sound in the world around us. overview of questions what makes it possible to tell where a sound is...

35
SOUND IN THE WORLD AROUND US

Upload: nancy-lawson

Post on 16-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

SOUND IN THE WORLD AROUND US

Page 2: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

OVERVIEW OF QUESTIONS

What makes it possible to tell where a sound is coming from in space?

When we are listening to a number of musical instruments playing at the same time, how can we perceptually separate the sounds coming from the different instruments?

How do we find that phone lost in our room?

Page 3: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

The three directions used for studying sound localization:

azimuth (left-right),

Distance and

elevation (up-down)

Page 4: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

FINDING THE PHONE : AUDITORY LOCALIZATION

Auditory space - surrounds an observer and exists wherever there is sound

Researchers study how sounds are localized in space by using:

Azimuth coordinates - position left to right

Elevation coordinates - position up and down

Distance coordinates - position from observer

Page 5: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

AUDITORY LOCALIZATION - CONTINUED

On average, people can localize sounds

Directly in front of them most accurately

To the sides and behind their heads least accurately.

Location cues are not contained in the receptor cells like on the retina in vision; thus, location for sounds must be calculated.

Page 6: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Comparing location information for vision and hearing.

Vision: The bird and the cat are at different locations and are imaged on different places on the retina.

Hearing: The frequencies in the sounds from the bird and the cat are spread out over the cochlea, with no regard to the locations of the bird and the cat.

Page 7: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

CUES FOR SOUND LOCATION

Binaural cues - location cues based on the comparison of the signals received by the left and right ears

Interaural time difference (ITD)- difference between the times sounds reach the two earsWhen distance to each ear is the same, there are no differences in time.

When the source is to the side of the observer, the times will differ.

Page 8: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

The principle behind interaural time difference (ITD). The tone directly in front of the listener, at A, reaches the left and the right ears at the same time. However, when the tone is off to the side, at B, it reaches the listener’s right before it reaches the left ear.

Page 9: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

BINAURAL CUES

Interaural level difference (ILD)- difference in sound pressure level reaching the two ears

Reduction in intensity occurs for high frequency sounds for the far ear.

The head casts an acoustic shadow.

This effect doesn’t occur for low frequency (pitch) sounds.

Page 10: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.5. Why interaural level difference (ILD) occurs for high frequencies (high pitch) but not for low frequencies. When water ripples are small compared to an object, such as this boat, they are stopped by the object. The spaces between high-frequency sound waves is small compared to the head. The head interferes with the sound waves, creating an acoustic shadow on the other side of the head.

Page 11: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.5. (b) The same ripples are large compared to the single cattail, so they are unaffected by it. (d) The spacing between low-frequency (low pitch) sound waves is large compared to the person’s head, so the sound is unaffected by the head.

Page 12: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

IDENTIFYING SOUND SOURCES

You see three musicians. Locate each because image falls on different part of retina.

You hear three musicians. Sounds hitting your ear at same time. How do you identify which musician is producing which sound?

Page 13: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

AUDITORY SCENE ANALYSIS

Auditory Scene - the array of all sound sources in the environment

Auditory Scene Analysis - process by which sound sources in the auditory scene are separated into individual perceptions.

This does not happen at the cochlea since simultaneous sounds are together in the pattern of vibration of the basilar membrane.

Page 14: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

PRINCIPLES OF AUDITORY GROUPING 1

Heuristics that help to perceptually organize stimuli.

Ex. Marching band vs fire truckOnset time - sounds that start at different times are likely to come from different sources.

Location - a single sound source tends to come from one location and to move continuously.

Similarity of timbre and pitch - similar sounds are grouped together.

Page 15: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

AUDITORY SCENE ANALYSIS

MARCHING BAND FIRE TRUCK

Page 16: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

AUDITORY STREAM SEGREGATION

Compound melodic line in music is an example of auditory stream segregation.

Experiment by Bregman and CampbellStimuli were alternating high and low tones

When stimuli played slowly, the perception is hearing high and low tones alternating.

When the stimuli are played quickly, the listener hears two streams; one high and one low.

Gestalt principles in action.

Page 17: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Four measures of a composition by J. S. Bach (Chorale Prelude on Jesus Christus unser Heiland, 1739). When played rapidly, the upper notes become perceptually grouped and the lower notes become perceptually grouped, a phenomenon called auditory stream segregation.

http://www.youtube.com/watch?v=0vRfRuNZdHs

Page 18: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.15 (a) When high and low tones are alternated slowly, auditory stream segregation does not occur, so the listener perceives alternating high and low tones. (b) Faster alternation results in segregation into high and low streams.

Page 19: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.17 (a) Two sequences of stimuli: a series of similar notes (red), and a scale (blue). (b) Perception of these stimuli: Separate streams are perceived when they are far apart in frequency, but when the frequencies are in the same range, the tones appear to jump back and forth between stimuli.

Virtual Lab12/6

Page 20: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

AUDITORY STREAM SEGREGATION

Experiment by Deutsch - the scale illusion or melodic channeling

Stimuli were two sequences alternating between the right and left ears.

Listeners perceive two smooth sequences by grouping the sounds by similarity in pitch.

This demonstrates the perceptual heuristic that sounds with the same frequency come from the same source, which is usually true in the environment.

Page 21: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.18 (a) These stimuli were presented to a listener’s left ear (blue) and right ear (red) in Deutsch’s (1975) scale illusion experiment. Notice how the notes presented to each ear jump up and down.

(b) What the listener hears. Although the notes in each ear jump up and down, the listener perceived a smooth sequence of notes. This effect is called the scale illusion, or melodic channeling. (Adapted from Deutch, 1975).

Page 22: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

PRINCIPLES OF AUDITORY GROUPING 2

Proximity in time - sounds that occur in rapid succession usually come from the same source.

This principle was illustrated in auditory streaming.

Auditory continuity - sounds that stay constant or change smoothly are usually from the same source.

Page 23: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

GOOD CONTINUATION

Experiment by Warren et al.Tones were presented interrupted by gaps of silence

or by noise.

In the silence condition, listeners perceived that the sound stopped during the gaps.

In the noise condition, the perception was that the sound continued behind the noise.

Virtual Lab 12/9

Page 24: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.19 A demonstration of auditory continuity, using tones.

Page 25: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

PRINCIPLES OF AUDITORY GROUPING 3

Effect of past experienceExperiment by Dowling

Melody “Three Blind Mice” is played with notes alternating between octaves

Listeners find it difficult to identify the song

But after they hear the normal melody, they can then hear it in the modified version using melody schema

Page 26: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.20 “Three Blind Mice”: (a) jumping octave version; (b) normal version.

Virtual Lab 12/11

Page 27: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

ACOUSTICS: HEARING INSIDE ROOMS

Direct sound - sound that reaches the listener’s ears straight from the source

Indirect sound - sound that is reflected off of environmental surfaces and then to the listener

When a listener is outside, most sound is direct; however inside a building, there is direct and indirect sound.

Page 28: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

(a) When you hear a sound outside, you hear mainly direct sound (path a).

(b) When you hear a sound inside a room, you hear both direct (a) and indirect sound (b, c, and d) that is reflected from the walls, floor, and ceiling of the room.

Page 29: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

ARCHITECTURAL ACOUSTICS

The study of how sounds are reflected in rooms.

Factors that affect perception in concert halls.Reverberation time - the time is takes sound to decrease by 1/1000th of its original pressureIf it is too long, sounds are “muddled.”If it is too short, sounds are “dead.”Ideal times are around two seconds.

Page 30: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

FACTORS THAT AFFECT PERCEPTION IN CONCERT HALLS Intimacy time - time between when sound leaves its

source and when the first reflection arrives.

Best time is around 20 ms.Bass ratio - ratio of low to middle frequencies reflected

from surfaces.

High bass ratios are best.Spaciousness factor - fraction of all the sound received

by listener that is indirect.

High spaciousness factors are best.

Page 31: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

ACOUSTICS IN CLASSROOMS

Ideal reverberation time in classrooms is.4 to .6 second for small classrooms.1.0 to 1.5 seconds for auditoriums.These maximize ability to hear voices.Most classrooms have times of one second or more.

Background noise is also problematic.

Page 32: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

INTERACTIONS BETWEEN VISION AND SOUND

Visual capture or the ventriloquist effect - an observer perceives the sound as coming from the visual location rather than the source for the sound

Experiment by Sekuler et al.

Balls moving without sound appeared to move past each other.

Balls with an added “click” appeared to collide.

Page 33: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.24 Two conditions in the Sekuler et al. (1999) experiment showing successive positions of two balls that were presented so they appeared to be moving. (a) No sound condition: the two balls were perceived to pass each other and continue moving in a straight-line motion.

Page 34: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

Figure 12.24 Two conditions in the Sekuler et al. (1999) experiment showing successive positions of two balls that were presented so they appeared to be moving. (b) Click added condition: Observers were likely to see the balls as colliding.

Virtual Lab 12/15

Page 35: SOUND IN THE WORLD AROUND US. OVERVIEW OF QUESTIONS What makes it possible to tell where a sound is coming from in space? When we are listening to a number

WOULD YOU LIKE TO BE A DUMMY?

http://www.youtube.com/watch?v=htU6qYsLsEE