4 ) ua -CL NC)ý D 4 O0) 4) U 0)J M~4 .0 m 0)

C4 0 -, Cl) En th rn -H 4. IC> )5-s W z 0 0)C.- tj) .0 '

10 Ai w a O Q,4 M) -r *4J W** H,- ~HI co r. co 1 0 0

0 0 (n -H V 4.1 U C.a)' -4 10 0)) -H 4 HL H0 0~ M~ ý 4-J H- to (0 r il-4 a H4 -4 ()H u( 00) u ~ m C .1 W H U 0) H ~ 0) 1)a 1) 0 Q) 0 >

E-4 0 3 0 > A U~J 41 , 4 0.4-1

ý4~~ ~~ 410 w41: H o A0 0 0 6.

H N l -zI '0 N ~ a

0 0 x- . ~o U- ý1-

A- 16

Page 111: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N U)

4-4 U, C

C14 00 0

E-4 4J-4

C C')

U- ca 0 C4m: ' 0 0

tr C) 0I

r4

o3 C' 0r-

~ I ~~ I NC)

C') 0C

u. 4U CZ- 000) o -HC

C4 V)>CY C N

C.) o Q

QC)

C4 o

1-1 Q) I 1. 0

0')'H -

0 a Q)0 0-E QH

)4-4 LfPI5

0)0

cr. 0c/) 9 41 4-1O)0

Q)~u 41 (0- 0 r4O ~ 0

o 4 .14 mCI)O &~I ji 4..

1'H C-4 0)

o co Q)C 41- cu 41 Q'-4>

5.0 5. 0 I)$4 Z) w

CP - 4 -zN

0 OH1p-O __ __ __

z 2.-

A-0

Page 112: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0~

I- cI IY %D 00 coI

.W U 0C0., w 0 L

A 41 CH 0 0 N) C 0

0N -- mf ~ 'NN e 0 %.0 0Ln r-l 0N un ii. .n C

m I N- Nn H 'U1 N N Lfl

ImI

o 0H~.~ ba a- oo co 00 .-q Uj 0 0 CN CtN H NN

cd C1 Nt u' .M Ln 0Y -I -1 C ~N I C

IT 0 %0 0 'T 00 N" 0

N 0~,4 N H 0 H- w

LW -O 0~ .

OWN C0 U j-o aý I I

ot H- NI H - 0 C U

N H4 N C H 0____r4_ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ LCC_ _ 5ý 0

r- 0 1 0 H I In CI t

> 0n Li 4 N .0 Ln a 0' 0n '

w. 04 H) Nn u .H N . O

)-4 0: z0 .O 0 0 H;

0r C 0 0

00 00 LA 1 0 C 0 a%0

1-4 C',0 r'.4 1. C0N

N0I 0 0n CDLf -

*ri C) I- C) C 14) 0. 00- U) U) 0 C

4- U) .-. N JJ 1 0 00-LW C4 (1 0 C) I 0 c0 04 00 V1) C)>* UU U) :3

04 C) m~4 E

,C) 0 -4 ) > -H C 0n0 r71) 0. 4-1 4 4)M~ 0

00 L).U ) - ~C 12~ . ) 0 * U UH 2 133 CL) 41 t ri (2 '- )w t~o w w

)W U 0 N oý o3 4 t 00 00 0.JQ 4 co 0 UN. 0 Q)(~ 4-i (1) r. w) 0C ) U)C )4 w :3 w- =)o- C 'o U) n m1 (12) a 0) .4 (V2 -ro P.Q u z4 u

41 a Q ) 0 COU 4-1

r. x u)0 to r.- ý*d r.) .,a ~4 Um4 mJC C: a. HI m co~ m 0 ml col1 0

S 0 UH 4)0-4 111 Un ) 10 o ) H- -H -HtfI r-4N Hý 1(n mC r- 1.4 *, co El C'4H (Ln) ) )

C .02 > u. U41 0 0. 4. 0. "

w041' "- Q) U) U)i 0- U 0 0 E2.z 4-4 $-A 01t-4 0 E-''-- 0 4-H $~4 1 L4 1 2:

ý--4 eHZ N V) 0.0 NN C 0'4

0 0

Page 113: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

-44 L

E-4 -H CU< < * ~ 4 I

U C) 00O0- 0D 00CHI4J ill 0 0 0 0 0

r-l( 4 l 0 .. 0 0> ' 0 U') 0 C10 NC' m~

n m~- C1u4 tr) InIH H r- r- H-- V) Lf) N N

C/)

ý * 4 a -i

0 U1 O~ 0 0 0)

,- M : Lf) cn) HN4 H- C4ICd X.4 all 0 I1 I1 0II IO N U

PQ 0uf -11 00*CY) N- ON HH r- N H- OH 0 Hý--

u 0

Q) *N 0

w- 0) 06 4H- a% CI0 H 0

4A P4 N H' 00 0 C'H4

ca0 0 0

N H- 00 N N H- -It *.t-0 0N N CY) HON It H- HN4 C14~

0 0 CN

010 -4 0 0 00 HHr- 1.0 I1 , r, ./ 0 -T 00u L C.) I I

00

W) u4-) V)

L44 0,0 % 0

00 'T~ 00 I 0

I-i r- n' 14- )

CO 4-1 41JS U) 1- .4

vi 0 > 0- (1) U)CC/ ) 0 4. 4- j Ij0 H- 0

.- i -p- U) C: 41OC41 U) 0) m (1) 41 a) CH J-i

.C) 0) CL Ile -40 E- :j t-H 04NU -14 t4 0 60 0O

0~ UU V)4 ) 0) Cd 0) f/i, 0 0) l al 41

wd C/) ) 0)c 0)A r (1) C/ 0.0 fZ u t H (30 p Q H E-4 Hr ýH ýj W-~H 0 co 0)O 1 UaO- u a ý4 41 0)0 W0 H m 4 Lf) C. >4i

w)' CO a cO 0ý P-ý d) H I En c0)~ H0~L U) u0JJ O ) U 0 0 4-4 0

H CO I1 4-1 H- 00i U O~ ~ ~ .4. 0O <- co,~ En H H ) H l) 0C

U40

N f -$ .11 in 10 N- 00 0'.

A-19

Page 114: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

2 f NSWC TR 80-417

0

I I I t It n Io 110 I

Cl)

0)

0~- 0 00CH4JLf) 0 0 0 0 0

cir-. 0 0 0C) -- 0 Lfn 0C 0 C.N cn)

H CY) en) H- N Lf L' In -r-H4 Hr- N1 11 Ln )L/ N1 C*'J

H 1 J U0O 44 0, C)Co

j M :3 1~ CI Hn_4N H N Ii I 0)0 74C I I I I I I O N LCn Nl

m~ Ný 01 HH r N H- OH 0 H-

co H-

0) Co C1 HU)C 00 H1 I

H4 N N H N 0 H1 OH 0 0

0j6, 0 %0 0 00.,. L ~ .O 0 000r

:30 -± 0cl : 0NN1 H- Co %-D 'T-t <t

.r4

H4 00 U> 0)x~~ ~ ~ 0- ) '

bo ri 0 0 C*0 ID NH , 4%- 0 0- 00 HH '. 0 I-

0) U. C)~ C14 m n 0. C) C0)0 C C00 ONIT(4.

N- N- Ns Hý '.0 ; N OH 04 0ý C0

0

Q) 0

w.r 0 In-fl C o .

'.0 N'.4 0 I 01.r4 N CI 0 0

a) ',0 0) *z 00~ L(m)H C') NH H- z. H-4-t H Cl

ý4 U) a) >1) 0 *a) U)0 w

U) *r- C) 40 -

0 - U) 0) 41 Q 0 01 ( oa)H 4-jCl 00 toi V) cn a ) r ) En :) d .40

4-) z 0.U C* -1 ()* 40 u4rw0 0 H- 0 .- 0 C -

0. r1 rz u pH U) 14J 4-i 0) m ~ C-I ;L) aw A4) w) m)0m4V

0( 110 41~ C- ) HH 0H co4- 1 ) I-4. 0H ) a) ca m )* - I c

U) PL 41) 4-H 03 U), U) -0 00 -4 H0

ri 44 0 144 0OE-4 MV. H4 4 -H 00 -H r=

A-20

Page 115: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

c z0

0 c 0 0H U, 0 00

>0 N 0 Lfl0 I 0 C.N*ý4 Cl) Cl -H C"Lt) 11) CI

I r'- r- 1-4 LI) Lf) N1 N1

O n bb~U r- 00 00

-1 m :3: C'- N) c - 1 04.C H- C- H

M 44 Cl I I I I I aN C"4 A ClHN H N 4

E- \D \D 0OV) -T 00 1

U 00l *

0ý C) 00 ) . C

C) ~ :,a ~C)co 0~ 0 LI

*~b 'o ) 0000H 0 IH 0 IT L) ITN

0- 4 \D~f -T I D Iý 0 HCO ON Cllo 14 4 -T0 0C

r- N H1 -4O m Nz OH rqC4 10 0z 0

C:)

M 0 C

4 J COO '.00)P N II 0 N

0 4 0 ) C) C) -4 %00 V)> *HU2

C)0) U 0 0 CJ2 H1 L) Jo 00 , Cfl4 J.. .0-C-4

ý4 0-~ 0I C) H~ II H

1-4 P4 H 0 Ci) 00 0 NLI 0 H

4-A 44-- U) I'' ICCHO

a:) 41

H l - tý 0 C-C -0 0(AE-

0 ý4 to21

Page 116: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

1.8

211.7 _

1.6

;I 1.5

1.4

1.3CD

1.2

1.1

0.9 'zz

0.

0.7I I I I0 1 2 3 4

MSTABILITY: TRIM ANGLE -00 AT ALL SPEEDS

FIGURE A-I DRAG COEFFICIENT FOR AFT CASE AND NOZZLE

A-22

Page 117: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

1.1

0.O

0.3

0.7CDo.6

•, 0.5 -

0.4

0.3

0.2

S~0.1-

o0

1 2 3 4S~M 01 STABILITY: TRIM ANGLE "0 AT ALL SPEEDS

STATIC MARGIN IS SMALL

FIGURE A-2 DRAG COEFFICIENT FOR FORWARD FRUSTUM AND SKIRT

A-23

Page 118: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

•. •

E-4

;14

A-24

( 0z

H

I 1 .- ,

oo0

•C-

Page 119: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

[' 0

zz r

44

A-25,

-- I-

LP•

,A-25

-I

Page 120: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

AT ABOVE TRANSITION

ST BELOW TRANSITION

¶ 1.0 -

0.5

J0AT

0 I I II1 2 3 4 5

M

FIGURE A-5 DRAG COEFFICIENT FOR CLEVIS PINS

A-963

Page 121: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

IA•.. 1.U1

1 2 3 4 5S~FIGURE A-6 DRAG COEFFICIENT FOR LONG, SLENDER SRM CASE,

SYSTEMS TUNNEL, AND LSC SEGMENTS

41.0

S12 3 40 M

FIGURE A-7 DRAG COEFFICIENT FOR SHORT SRB SYSTEMS TUNNEL SEGMENTS

A-27

Page 122: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

II

r24]

wN

00

f%4]

A-2' -.

SI II.. a.

•" A-28

Page 123: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

71

APPENDIX B

LISTING OF ET DEBRIS FRAGMENTS

LB-I

Page 124: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N 0I

> 04

,- t -u- t *t L~ f t .%%'O , c c

rH 0

44 P, 0; 0n 0j 0j 0 0 0 0 0Y 0 1Q) aN4. m~ a% N N N1 N 1~ N4 Lf; tf ; N- C;if N N N

-44 C.)0 0 0

00. o20C -T 0 -T0. C; cn I LIn r- f0 C.0 00 0 N0

%H I- I1 ui IT - N H- H- (n 4 'aP N 0 -.T

0uA e%

0w 0000

LA C5 LA m H Ln N.A 0 H ~ N

U0 0- 41 -1 n - 1Hu 0n. 0 L - o c n i 0 0- N c

-H 4 A- 0 . .N oA cn M. 0 Cl LA -4 L H~ 0 cn I I'.0 V) NPA-4 N co N- rH Hý 3A -t.a - N a

0) 00

0o -A. I - A

LWz 1-0 r-4 - -N LA fn N N H 0I 04 H . -4a'-4 00 -4 H4

0 C0

00

H VO

ca C1 1.4 0 -40H 1.4 ., CI

0) 1-4 w~ k t

Ci 0i 0 .0 w w o -

t^ d) 0 V4 .,4 N O 01 r, 0 404 ) C

41 U1 a M- .. 4 H4 to U Ia 0- 41 (

z V H u. 0) 41 41. CC (3) Cr) PO~I C

U - r. 4 '74 I N N x 00 U4 UH r.1. 4 0i CH 44 04 04 H 0. 0 0 0) a4 -r &

i :Z. zi 0 0 7 -74 Cl 0 u 0... z x )

Hl -4 NC cn C)) L. ID. r- 00 p.. 0. -74 ( e

ml4 -. 4 ~ l -74 r4 04

-,B-2

Page 125: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C14 0

4-4

0

00

C) N

E4 r4~). 0 0 0ao ~ i 4- r- Lrn Ln LA ci

E-4

0 to I-i C 0 0m~ 0

Q N 1 000 OZ r- 03 0 U 0 r-

00 0Z ~ -,0C

0; I

0n 0 Ln 'i C 0C

I- 1- 000 0

00.0 m0 0l It '

Ef ~ - N 14 1-4 C'4 11, -l

0 0

.CJ 0 14 .-A 110 4

00. 1 0 1 0,-i -i 0r

CLO

4.4 w

0)0 u 0)-4 .- 4

:1 CO 1-

t" H -4 tn Ln -40

4J-

jQ 0- 4-1) ('

>B V

Page 126: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

½ NSWC TR 80-417

N 0

44v- N cn

Q) 44 Z I I I I I I I I I I I I I IPOg OmAm om O0 og

04 040 0rz-fI4 1- a I- C I 1- 0 CD I-- I- 11144 *v- r--4c N 04 -.1 C1- -n W) N~ 0i Li, Li, CqO~ cq C C

CC)

0M 0w 0 000 0 0N

4-4 "A. cov-1 q I I I -I N -4 r-4 0n 0n m- m~-v-v- %Do r-4 I~ Li, vI N3 N0 N Li) NT L, -It N I IINI N N

w C4

0) < 04 m' 4-44 - :3 r, M- Ln C14 C4 0 00 0 m

N N i ~ L, - I In T CD I C4CO v- V-4 Li4 v-i m- L0, Li, -.? -1 -ý C1 N v4

00H 0 C

4--4

00

P4 .0 0 0D0 0 nt

*H4u .0 0 0 1 ~ It Nn ri 00 Na)MN 0) (n '.0 0 I~ L, .n V-40Ccn %.0 0 1

C14 Ii, r-- N- 00 N-- C-4 0- Li4 .1-1 - C Nt ONPa' I

00

- r-I Ni, 0 m 1-4 i CO CO r-.- -4r- - -4N

0 C)C0

0

T-4-U) C4> w-4

C) N)

0. 0 H- 0dQ 1 1 l

r. x mC .,I 4-J a) m mcl m0 ý r

m 0 4 c H E- H C) FC)wvi. E-4 04 4- NH

0O 41fr C 4 0 r= -H -v4 0- 0) u :3 0 0 f-4 Q).,q 0 4.4C4'~C E~-H ) C

-W H- H -)i~i *-

H ~ 0 0v- 0) a) 'H tvI - ~* o

00 Cd -H- -vI4C N N > 00 4-1 r.1-H p ~ i-I 41 C) wl -H -H r-4 I-. u 4'C

U u r. r r r. N w- ý4- CC3 : C) 0w) Ci Q) 0 0 -v- -,1 C) :3 :1 > P C)C) COM -Hj v-4 004 C4o CfM

Xp 4.1 U- H C) Ci) CL1 H 4 0U w C) C) a) a) C) r. co )4 -

0 ) 14a C) C) C) C) w 1-a Q- ) u CH U CC C CO 4. 44 -H 4H C)d ) -HI C 00 'o

-H "0 ' 41i > x x N N4 X C) v-4 -H co04- 0 -H 44 0 0 0 0N 0 4-H 1

0-

rx1 p1 -4 C4

m -.7 Li, 'D f. CO ON 0) -4 NC -T

C 0

B -4

Page 127: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

- S 41

NSWC TR 80-417

4-4

ob

Q) rI Z I I -C

4-j

0 4 ýI CY Ip ~ .) 0- 0 01C 0 * 0

4) 0 4-4 Un m' LI Ll Ln tn N Lf

Ho 0)

(A 0~ ow- 00 0PC) *- Ij Cr -. I

0 _ _ 04 L0 04 'a CI0D

0 C. Nn Ný Cý g C

wH 00 M-

4H <c 04 H. 0'4 -. ' r 0 0OC)

0.. 0 C.C] L 0 0WUD 0 0 n

4- rl0 CoN0 U

0 0Q

H CC O

0). 't 0- C4 r- %

UU CU) 0.. U) c~ 0W- 4 0) Hý CU C;

0)) u 0t DC

0~ 0) 00 CD Hm A4 I 4TC.I 1 J 0

z I'D I ~ % .0 0) 0) C

0]4- 0 0) 0 0

wO CU H ) )

0)4 4-L1-4 44 4i , ~ 0

V) 0) 0 (n mH - j C: .0 .0 .0 Q) Cd 0

&j 0 0 0) 0w 0 00.. H HH U D .

tD LW t" 44 0 41 2C:

p.a c. o 0 ' 0 -4co 0 iH PQ H Hq E- H N

0 4

u a w

Page 128: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C14 044 ~ Ni 04

oH -4 C In %T It -T In In In I0% I0. I- Iý OD

(n 0~

B)n CO COCO.0 P -ý a1 000

H B0 tom I

0 0 0 0 4 I T 10 r- n Mý ) C 0 000 0 044 -4 u t -I I I~ I I N A~ N- en Ltl cn Lf( N N N

0 --T -It Hý LIý cq C,4 c 0 0 o a,

H0

H% m 0I 1 I I Nn H H rý N ~ ( 1

rq~ H U N 0 0 0 ID D 4 n C 0 N)

0 0

0 0 I - IrH'4 ~ ~ ~ ~ 6 C) 0' 0 N D C 'l l~ 0

0' N 0 C n C'1 0 *t)rH c''

-~ N Ui) H- N4 00 H 0 0 H4 *t O'T - O 0 -:T

44.4 QB)

0 A w

z -B4-4 -1 rH H- H- N m1 m N* N1 N --T 14 -4 H 1-4 H0 1

0

4-i4

,a w

"4 C4J

w - E- 10 Q 11O0 .0 *vHc =Ar4 co 0 .±t Aj m m $. . U

V- 4-1 r4 N

m) 0 C 0 HJ 0 0 u :3 Hal ) E -4 r 4 . , 4 H< ) ~~

0. 0 C/)0 0) W 4 o tB)) H) -4 A 41 ~ A A A

w- 4-I 0 rj ., H) :3 >- P6 0).r. Hi r4 04 -4 Cl) M- 0 w ) B) H

41 00 H H (1 I B N N CL . 4 J

0 1-4 u Q) 4 -1 1-) (1- 0 mB)0 ) C 0) w 4) C) 1. w Q - r) U V

4-Q ) 0i r-I 0H HX )CO CE-4 ., "a .) ~ B) * C14 CN 41 1- H , r.) 0 m-

z 0L 0 .,1B 4-4 0) B 0 0 0) 0- 0)H

0 H - 0-i <~N Nl 1-1 1-1H~

ri. P. -4 CN Cl) Bý 'f 0 N- 00 a\ 0 v-1 N1

o C.)

B-6

Page 129: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

04 u

00 m4i~ a co ON 00 co

cn 0

H - 0

0- $4- I I e

r- u w 0 0 0 0

En r-4 0W4- I I0N

0 04 1 0

H c clicoorI 04 :I H 0

0 U 0 ~ 00 m

4- 0ý 0

W 44 10 r- 1 0

X001

H C) 0 H- C)4

H Q) 00 Hý 0I 0D 0

cc - N4 00- ý7

0*I Li"

I - 0 C14

0 -

C. C)- tna-C

o tou0C)

a) 0-i C4 CC H

0 A4 -T ) I C4. 11 0) HD 0

S.4 0

C 0~,' *. l

4j QJ 0 1 0) 0

s-i 0

04 0) H)

* H ~0 0j w f U C

w 0. H- H -4 -q 0 Ql) H$

Q) i 44 4-4 4-4 4 -l4

u Q)

~~z. L" "0 r- 0c 0

[ 'B-7

Page 130: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

04-4 HNC 11

4J2 En N- 14 m ~ -r _.T 'T -4- U, U, UV '.

ýNZP q p qc

cr 0u 0

00 0 0 a C C 0D 00 0) 0H u 4- %0 _: _: C) It 0C) 0 -:T 0O * * 0? _T

g) - ,-i N H- C1 N Nl U, N U, U, Nl L ULtNC14 N N C4 C

41 U 4 C)4J(a U0 wCl 0 a% -zr cn

".r 4j 4, Ln M 0 "o10 0C 0-4 I I N r4) Hq Cl Cl

I- CU At U, -It I I I I I I(o rX 00 r-4 r_ U') H , I'- U, -11 -zT -a, 11 'T~-.- N H

U, U, U, m l0 0 0 H lC

a)- 4 -4c

00 0 NU0O 0 l0 U

'H -4 Ln N 0 Cl C 0 I 0 * n U, 0C" c0D a) N c , Hl ND C M 0 0VH -- 1 0 m-CD 0 00

44 )0

HHL

WIZ 1-1 H) H) H 1 'IT Cl) N4 N N ~ .4 HH

o Eto

0) 0

a) CN

0)~ ~ 0 0 - ± ) '

a) 0 N 0~U- ~ ~ -H ' a

41 4- $-a E-4 0) Q)~U

cu0 41 N1 0 1 H 0 0 u :3 0 = 1-H Q)ý4 .,4 0 a E ,.*r -414 . H Vl)

0) HA..) 0 - 4- C/) $. ýc 0 ) "4 3

cu CO4 I I0 N > 00 41 CC:4 4. Q) rj Up H 4- H - U4Cl

H $4. U u 0 r. ý- -4 4 :3 Q) r.IYQ) W) 0) 0 0 H4 H 0) :3 :3 > 0-4 W)

z 11: u C) Q 0) UD0 0) ca )4.0 p) 4- ) Q) 0) (1) w u- rz)0 2 dH u to en) C) C1 P4

E-4 Q) 3 0) H 0 00 .0E4H ., z U0 41 ~ N CN (A U) i H H. m

zi O 0. 0 *rl 4i 0 0 0 0 0 1) 4 *H 4U

H_ CN ml ITr V) 1.0 r- OD) m' 0 N

B-8

Page 131: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

CN0

0)0Mj CZ 0 N 0 0 0

P-4 Z Cj-

U~U NhC C) N0 1. M ' I

q "D 0) 0 (D .' 04- Ln4 '- Ln4 L4 n ( N- Lfn

~ * 0

cc

m 0N -N 0 00) -W I

a)c

,1 CO00,00

0 4r4 0 -. Nl0c r- cr'0 .

N *n -I

.0-A - 14 0 ) N - '

PL In .- 1 a

-j 1' 0 - 0 0 01

4-4Ch)

o 0) u aNU 00)14

,00) ccT 00 m '.

PL4 ? I I 0l

4-4-14n U

'41

000) H

U) *401 $- U) H-

0) . ~ ~41 4-4

0) .- 4-140

I-.~ ~ Hr.) ) C

J-.0 C *'-1 0) 0) a)

1.4 0)) 0) Q) a) (n ( :) ~ 4.j IH I.u r-i 1--1 -4 1-4 00a)

0U) 4-4 '4-4 44~ 4-4 ,0 0)4. ) 44 4-4 44-4 4 -4 1" c 4..)

PQ m Co H 0) .- 44w

-H 0 0 0 0 .0 C lCP4 P-4 -41 -4 - O U

0 0 _ _ _ 0 - -. -a\

C)4 C) 4

B-9

Page 132: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

-J NSWC TR 80-417

0N N

"'44 C14 M4

N c

04 z :: I I I I I I I I I I I I1 I1 1I1 I I

E4410) U

00 C0 0 0 1 0 C 000 0 0-i " -T 0iý 0 -z --T C)-.UC 0 -. 1 0 0 - T O -zT- IT -T <1r

Co ) 4-4 -4 r-I ,4q N1 N N LIn N1 1f LIn N* ULn V CqCN N Nq

U) rj

.,14. -t 1.0 r-I Lr m .1 o o) 0 0cli I

0 In JI I I~ I I I I I0U 44 00 r-I r-4 1t4 r-4 N. Lr Lr4 .f.4 ..-- 44N)

-4 )E--4 u

a)0)

4.0Lf '

I)~4. C r4 *ý UI) C4 C4 m C 0 a

m 0' ' ' N I I U) u'4 0N r N04Lf) U,) V) ,-4 1-4 cn N N ý C ý 1- 0- ~CY)C~4 0 N'

4-1 C 0

U~41 to 'm C C0 00 . , 0

N- 0J m~ %C0 c tn U fn %. 0 00'. 10 -4 4 N Lf4 .4 -4 M~ -44 VI4 IT 1-T0', C N, \00 C4

4-4 0D

0 0 ,

0)

0 C 1-r rl0ia). jCd j f - n ý

oc-4 -4Qk ~ ~ ~ r 4) Lju - 4 ~ 4 N c ~ N 4 .- ~l- D -

0 Q) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0) N

4 :3 0)0) -,4.

I-I CU&A

$~14 C4 ca0. 0 E- .Q0) wa) r-' M < C: a CU P- ~ 4'0 -

r. x . Eo co .,4 cu m- 0 *c 4 C

&4 ..4 .- 4<)~ .4 U

(n - 0 0 - C4 0 ) I-. 0U CU 0) 0) "- 0E-4C "-H . FI4 ,.. I, .4 N m a0 4i -4-.4-4~1-' 4i0 U ,41 0 i Ii U 4- ) --1-1 U) ) 0 m,4 * 0) a) H I to4-H r) U1 4) *4 (A *-4 -,4 U) 4-1 -

0 1 w)1- 0) 0) .,4 .,1 a) V >) 0 U-1 10 10 r4 U) 0 41 04 to "41

0. (1) 0) a)4 C: .0 a

z04 0 44 ' 0 0 0 0 0 ) 4 U

u zH- 0 . - - ._ __ - - ..Ci. NI C14 m ~ IT V) '. r0 CN CD 0' 0 4 N -

0 0

B-10

Page 133: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

4-4

C-4to~

Ir4 4 m) P2 m PQ 0 Q

4 -z

" 0 0 00

-H rz a) 'T2 0~ -Toi a) I1 C C'*I

0 -- If mQ

00 I

4j c: -'0 N ) CU) C- UI 4 C 0

4- 0- M00w~ ~~ 11COl L

gooE-4 N (NJ

CO N t 0Q)r C4-4L1 ~ 4 (N

4-44

0~ 00CO C) C

0 ~ d 00 r-- -.T ýo \DIIl r- I 0 '-

r44 -- 4 Lt4 a' 0

_____ 40 V)5 41-4 C

0C-.). 0a) OD 0 0f

Z 0. I 0 1 1 0Dz \. 1 .0 '0o 0 0 C0

B4.4 -4 lz -4 -i -I) 0- 1-40

41I

u w

> 0

B-4i

Page 134: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N' LIn

0.

w* -H N- * c' -:r -It I.t ..T ýT LIn Ln n %0~ %'0.%0 %D.10 l 0044 z I 11 1 1 1

I

En 0

0Ow-. 0 0 0 1 0 0 000 0 0DE- N- u J.n0l % LnI n 0~ir 0 Lfn 0 0 0t C) 0 'L L n L

Q)4.4 ,-.4 H- aý N1 C1 N tAf N Lf4 W) N W) LI N NN N Nt

E-4 up~ a) .

.r 4.0 0.. '.D 4- Ln '0 0. 0 0

ft ~ -4 u m Nq ,-4 ,-4 i m~ m'm.0r A r f1 - L ~ - I I I I I I2f 0 rý - n r- l L Ln z -t .T It It -T It T Nw) C) I)44 A~- ~ IN ~~NN 0 0 0 0 ON0) (7% Or N N In I1 C *ý Lu N I

Ln Itj V) r-4 '-4 c N N 0 0 0 - 1-4mNC m 0C N

JJ0 0ca00 0 0) 0

0 0n 0nL0) 0l ý0 CD '.0 m. Nc C 00N- 0. IT '.0 0f -I *- Cf0 C4 V4f -1 I ar 0 0 C1

0Q)

C600 0 (l) CD0 V0Z 0 0 I -.T V/) r- I N

0 V L/i Iý 09- L/, 00 C-4(0~* N 0 CY) CV 0 Ln --I 0/' C If

0. %-0J -:r N L/, -4 N 00 r-.4 0 0 -4 r I~-T0 N C r 0 C --T4-4

-44

11 4-4 -4 '-4 1-4 -4 N1 M~ m' N1 N~ N1 -.T* :-l-4 -4 -1-4 00 14

0 -4

0 0 0iU0) 1 0 0 0 m) .0 0

w - 0 E4Q ) 0J Il 4 14 CO ,x -4. C:- 0, , q 0- C-4 C C 4-1p6 N N 4 j 4j m m Iu0) 0a S.o 41~ .4 S.c - - -- - - )

C.) c :Dt U r r. 4- XX C 0 N -40 41 C-4 A 0 u :3 x 14B-i 2

0. .094 c 14 0 w w H

Page 135: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C4 1

E-4

0 $4

0u 0

Lfn 0N1~ 0 0q

0 1.- 1 on

H 4,. 0 -IT 00)

S 0 -4 CD 0 04 '0a, Iz A I 0n C-

Lf Pr4 uý C; 0n 0

Q) 0 0

r.w co C 0 Lt

-4 C1 1~a

C) $-i n r-

o 004 W H I 1

E-413 *-, - N Ul-4 .ý

w c~ 0

'd H H tf

P4 i .0 N U2 U) ,

*i- M ) " r4 U-

I-a ~ 0 O~ ~ U

"C4 a) Q) (

Q) 00 cli I-iHH C.) 00 *C* . )~ H .4 I 0T 0 0 . ) UC

Lz 10 1 \.O i ' -4 -4 ,i-It ,-i ,-i -4 LN N

Q0

B-i.,I e

Page 136: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C14 0

0

LI. **r;4 C'J In -- iT IT I n L l 10% . o% - 0o. Z C- I I II I I I

A AO A A7 A7 A7 In A7 pA LA ;A 1O~' PIO

ill I

0

0 $4 0 0) 0 0 CI 0) 0 0 0 0D 0,-4~4.J 0 C) %D 0D C0 %Dl 0D 1. . 0. 0 %D0 %0

-H "J 0 -T 0 ) c 0 C ) C 1_4 L)0 C~ 'o 0- 1' 1 4 --i M c C)m

0 W~ '-c o H- H- LA -H P- 'A Ln -:r -.7 -.7 4.77 -.T-. Nl r-

1-o U

w -W C0 LA m

-4 'IT 1, 1 r- M' LA N c'q C0 00 ON0a) ON m' 0'. Nq N, In I C).Or.

0 0 0N0 0

14 ' '.0 . 'D CA 0 ID U' L H C')'.00d LA .. N~ 0 m 0 0 m. '.0 N LA c 00

0

04 0 N1H 0 0 0 m Ln LA

U) *n N l) 0a) m Y C 0 LA -1 H In %D IO I'A 0

%C It - N LA H1 N1 00 H- 0 0 H t IT*m70'I* 00 0 IT444

C))

0 ~0)

0 0

C'14

4, ý4

04 c

E-4 a)0N4-4 ý

01) 3- 0) j0- 40C

E-4 r-I .4 *,-4 r4 ,- -n..

1- CL H co () a), OD~

M- rf r4N > t 4)4.

0) 0 a)' 0~ >U 0) )41 w U rl rj t--4 --I U) U) PNU

41 01 J-J ro H- (1) ul HH -' -g) 40)) Id U- - F- ) Q) 40) (1 () ,-4 N q

0 ) Q) () () 0 ý4 p - u z ,- 3 PZNC I 4 OIJL) Co En (n [14 0 L E -4 04 04 > :3 0 0j HIaOJ) .4 H) ., H. 0) 4- nJ

0) H XL 0 C* C- 0) ) ~-4 -A0 zz- CU4 0r 44- C. 0) 0 0 0 -1 r-i1

5-4 rZ4 0) 0). U) 4 *r 5)

* 1~~~-4 0- .. 54 5 U ~ 00) r) 0 0 0 *-4 CN 0)) ur r, 0 4 ON 0) -4 C4- 0)4 r)-4r- 0 ) U

4-~ 4i '~ ' B-14 ) U ~ L H CUC -

Page 137: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0 0

4-4 H

u 0 -ý

-4j" C . Co 0~ aow 44 n - '

Ci ) II>

w n 0 to Iýý 0$4 W 4-.HL' I j I

4 U _ Z ) I n -

H~~c *dN - Co

44 H 0 0 0

94 C 5n 0 *n -

X LI,0

to 0

0 a), 00 LI, 1 4 0D 0EH- 03 04C4 t 4 1

0 wo

H ~ ~ ~ ~ 1 W)~,4 N r -

*,- V)~ rN tn 0%NU m I

a) ui

N . a) co N0 LI,Cý -H It -. 0 I

44 0 IT r-4 '0 0) 0 0

0

0 C

a) 0H*

-A C:r .0 (U) 4

a) * * j V)- :rCi~40 ) ai) (1)

En (n 0) 0"~U)~14 H 1-4 -4 .1 10 Ci)C

S4.4 4.4 4-4 4.. &j 0 C

z . E-4 H .4 ~0~ 0 0 .0 Ci U) C

U U

B-IS

____ -

Page 138: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

N LnH- C4 e

C) AZ

QI~~ HL CO CI N ') C~ C4

0 pu C) C 10C 00 C

E-4l4

U

w co ~ 0 00a m Tm.,4 4-j 4 * -0 ) 0 n 0 D 1.0 C4 N 0

Oou I I 0 I C 9

4 r I J' *- mu ' 0l C M 1.ca -t It V -It H I~ N I H I~ I'~.O N O

"0 c 0"i - ) ri4-4) L) I ' : TI

0- 0V )tLf"E- MN u I H O C L~ 0

"Q4--4'Y

04 ti) H n H ~ H -H -N C*4r N 0 N C) H,-4 -4HHHC CO HN

0 C)

0o 6N0C) C C

P-4.f 0 C) VJ 0 0

Q ) 0 ) CO %0 0 Ql .)) X N m H0 0N)C 0f I- N OA m N 0z 0 a% - 00 H 01%

44 00 - d *, D2.2 ) *4

4 - 0 0 .. ) 0) V) U0W .C 0 C , 0 L 1) --T V) 1-4 0) 0 1 C 140

00 44 tH n 0) N) Nn -4O 00 0 NH i 0) £o UY) en -4 Hl %D 4 U

CL U: W 0o - 4 L) ýi C 1 -0 0 -4 -,T -:r a\ r- 0

U- -4 -4 04 N) Un m) N) CN NO IT ) - r4-4o ~~~~0) 14 ) 0) 0 ) 0 £ ) U S U H

V. 0 4 a).0 0 0 ) ~ -

U~ ~~~ .- 2 u )~U

o) C.

co Bo-1446

Page 139: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C14 14

$4 Q

(N -ý )

-H 00 (N 0 m 0 0

c0 0 0 0x

H- Q)4- U f N LI L ~ U f

u U)N C U

r ~ 0 4-J 4 0 0 0 0

E-4~ a) 0 44 V)Ij t L )

o: c r a a auia -

co 4j 4'

0 o 10 0ý C; 00HI 0 I I- 0N

00J m0 c

E- MN N1 r- r4 CN

a) 4-400)

044 Cý 0 0 0

C)F~ 00~C

0 *W 0a a,-t ý. .E -4 :3: IT C1 n r- 4

4-4 w 4- H L,4 t U

0 0 C

o; C4

CY) U-4 -4 0 7:3: H

4)-4 ~ 4 -

4-I u- Cd)f

4 Q) 00 Cd j CD oCd4 I- ItC

10 1 ID10 0 C CD

4d-J- . -

H ~ -4 4) E-f>l Cd 000~Cd C

4.o 06) 00d C C

04 0-- 4 -C' J0)

~~~ v- AU rq 4 -4 -Cd C 4-4 0- r- '--40 C

to m Cd Cd Cd Cd : Cd cduE .1 C: r. .0 Q) H ) Cd u4

4- 0 Cd w w ~ C-4 : . .0 fn E-4 Cdc Cl)

Cd) U) U) U U) 4uU0n 0E0 0 -o U )C

ci -4 r-I 14 -4 Cd wl *Cl) wl 4-4 Cl) 44 4- :>% a

04 .-4 - . 4 -4 C)

z~~ tS-' -4 -4 m ( ,IS

Page 140: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

Nl irn

4.4 -4 ,... 4 N Cf

~.00-H, 00I H 1 N n .t IT IT IT-t Ll Ltn LIn ý- %D %040k " 0

C/ 4.1

zo

0 0 D 100C0 0) 0-tI 41 0 %0 %D D 0) %.D 0 0 ý.c 10 0 10' 10 %0

d) 44 N N N N1 N* N Lfl C Lfn V)' N LnL( V) N N Nqci 1

E-4 *H

114 Ln M0) C:

S-4 Co tI A lý I HI ~ C ~'H C uj -t i -

O c~ '-u, ~ ) H H LrI H N- L(~Lrin .1 * ~

0) 0) H- n C

44 1~ -rI- CI A~ N N mI 0 0 0 0 aa) ON CN 01% N~j N I I *n -, C: -*

4Ji 0 00 00

rqr- ' 0 0 0 %C \10 N Ln 0 00 N 0 CI) %D0 m LIn Ln HOqcn 0 0 00

E0 \. t N1 LnIT 14 H n CI N -H H Ln d- "t-tmN- 0 N a\

0)

0L 0 NH- 0 0 0cn 0 tn LI)

u I C Ltn I H- I 0ý 0 CI In N)oNo o en CI) c. 0 V) LIH C' *H \D

CL ~~ -9 N LI H- Nq 00 H4 C0 0 H- -H-It O'N - 00 -ý4.4

C) w a)0 ~ .40

00

0

Q) Nar- .

Ci):w- 00

Un w H _): 4

0) t0 41 uCi -

0) 0)i 0 U :3 0 0 x) x

)04 0 c-i N Ow 0 C. )~~'~ (V H-. I X N ca w.0 0. H H 0) N- N- 0 . 4.f4 w) U) ., ., 0i N N 41 00q

0~ U u) 0) r. >N H4 Ha : . UUw 0 0 ., >0 >dI4 0) ~ 0

0) C) H H 0 C4) 0) 4- 0

A4 0 ., 44 00 0 0 Q -

CI -4 r-4 - CO a NC ~o ) L - ---- 1 - 4., ~ 41i

B-i18

Page 141: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

~: ~iNSWC TR 80-417

N'. Ljn

~P 0

4.J

rCI 0j00 C) 0

cn 4- -j .o -w) ca 0 co C'4 It; 0 C'ý

H 14- 4J 11 C

mw C1C.J MJ Ql

C n C

I ý ICD LCn H L \

o 1~ 0 CoX Cw oo r

p.~ ý3 -t Z CN l I- C4 Ci

0 0

1.i IVJ IjI I Cce) A I. A I

H~*' Cý_ _ _ _ _ _ _ _ _ f

:3:iWB-i4

Page 142: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C14

0 I I I I I I I I I lI l tI I I It

0. CD' 0. 0- Lr 0 v0 00 C" C 0" '0C) --T 001 LfI r-f - n 11 V )n U)rIr- -

0) 0 It) 'I en- LI' NI' N~ r' CN rý - ,Nc40 N N

M- 14 " 0 '')ON C) ON '

-10 -4 -) I n ID C) Cl) C") 0 0 aca P4 IT A' N I I I II)~ r. I I

CNN 0-

cuWQ 0 0 0 NH0 0q 0- )C C") 0 I!' LIIL

Q) N.. M Cl CD 0 00 vHO I.m - 3 .0 It N Ln Ho N4 --T H7 0r 0 -OD~O 01 (7\

44 N

0)0

m 0 V)UlC). C) 0-1 V -or u -Ln C "n 0 0 -1 0~

Q) 0 4' C; m -m. 1' -4E'-~-- m I"t D ..n i-v C1 0) - 41 ' -4 ITN N ý0

00 a) u - ~ <X N

-4 :3 CCC'H ' <L4 H

4.4 H H ýi rI -1 N4m m N Ž CN -4-4 r 4 00 104 4 ~ 0 0 U H 'H H ~ U 4i(2 '

0j m) 0 0a 00 m M Iu ~ C)t

H 'HwCC .Ua (a 0 0 0r0 0 0u 0 0H 4

0i 4 ~<~ N N ;> CIO 41 '

o4 41r r 1- 4 Q - ,

(nB-20

Page 143: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

10 ý4 iJa)C1

0 C)A

r- W L( N Lfn Ln LI . '

E-4(U -4 r-. CN r- r- r- N1 r-

N r- 00 00

0~ w0C

C'- 54 'D ;fm 0 1~ 0 0 1 r

r-4r- 0OL 1

0o C* *ý *ý In

a) 00 m

cc ~ ~ C I-~ * ~ * --; r-4 N -4 -4 NN

0) ý444 11ri 0ow 00

-11 0- N ,-4n

44- a) CL '4 0u C)

-11 0 N0- 0., u0 cn N' -4 l 0 0t

I (U M I

0 ý4 '.V 0C0

.,4 0.T 004Y C4

0 0 4 1 T 0

0~ 0)

a.) 4.-1.

0) -4 C

0)

00

In 0)

mc co 0c o ~[-4 r-.44 ~ 4 ,-

C.) ., a Q

p Q) V Q) 2) U) B)-21

Page 144: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

cNq 0

4-4I t-

0 a4- Z II I II I I I I

I-Wa,.H E!

a) Q) U0 -0 00jn L n L ) nL

34 C)

r40 0-1 1 1 N CJ r-4 cn m, Cl)cn %M Ln -IT XI - I I I I

4. o 00 -1 h- n r4 r n L . T ý T I I r -ti h;p.o

4a) In C

-4 1) 4.J 0n t 1 1 m C0) m) m*H 1L ' -

ae)n L 4c c l ; C - 41 mo. r- m C;~ C'14

4' C 0. 0-

N ) a) a)4 I-I *,-1-4t , .T Oý r 0 q

44 a)

0W 0 0 C) NH 4

C ~ -) 0 0 Ln L f

a ') C,) -n M) 0 - C: 0" i m4 1' 1

44%D -t 04- 1 0 , t01 ,c

0-2

$~- -~ ~u

Page 145: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

f NSWC TR 80-417N 0)

U,

- .1

4-1 Cl) m~ --I rI H I 4

En $4a

0 0 JQ) C C C)

It 1u U, C14 C'

V- U C Nc

oD 0~_0 0 0 Ld 0 Hl

IZ r,*l

E~4 C;0 I H,

Q) IH o co

0)- c r-, .t %.D "of *

00

I I I I 0C H

0CCd

H-1C 0 0)

-0 0) 00N 0 U,N P I --IT 00 M I I0

11 110 I O O 0II'4 --1 H 1 H ) U U' H

0

$ 1 0~ i410 04 4.

Ct)Q 0

rZ4 10- .14

M 0 0) 0 ) U)

0) ~ .. 0d a)- a)4t4 .4

01 r.w w ) WUI

d) 44 44 L co 4-4 0o H- :

UU U a)____

F-42

"4 0 1 C -

Page 146: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

2

UNSTABLE 4-r- STABLETRIM ANGLE 2&0

CD

f CL

CDcLCL

0 I I I I I

1 2 3 4 5 6 7M

FIGURE B-I LIFT AND DRAG COEFFICIENTS FOR FORWARD ET SECTION

B-24

Page 147: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

0V

NSWC TR 80-417

42 *I-

¾ S4

3

2

CL

1 -STABLE AT ALL SPEEDS

TRIM ANGLE zO0P ATHYPERSONIC SPEEDS

I I a I

1 2 3 4 5 4 7

M

FIGURE B-2 LIFT AND DRAG COEFFICIENTS FOR MID ET SECTION

B-25

Page 148: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

IA , ~ I NSWC TR 80-417

1.

p4

3

STABLE AT ALL SPEED$

2

I ~Ct

CD

1 2 3 4 a 7m

FIGURE B-3 LIFT AND DRAG COEFFICIENTS FOR AFT ET SECTION

B-26

Page 149: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

LENGTH/1.0 DIAMETER

L • CD 0 .5

REFERENCE AREA LENGTH X DIAMETER

PIPE SECTIONS UNSTABLE AT ALL SPEEDS

0 I II I II I I I . I. I I I11 10

M

FIGURE B-4 DRAG COEFFICIENT FOR PIPE SECTIONS

:1

, ~1.5-

1.0

CD

0.6

AT - ABOVE TRANZITION

ST - BELOW TRANSITION

1 2 3 4 5M

FIGURE B-5 DRAG COEFFICIENT FOR VENT VALVE, PURGE, AND HELIUM INJECTION LINES

B-27

Page 150: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

SKIN SECTIONS UNSTABLE AT ALL SPEEDS

0.

CD 0.7

0.6

I I I i i i

0 1 2 3 4 5 6 7i M

FIGURE B-6 DRAG COEFFICIENT FOR ET SKIN SECTIONS

1.5 BT BELOW TRANSITION

AT ABOVE TRANSITION

1.0

V CO

0.5-

I I I I I0 1 2 3 4 5

M

FIGURE B-7 DRAG COEFFICIENT FOR RING FRAME STABILIZERS (LH2 TANK)

B-28

Page 151: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

1.5

1.0

CD

0.5

01 2 3 46

SI2 3 4 5

M

* FIGURE B-8 DRAG COEFFICIENT FOR STABILITY RINGS (LH2 TANK), STRINGERS AND TENSIONSTRAPS (SLOSH BAFFLE), CABLE TRAY SEGMENTS, AND LSC SHEATH SEGMENTS

1.0

CD 0.5

0 I 1 II1 2 3 4 5

M

FIGURE B-9 DRAG COEFFICIENT FOR SLOSt! BAFFLE SEGMENTS AND INDIVIDUAl. BAFFL.E WEBSL

B-29

i q '~~~~ l --"l~ v I ~ -I - •- . . ._ i..

Page 152: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

APPENDIX C

LISTING OF ORBITER DEBRIS FRAGMENTS

C-I

Page 153: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

r4ý cl CY) -It LI) Lfn ID r- 00 00 00 00 01%

rX4, 0 u . .

-i

U J~

H O 0. '.0 '.1 0. '.0 0 '0 CC04j. H r ) H- ON H 0 N -T m N - C

U. '.0 I I I (n N I C. I I I

E-4 ~ -

HC C) a44 44 mO

W~ C

0 0. C4

0 C 0 C~ o4 Cf 4CaA U3: N Ln C- 00 C C H C. 0 V)

4- a)*

01 Cr4 -- 0

PL4 .0 CJi-CH %" Cý C Ir C:)u C4 'r 0 C LA C C C r- C CL)

a) 0 r-4 Lf) r - - H N 7% Iq Cl) 0 c L ~'0 '. 0 N

CC

4,-4 0 C

o - 4 C) l c-T 0)0

Z4 04 1~ V) . 00O 0 C)

-4 a1 C1 14 I 0 -4 ) 11 .0

Q) u.C U 0 *0)4 0 -

> 10

ý4C 2)

m~ ce c u4)v *.4 .4w C

Page 154: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0 ý

k ~~ 0* V VE-4 o 0o, c 0 0 0o -

"0 0- l I- m IC 0) N 0: m I I I't- .u 0 0- 0-C1 04 e 0 -

m 3:.o c 1 0 1 1 1 -4 C, V) m r- C___)- Ln mII - 4 m 1 1 1 4 C -4-4 C)C)

k) _ _ _ _ _ _ _ _ _ _ __4r, li__ CV) ~ C C N 0

.i -W C

:11 to 0H C0 0ý0 0 0 0 0 C n ýF ;4 .jl P- (N 'I r- m N -4 00 L) .

0

4j C) 0C) .±*N 0f

CC)

-IT~ 0 0 C)0

I I II>1 N C4 -T 00 N --

$4 a)' Ll)E- 0

Q u. $4vi $H ) Q) m- Z 4U 0 ~41 0n ( ) 0)- *0

U) w) U)) C0 9 0

U) m 0 1- Cu4 0

w. w r. N ci M~u E0 Z __ OD. _o N~ (V 4)Q

H 0 0' 14 (n __>1~

ri .1 -4 (NJ M I~T L r, 0 C 7% N\ 0 , ei Cl0 0- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __--

0C-3

Page 155: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

LEmNSWC TR 80-417

w~ C4Z 0,z tnto r- oo o o o p o o a%

04H ) 0 C 0 C0 0 0 0 0 0 0

C) 0 C 0 0 0) 0 0C d -u )0 0 0 ri -4 l ri 0 -1 0 -4 -4 N

E-A -4 0 212 0 0 0 0

_I o H- m cn I~i~0l Cl Lt ci

41 C 0 0n 1 Hia 4 0 LIn C1 N H- m 0 0

a) H 0l c 0 C N C o 0 l 0 i 'N H,- 0 c

0 0 0

0N 0 0

49 T O 0 0 0 0 0ý 0 0 cc H 0%-0 H- U1 r- H- --T H - ml .- 00 Lfn z .

00 0C*

Q)0 0 -r4 - 0 0 LýCP. 0ý 0)I -

:3::

U 0 0Hc'T C) CD*~ C

o 00 0 01 0)170. 0__ _ _ __ _ _ _

r- 0 0-,4 (U O ~ ~ .4 0 0 C

.a~ : >a 'a" ' H H .

>I§L C -

Page 156: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C. C-0

ci r.. C.) C) C0. C. C. C.) C.) C.) 0. 0. C.)oH~~~ 44Uo o o o

wC..) U~C4 0 ,- HH 0 H

w- H HWt- 0 0n C 0 0(I 0 H 0

u- N 1 1 m Nl-iCrX -0 1 0 0 1f 1 1Ln M r 1

0- UL4 C l Cfl H T Clm__ __ __ ml N n 0 Cl) Lfn N Q n L I

0W 0 Hnr-04 Af NC 0H C 0

03i H n 00 C4 0ý m CO Cl 0 N H 0

"" H 4 C0N C) 0- CD 0 T

0U Ný a0 ) C>

rý 0 0 0n 0 HýoU) r 0 0 0 CDVH rý 01 0 It) LI NN

444

NY CH .. 0.,. C4 0 -4 0 CH cn rl 0 0 L 0 0 01

%0 I- LtL r 0 ) Ca 0OCa 00 a

03C C. 0

0. lz C,

4.1 0..-

w- E-4>3 *p4 414 -

C4 0- 0- r4 0303

Z~1 0j C.1 0q 00 r40 3 . ~ 0 00 CO 41 P64 w w. w 3 ~' ~ ~ U 03 03 0

403 41 11 0) C.) C 3 3n~

0 0 w 0 -__4__ __ __ __ __ _ q__ _E __ __ __ __ __ ___m

r' ~~0 00 -) w__ __ _ __ _ __ _ __ _ __ _ __ _ _ __ _ __ _w__ __ _ __ _ __ _ __ _I;0 4c w ý- 0 t

Page 157: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

0-

H N C4 e -T Lfn in %.0 00 00 0 0

't I It IT :t IT IT I. It k

U 0~f o a ýH H 0 rHNo ý4-- -T -:r I I I I 0 I .Hi r-4 0 N 0 H 0

4, to C) 0 u 0 0 0I

10 0a 0 0 J.0 0

ýL c r~-I C) In m I I~

on cn m1 -4) m~ HN ( \0 m~ 0 N c Itn H

(U H1

C

a) 4- a N 0 00) 0c L() -m

0 0t 0 'ca -C "N 0 0

41 H. 0I -.01-O C 0 H N H

o -H -0,0C 00

03 C n 0 0 0 H 00 'It 0 0- 00 0n 00 0D N /

0I N C, 0l C) O 0 ~ O 0 0 0L

Q) 0 a0Cowr4 - 0 0 r

Ic~~ I- In C1Wcr- .I 0 0 0 1 r 0 0

..I C)J ) Iý 0I' C0f )

C0 Q1' 0) 00

Q))Hq 0

'T C C.4 0 )~.

z- $.4 I - C

4-) u V

4 0- A- - E' 0iI 0 H H V

M. H H V 41 CX) 0o -4 ý 400 (n 3n Q 0 0O 4-- )U) u' (n [C.4 0) 0

1N 41 O'i 0 - -N . 0I 3p. N H) H4 HH u -z 0 oo N 0 Q) 0 V 30 0 ýq ) 1-

0 o mm 0 w0u C j m IH . . -0 -A6

Page 158: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

C- ii 0 ci u I

4J0) C 0 0 C0 0 0 0

a) fm CH -0 H ~ H H N '0 p I, VI 0I 1 1 1 1f1 0u41 H H 0 0 0 0) 0 0 H 0 0 C0 0 C0

E--' 41J W a) N L0 V) 0Y 0(n M 0 'O' -.t 0. Hý V0 C) C) 0rq " 0 C_ 4- m %.0 0 CH-T C) - 0 Iý *ý C4 M.H- u co , -- " I C4 I .- : C.1 1 C N,-q m ~ 04 H3 00 1 0- e1 C) I I *l 000~ c 44 '-i C11 C.I 0 Hl -It m' I. I. I.I L ~ N

0 w HoC) L) 4 C r

iW4 0a C-4 NN 0H

p 40 LI) H- 044 K m " 0 4H) m. 0O0 N C.') 0ý H-4H 0

4J 0

000- 10 0 )C04Cý00 0 H 0 q f

m C00 V) 0 00 0 .0 0 C) C

%D H- V) Lý m N- 00 H) %D ~ CO N 0 0

0 uQ) 0CD.r 0 C0.,II

Lf- . m C

1 q Cu m Pl0 0 C1C )C`. 0r C 0% m 00 0D C0 0

0~ 0 0

404 0

C)0i C-4 C)

tj U)

> E-

0 0 u 0)UH 0J H H1 P. ) 0 r E

Q) Q) c) <) w1 0) Q )41 u l 0 0 ~ 4aI-j

0- 000w

cu 44CLo

Page 159: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

St 1.5

1.0

CD

0.5

I I I I

0 1 2 3 4 5M

FIGURE C--I DRAG COEFFICIENT FOR FUSELAGE MID SECTION

C-8

Page 160: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

3

f2

ICD

0 ,I I I l i

1 2 3 4

FIGURE C-2 DRAG COEFFICIENT FOR FUSELAGE AFT SECTION(BODY, WING, TAIL. NOZZLES)

C-9

Page 161: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

3

K. $CDD

I I I

1 2 M 4

FIGURE C-3 DRAG COEFFICIENT FOR NOSE LANDING GEAR

*3

5* 2

CD

1 • RCS MAIN

-- ••THRUSTER

SII l I .

1 2 3 4 5M

FIGURE C-4 DRAG COEFFICIENT FOR RCS NOZZLES

C-10

Page 162: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

I NSWC TR 80-417

AT ABOVE TRANSITION4BT BELOW TRANSITION

1.0

: CD 0.6 -BlT

0t I I I I I01 2 3 45

FIGURE C-5 DRAG COEFFICIENT FOR RCS FUEL, OXIDIZER, ANDPRESSURIZATION TANKS

CD

•,0.1 1 10

"FIGURE C-6 DRAG COEFFICIENT FOR ORBITER/ET ATTACH STRUTS

C-lI

Page 163: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

S~1.5

, 1.3

(o CD

0 I oI

S1 2 3 4 5

i ~ FIGURE C-7 DRAG COEFFICIENT FOR BEAMS, TRUSSES, AND PIPES

1.0

1,z

CD 0.5

O I I I1 2 3 4 5

M

FIGURE C-8 DRAG COEFFICIENT FOR PAYLOAD BAY DOORS, LANDING GEAR DOORS,

• , SKIN SECTIONS, AND THERMAL TILES

C-12

Page 164: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80U-417

rc

* In4

C-1

Page 165: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 80-417

SCopiesNational Aeronautics and Space Commandant

Administration Army War CollegeMarshall Space Flight Center ATTN: LibraryATTN: J. A. Roach (EL-42) 40 Crlisle Barracks, PA 17013Alabama 35812 Commandant

National Aeronautics and Space Industrial College of the Armed ForcesAdministration Ft. Leslie J. McNair

Kennedy Space Center -ATTN: Document ControlATTN: B. Rock (SF-ENG) Washington, DC 20315F'orida 32899

CommandantNational Aeronautics and Space National War College

Administration Ft. Leslie J. McNairLyndon B. Johnson Space Center ATTN: Class. Rec. LibraryATTN: R. Rose Washington, DC 20315Houston, TX 77058

Directorate of Safety HeadquartersPresident Eastern Space and Missile CenterNaval War College Patrick Air Force BaseNewport, RI .02840 ATTN: L. Ullian (SEM)

Florida 32925SuperintendentNaval Postgraduate School SAMTEC/ROSFATTN: Library ATTN: Colin GardnerMoniery, CA 93940 Vandenberg AFB, CA 93437

Superintendent CommanderNaval Academy Air Force Weapons LaboratoryAnnapolis, MD 21402 ATTN: Lt. N. Clemens (DYVS)

Kirtland Air Force Base, NM 87117CommanderHarry Diamond Laboratories Air University Library2800 Powder Mill Road ATTN: Documents SectionATTN: Technical Library Maxwell Air Force Base, AL 26112Adelphi, MD 20783

n m m • 1.

Page 166: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

NSWC TR 8U-41/

Institute for Defense Analysis Battelle Memorial Institute400 Army-Navy Drive 505 King AvenueATTN: Library ATTN: E. RiceArlington, VA 22202 Columbus, OH 43201

Chairman Denver Research InstituteDepartment of Defense Explosives Mechanical Sciences and

Safety Board Environmental EngineeringRoom 856-C Hoffman Bldg. 1 University of Denver2461 Eisenhower Avenue ATTN: J. WisotskiATTN: R. Perkins Denver, CO 80210

R. ScottT. Zaker Falcon Research

Alexandria, VA 22331 ATTN: D. ParksDenver, CO 80210

DirectorDefense Nuclear Agency General American Transportation

i ATTN: Technical Library CorporationWashington, DC 20305 General American Research Div.

7449 North Natchez AvenueSCommander ATTN: Technical LibraryField Command Niles, IL 60648

Defense Nuclear AgencyATTN: FCTA General Electric Company - TEMPOKirtland Air Force Base, NM 87115 816 State Street

ATTN: W. Chan/DASIACDefense Technical Information Center Santa Barbara, CA 93102Cameron Station 12Alexandria, VA 22314 Hercules Incorporated

Box 98Library of Congress ATTN: D. RichardsonATfN: C1ft and Exchange Division Magna, UT 84044Washington, DC 20540

lIT Research InstituteThiokol/Wasatch Division 10 West 35th StreetP. 0. Box 524 ATTN: Technical LibraryATTN: Technical Library Chicago, IL 60616Brigham City, Utah 84302

Kaman Sciences Corp.Martin Marietta Corp. P. 0. Box 7463Michoud Operations Colorado Springs, CO 80907ATTN: B. ElamNew Orleans, Louisiana Los Alamos Scientific Laboratory

P. 0. Box 1663Rockwell International Space Division ATTN: LASL Library12214 Lakewood Blvd. Los Alamos, NM 87544ATTN: Technical LibraryDowney, CA 90241

2

Page 167: SPACE SHUTTLE RANGE COMMAND VERIFICATION · space shuttle range safety command destruct system analysis and verification phase iii -breakup of space shuttle cluster via 0 range safety

SWC-TR 8o-4T7

New Mexico Institute of Mining Teledyne Energy Systemsand Technology 11O W. Timonium Road

TERA ATTN: T. OlsenATTN: M. L. Kempton Lutherville, MD 21093

J. P. McLainSocorro, NM 87801 University of California

Lawrence Livermore LaboratoryPacific Technology ATTN: Technical LibraryP. 0. Box 148 Livermore, CA 94550Del Mar, CA 92016

URS CorporationPhysics International Company 155 Boroad2700 Merced Street 155 Bonet RoadATTN: Technical Library ATTN: Document ControlSan Leandro, CA 94577 San Mateo, CA 94402

SR and D. Associates DirectorP. a. Box 3580 Woods Hole Oceanographic Institute

ATTN: Technical Library Woods Hole, MA 02543Santa Monica, CA 90403 J. H. Wiggins Corporation

Sandia Laboratories 1650 S. Pacific Coast HighwayP. 0. Box 5800 ATTN: J. BaekerATTN: Library Redonodo Beach, CA 90277

J. ReedL. Vortman

Albuquerque, NM 87115

Sandia LaboratoriesLivermore LaboratoryP. O. Box 969Livermore, CA 94550

DirectorScripps Institution of OceanographyLa Jolla, CA 92037

Shock Hydrodynamics Incorporated15010 Ventura BoulevardATTN: Technical LibrarySherman Oaks, CA 91403

Southwest Research Institute8500 Culebra RoadATTN: W. BakerSan Antonio, TX 78206

Systems, Science and SoftwareP. 0. Box 1620La Jolla, CA 92037

3