(sp 1) - purdue engineeringย ยท (sp 1) given: in a closed rigid ... (saturated vapor)" p[1] =...

13
(SP 1) Given: In a closed rigid tank, State 1: 1, = 1 , 1, = 0.05 P1= 0.0381 kPa, T1= -30 o C State 2: the liquid โ€“ vapor equilibrium line, either saturated liquid or saturated vapor Find: (a) The volume of the tank (b) P1 in bar (c) a saturated liquid or a saturated vapor (d) T2 (e) P-T and P-V diagrams System sketch: State 1 State 2 DLLL Assumptions: - Water vapor and ice are in equilibrium at state 1 - Pure saturated liquid or pure saturated vapor at state 2 Solution: (a) Vtank = 1 1 = 1, 1, + 1, 1, 1 kg ice 0.05 kg water vapor P1= 0.0381 kPa T1= -30 o C 1.05 kg of Saturated liquid or Saturated vapor Q

Upload: vodieu

Post on 07-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 1)

Given:

In a closed rigid tank,

State 1: ๐‘š1,๐‘–๐‘๐‘’ = 1 ๐‘˜๐‘”, ๐‘š1,๐‘” = 0.05 ๐‘˜๐‘”

P1= 0.0381 kPa, T1= -30oC

State 2: the liquid โ€“ vapor equilibrium line, either saturated liquid or saturated vapor

Find:

(a) The volume of the tank

(b) P1 in bar

(c) a saturated liquid or a saturated vapor

(d) T2

(e) P-T and P-V diagrams

System sketch:

State 1 State 2

DLLL

Assumptions:

- Water vapor and ice are in equilibrium at state 1

- Pure saturated liquid or pure saturated vapor at state 2

Solution:

(a)

Vtank = ๐‘š1๐‘ฃ1 = ๐‘š1,๐‘–๐‘๐‘’๐‘ฃ1,๐‘–๐‘๐‘’ + ๐‘š1,๐‘”๐‘ฃ1,๐‘”

1 kg ice

0.05 kg water vapor

P1= 0.0381 kPa

T1= -30oC

1.05 kg of

Saturated liquid

or

Saturated vapor Q

Page 2: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

From Table A-6,

๐‘ฃ1,๐‘–๐‘๐‘’ = 1.0858 ร— 10โˆ’3 ๐‘š3

๐‘˜๐‘”

๐‘ฃ1,๐‘” = 2943 ๐‘š3

๐‘˜๐‘”

Then, the equation we wrote can be,

Vtank = (1 ๐‘˜๐‘”)(1.0858 ร— 10โˆ’3 ๐‘š3

๐‘˜๐‘”) + (0.05 ๐‘˜๐‘”) (2943

๐‘š3

๐‘˜๐‘”) = 147.15 ๐‘š3

The volume of the tank is ๐Ÿ๐Ÿ’๐Ÿ•. ๐Ÿ๐Ÿ“ ๐’Ž๐Ÿ‘

(b)

P1 = (0.0381 kPa)(1 ๐‘๐‘Ž๐‘Ÿ

105๐‘ƒ๐‘Ž) (

1000 ๐‘ƒ๐‘Ž

1 ๐‘˜๐‘ƒ๐‘Ž) = 0.000381 ๐‘๐‘Ž๐‘Ÿ

(c)

๐‘ฃ2 = ๐‘ฃ1 =๐‘‰๐‘ก๐‘Ž๐‘›๐‘˜

๐‘š1=

๐‘‰๐‘ก๐‘Ž๐‘›๐‘˜

๐‘š2=

147.15 ๐‘š3

1.05 ๐‘˜๐‘”= 140.14

๐‘š3

๐‘˜๐‘”

which is greater than ๐‘ฃ๐‘๐‘Ÿ๐‘–๐‘ก , 0.0031๐‘š3

๐‘˜๐‘”. Then, the state is a saturated vapor.

(d)

From Table A-2,

๐‘ฃ๐‘” = 147.120 ๐‘š3

๐‘˜๐‘” at 5 oC

๐‘ฃ๐‘” = 137.734 ๐‘š3

๐‘˜๐‘” at 6 oC

Interpolate to know temperature at ๐‘ฃ๐‘” is 140.14 ๐‘š3

๐‘˜๐‘”.

This provides T2 = 5.744 oC.

(e)

Page 3: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure
Page 4: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 2)

Given:

Two-phase R-134a

State 1: T1= 50oF

State 2: superheated vapor at P2= 4 psia

Find:

(a) min and max of T2

(b) x1,min

(c) P-h diagram of x1=0.9

(d) plot x1 vs T2

System sketch:

Assumptions:

1. Steady-state, Steady-flow

2. โˆ†๐พ๐ธ = โˆ†๐‘ƒ๐ธ = 0

3. Adiabatic

4. No work

Basic equations:

Page 5: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

Solution:

Apply our assumptions into the energy balance equation,

The equation above is now,

๏ฟฝ๏ฟฝ1โ„Ž1 = ๏ฟฝ๏ฟฝ2โ„Ž2

Because of ๏ฟฝ๏ฟฝ1 = ๏ฟฝ๏ฟฝ2,

โ„Ž1 = โ„Ž2

(a)

Using the properties we know, establish an equation with the above equation. ๐‘ฅ1 ๐‘Ž๐‘›๐‘‘ ๐‘‡2 are

independent value and dependent value.

โ„Ž1(๐‘‡1, ๐‘ฅ1) = โ„Ž2(๐‘‡2, ๐‘ƒ2)

Use EES to solve (EES code is attached).

T2,max= 29.5 oF for x1=1 and T2,min= -60 oF for x2=1

Maximum T2 when x1 occurs at 1.0 (sat. vapor at the throttle inlet). Minimum T2 when x2

occurs at 1.0 (sat. vapor at the throttle outlet).

โˆต 1 โˆต 3 โˆต 4 โˆต 2 โˆต 2

Page 6: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(b)

Minimum x1 occurs for T2= T2,min. See the attached EES code.

x1,min= 0.804

(c) and (d)

EES code is attached.

Page 7: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

"Specified inlet temperature and outlet pressure" T[1] = 50 [F] P[2] = 4 [psia] "Maximum outlet temperature where device works is when X[1] = 1 (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) h_1_max = enthalpy(R134a,T=T[1],x=1.0) h_2_max = h_1_max T_2_max = temperature(R134a,P=P[2],h=h_2_max) "Minimum outlet temperature where device works is when X[2] = 1 (saturated vapor)" T_2_min = temperature(R134a,P=P[2],x=1.0) h_2_min = enthalpy(R134a,P=P[2],x=1.0) h_1_min = h_2_min X_1_min = quality(R134a,P=P[1],h=h_1_min) "Data for process line on P-h diagram with X[1] = 0.9" x[1] = 0.9 h[1] = enthalpy(R134a,T=T[1],x=x[1]) h[2] = h[1] T[2] = temperature(R134a,P=P[2],h=h[2]) "Data for plot of x_1 versus T_2" h_2 = enthalpy(R134a,T=T_2,P=P[2]) h_1 = h_2 x_1 = quality(R134a,T=T[1],h=h_1)

Page 8: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure
Page 9: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 3)

Given:

4L of water inside rigid body cooker from State 1 to State 2

State 1: 2L of saturated liquid water @ ๐‘ƒ1 = 200 ๐‘˜๐‘ƒ๐‘Ž

2L of saturated water vapor @ ๐‘ƒ1 = 200 ๐‘˜๐‘ƒ๐‘Ž

State 2: 4L of saturated water vapor @ ๐‘ƒ2 = 200 ๐‘˜๐‘ƒ๐‘Ž

๐‘‡๐‘ ๐‘ก๐‘œ๐‘ฃ๐‘’ = 1000 โ„ƒ, ๐‘‡0 = 20โ„ƒ, ๏ฟฝ๏ฟฝ๐‘™๐‘œ๐‘ ๐‘  = 300 ๐‘Š, ๏ฟฝ๏ฟฝ๐‘–๐‘› = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, โˆ†๐‘ก = 1 โ„Ž๐‘œ๐‘ข๐‘Ÿ

Find:

(a) The total mass of the steam (kg) entering the environment.

(b) The rate of heat transfer (kW) from the source.

(c) The total entropy production (kJ/K) in one hour.

(d) The total exergy destroyed (kJ) in one hour.

System: open system with saturated water inside 4L pressure cooker

Assumptions:

1. Steady flow (No steady state!)

2. No change in PE and KE

3. No work

4. Temperature and pressure are uniform throughout the cooker

State1 2L saturated liquid water + 2L saturated water vapor at P= 200 kPa

State 2

4L saturated water vapor

at P= 200 kPa

Page 10: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

5. Constant properties

6. A half of the volume is saturated liquid water and a half of the volume is saturated water

vapor inside the cooker at state 1

7. Water vapor inside the cooker at state 2

8. Water vapor leaves the cooker at state 2

Basic Equations:

๐‘‘๐‘š๐‘๐‘ฃ

๐‘‘๐‘ก= โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก

๐‘‘๐ธ๐‘๐‘ฃ

๐‘‘๐‘ก= ๐‘„๐‘๐‘ฃ

โˆ’ ๐‘Š๐‘๐‘ฃ + โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘›(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘œ๐‘ข๐‘ก

๐‘‘๐‘†๐‘๐‘ฃ

๐‘‘๐‘ก= โˆ‘

๏ฟฝ๏ฟฝ๐‘๐‘ฃ

๐‘‡๐‘+ โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘›๐‘ ๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก๐‘ ๐‘œ๐‘ข๐‘ก + ๏ฟฝ๏ฟฝ๐ถ๐‘‰

๐ธ๏ฟฝ๏ฟฝ = ๐‘‡0๐œŽ๐‘๐‘ฃ

Solution:

(a)

Because pressure 200 kPa is given for the saturated water, we can find properties of

saturated water from table A-3.

Tsat = 120.2โ„ƒ

vf = 0.0010605 m3/kg vg = 0.8857 m3/kg

uf = 504.49 kJ/kg ug = 2529.5 kJ/kg

hf = 504.7 kJ/kg hg = 2706.7 kJ/kg

sf = 1.5301 kJ/kgK sg = 7.1271 kJ/kgK

First, mass balance equation for open system is

๐‘‘๐‘š๐‘๐‘ฃ

๐‘‘๐‘ก= โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก

Integrate the equation w.r.t. time and then the equation can be written as

โˆ†๐‘š = ๐‘š2 โˆ’ ๐‘š1 = โˆ’ ๐‘š๐‘œ๐‘ข๐‘ก

The mass at state 1 is

๐‘š1 = ๐‘š๐‘“ + ๐‘š๐‘” = ๐‘‰๐‘“

๐‘ฃ๐‘“โ„ +

๐‘‰๐‘”๐‘ฃ๐‘”

โ„ = 2๐ฟ0.0010605 ๐‘š3/๐‘˜๐‘”โ„ + 2๐ฟ

0.8857 ๐‘š3/๐‘˜๐‘”โ„

โˆต no inlet

Page 11: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

= 0.002๐‘š3

0.0010605๐‘š3

๐‘˜๐‘”โ„

+ 0.002๐‘š3

0.8857๐‘š3

๐‘˜๐‘”โ„

= 1.886 ๐‘˜๐‘” + 0.002 ๐‘˜๐‘”

= 1.888 ๐‘˜๐‘”

The mass at state 2 is

๐‘š2 = ๐‘‰๐‘ฃ๐‘”

โ„ = 4๐ฟ0.8857 ๐‘š3/๐‘˜๐‘”โ„

= 0.004๐‘š3

0.8857๐‘š3

๐‘˜๐‘”โ„

= 0.005๐‘˜๐‘”

Thus,

โˆ†๐‘š = ๐‘š2 โˆ’ ๐‘š1 = 0.005 ๐‘˜๐‘” โˆ’ 1.888 ๐‘˜๐‘” = โˆ’1.883 ๐‘˜๐‘”

โˆ’ ๐‘š๐‘œ๐‘ข๐‘ก = โˆ’1.883 ๐‘˜๐‘”

๐‘š๐‘œ๐‘ข๐‘ก = 1.883 ๐‘˜๐‘”

Therefore, 1.883 kg of steam enters into the environment

(b)

Now, the energy balance equation for open system is

๐‘‘๐ธ๐‘๐‘ฃ

๐‘‘๐‘ก= ๐‘„๐‘๐‘ฃ

โˆ’ ๐‘Š๐‘๐‘ฃ + โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘›(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘œ๐‘ข๐‘ก

Apply no work, no KE, no PE, and one outflow, then, the equation above can be

๐‘‘๐ธ๐‘๐‘ฃ

๐‘‘๐‘ก= ๐‘„๐‘๐‘ฃ

โˆ’ ๐‘Š๐‘๐‘ฃ + โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘›(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก(โ„Ž + ๐‘ƒ๐ธ + ๐พ๐ธ)๐‘œ๐‘ข๐‘ก

Rewrite the equation,

Page 12: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

๐‘‘๐ธ๐‘๐‘ฃ

๐‘‘๐‘ก= ๐‘„๐‘๐‘ฃ

โˆ’ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘กโ„Ž๐‘œ๐‘ข๐‘ก

Integrate the equation w.r.t. time,

โˆ†๐ธ๐‘๐‘ฃ = ๐‘„๐‘๐‘ฃ โˆ’ ๐‘š๐‘œ๐‘ข๐‘กโ„Ž๐‘œ๐‘ข๐‘ก

Because no KE and no PE, the equation above can be written as

๐‘š2๐‘ข2 โˆ’ ๐‘š1๐‘ข1 = ๐‘„๐‘–๐‘› โˆ’ ๐‘„๐‘™๐‘œ๐‘ ๐‘  โˆ’ ๐‘š๐‘œ๐‘ข๐‘กโ„Ž๐‘œ๐‘ข๐‘ก

0.005๐‘˜๐‘” โˆ— 2529.5๐‘˜๐ฝ/๐‘˜๐‘” โˆ’ (1.886๐‘˜๐‘” โˆ— 504.49๐‘˜๐ฝ/๐‘˜๐‘” + 0.002๐‘˜๐‘” โˆ— 2529.6๐‘˜๐ฝ/๐‘˜๐‘”)

= ๐‘„๐‘–๐‘› โˆ’ 0.3๐‘˜๐ฝ/๐‘  โˆ— 3600๐‘  โˆ’ 1.883๐‘˜๐‘” โˆ— 2706.7๐‘˜๐ฝ/๐‘˜๐‘”

๐‘„๐‘–๐‘› = 5232.8 kJ

The rate of heat transfer is

๏ฟฝ๏ฟฝ๐‘–๐‘› =๐‘„๐‘–๐‘›

โˆ†๐‘กโ„ =5232.8 ๐‘˜๐ฝ

3600 ๐‘  = 1.454 kW

Therefore, ๐Ÿ. ๐Ÿ’๐Ÿ“๐Ÿ’ ๐’Œ๐‘พ of the rate of heat transfer is entering into the cooker from

the stove.

(c)

The entropy balance equation for open system is

๐‘‘๐‘†๐‘๐‘ฃ

๐‘‘๐‘ก= โˆ‘

๏ฟฝ๏ฟฝ๐‘๐‘ฃ

๐‘‡๐‘+ โˆ‘ ๏ฟฝ๏ฟฝ๐‘–๐‘›๐‘ ๐‘–๐‘› โˆ’ โˆ‘ ๏ฟฝ๏ฟฝ๐‘œ๐‘ข๐‘ก๐‘ ๐‘œ๐‘ข๐‘ก + ๏ฟฝ๏ฟฝ๐ถ๐‘‰

Apply assumptions and integrate the equation w.r.t. time,

โˆ†๐‘†๐‘๐‘ฃ = โˆ‘๐‘„๐‘๐‘ฃ

๐‘‡๐‘โˆ’ ๐‘š๐‘œ๐‘ข๐‘ก๐‘ ๐‘œ๐‘ข๐‘ก + ๐œŽ๐‘๐‘ฃ

Rewrite,

๐‘š2๐‘ 2 โˆ’ ๐‘š1๐‘ 1 =๐‘„๐‘–๐‘›

๐‘‡๐‘ ๐‘ก๐‘œ๐‘ฃ๐‘’โˆ’

๐‘„๐‘™๐‘œ๐‘ ๐‘ 

๐‘‡0โˆ’ ๐‘š๐‘œ๐‘ข๐‘ก๐‘ ๐‘œ๐‘ข๐‘ก + ๐œŽ๐‘๐‘ฃ

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘š1๐‘ 1 = ๐‘š๐‘“๐‘ ๐‘“ + ๐‘š๐‘”๐‘ ๐‘”

Once you substitute all known values, you will get one unknown,

Page 13: (SP 1) - Purdue Engineeringย ยท (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

0.005 ๐‘˜๐‘” โˆ— 7.1271๐‘˜๐ฝ

๐‘˜๐‘”๐พโ€“ (1.886 ๐‘˜๐‘” โˆ— 1.5301

๐‘˜๐ฝ

๐‘˜๐‘”๐พ+ 0.002 ๐‘˜๐‘” โˆ— 7.1271

๐‘˜๐ฝ

๐‘˜๐‘”๐พ)

=5232.8 ๐‘˜๐ฝ

1273 ๐พโˆ’

0.3 ๐‘˜๐‘Š โˆ— 3600 ๐‘ 

293 ๐พโˆ’ 1.883 ๐‘˜๐‘” โˆ— 7.1271

๐‘˜๐ฝ

๐‘˜๐‘”๐พ+ ๐œŽ๐‘๐‘ฃ

๐œŽ๐‘๐‘ฃ = 0.0356 โˆ’ 2.9 โˆ’ 4.111 + 3.686 + 13.420 = 10.131 kJ/K

Therefore, ๐Ÿ๐ŸŽ. ๐Ÿ๐Ÿ‘๐Ÿ ๐ค๐‰/๐Š of the total entropy production is generated in one hour.

(d)

The total exergy destruction can be calculated by

๐ธ๏ฟฝ๏ฟฝ = ๐‘‡0๐œŽ๐‘๐‘ฃ = 293 ๐พ โˆ— 10.131๐‘˜๐ฝ

๐พ= 2968.3 ๐‘˜๐ฝ

Therefore, ๐Ÿ๐Ÿ—๐Ÿ”๐Ÿ–. ๐Ÿ‘ ๐ค๐‰ of the total exergy is destroyed during one hour.