some remarks about lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var))...

29
Some remarks about Lab 1

Post on 20-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Some remarks about Lab 1

Page 2: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

image(parana.krige,val=sqrt(parana.krige$krige.var))

contour(parana.krige,loc=loci,add=T)

Page 3: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Dist 2 2 meth line

Gau 582 6.3 e3 315 ols

Gau 43 6.8 e3 232 rob

Gau 273 5.5 e3 250 wlsc

Cir 6.3 e5 7 e4 wlsc

Exp 437 5.2 e6 4 e5 wlsc

Page 4: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

likfit(parana,nugget=470,cov.model="gaussian",ini.cov.pars=c(5000,250))

kappa not used for the gaussian correlation function

---------------------------------------------------------

likfit: likelihood maximisation using the function optim.

likfit: estimated model parameters:

beta tausq sigmasq phi

" 260.6" " 521.1" "6868.9" " 336.2"

Practical Range with cor=0.05 for asymptotic range: 16808.82

likfit: maximised log-likelihood = -669.3

Page 5: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)
Page 6: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)
Page 7: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)
Page 8: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Nonstationary variance

Let (x) be a Gaussian process with constant mean , constant variance , and correlation .

f is the same deformation as for the covariance modelling.

Define the variance process

Its distribution at gauged sites is

ρϑ f(x) − f(y)( )

ν(x) = exp(η(x))

rν[ ] ∝

1

νi∏%Σ

− 12

×exp(− 12 (log(

rν) − μ1)T %Σ−1(log(

rν) − μ1))

%2

Page 9: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Moments of the variance process

Mean:

Variance:

Covariance:

Correlation:

E(ν(x)) =exp( + 12 %

2 )

Var(ν(x)) =exp(2 + %2 ) exp(%2 ) −1( )

Cov(ν(x), ν(y)) =exp(2 + %2 )

× exp %2ρϑ ( f(x) −f(y){ } −1( )

Corr(ν(x), ν(y)) =

exp %2ρϑ ( f(x) −f(y){ } −1

exp(%2 −1)

Page 10: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Priors

~ N(,)

The full conditional distributions are then of the same form (Gibbs sampler).

To set the hyperparameters we use an empirical approach: Let Sii be the sample variance at site i.

%−2 ~ Γ(γ,δ)

ESii =E E(S ii νi )( ) =E(νi ) =exp( + 12 %

2 )

Var(Sii ) =Var E(S ii νi( ) +EVar(S ii νi )

=Exp(2 + %2 )(exp(%2 ) −1)

Page 11: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Method of momentsSetting the sample moments (over the sites) equal to the theoretical moments we get

and let that be the prior mean. The prior variance is set appropriately diffuse.

=log(S) − 12 log

1n (Sii − S)2

i=1

n

∑ + S2

S2

⎜⎜⎜⎜

⎟⎟⎟⎟

1%2 =−log

1n (S ii −S)

2

i=1

n

∑ +S2

S2

⎜⎜⎜⎜

⎟⎟⎟⎟

Page 12: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

French precipitation

Constant variance Nonconstant

variance

Page 13: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Prediction vs estimation

Leave out 8 stations, use remaining 31 for estimation

Compute predictive distribution for the 8 stations

Plot observed variances (incl. nugget) vs. estimated variances

and against predictive distribution

Page 14: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)
Page 15: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Estimated variance field

Page 16: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Global processes

Problems such as global warming require modeling of processes that take place on the globe (an oriented sphere).

Optimal prediction of quantities such as global mean temperature need models for global covariances.

Note: spherical covariances can take values in [-1,1]–not just imbedded in R3.

Also, stationarity and isotropy are identical concepts on the sphere.

Page 17: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Isotropic covariances on the sphere

Isotropic covariances on a sphere are of the form

where p and q are directions, pq the angle between them, and Pi the Legendre polynomials:

C(p,q) = aii= 0

∑ Pi (cosγpq )

Pn (x) =1

2nn!dn

dxnx2 −1( )

n⎡⎣

⎤⎦

Page 18: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Some examples

Let ai=ρi, o≤ρ<1. Then

Let ai=(2i+1)ρi. Then

Given C(p,q)

C(p,q) =1− ρ2

1− 2ρcos γpq + ρ2 − 1

C(p,q) =1

(1−2ρcos pq + ρ2 )

12

ak =2k + 14π

C(p,q)Pk (cos pq )dΩqq∫

Page 19: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Global temperature

Global Historical Climatology Network 7280 stations with at least 10 years of data. Subset with 839 stations with data 1950-1991 selected.

Page 20: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Isotropic correlations

Page 21: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Spherical deformation

Need isotropic covariance model on transformation of sphere/globe

Covariance structure on convex manifolds

Simple option: deform globe into another globe

Alternative: MRF approach

Page 22: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

A class of global transformations

Deformation of sphere g=(g1,g2)

latitude def

longitude def

Avoid crossing of latitudes or longitudes

Poles are fixed points

Equator can be fixed as well

g1 : S2 → [−90,90]

g2 : S2 → [−180,180]

Page 23: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Simple latitude deformation

f(θ) =

(1−b)90 −ξ

(θ −ξ)2 +b(θ −ξ) + ξ, ξ ≤θ ≤90

−(1−b)90 −ξ

(θ −ξ)2 +b(θ −ξ) + ξ, ξ > θ ≥−90

⎨⎪⎪

⎩⎪⎪

knot

Iterated simpledeformations

Page 24: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Two-dimensional deformation

Let b and ξ depend on longitude

Alternating deform longitude and latitude.

ξ(φ) = α ξ exp(−cos2 (φ− ηξ )

βξ

)

locationscaleamplitude

Page 25: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Three iterations

Page 26: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Resulting isocovariance curves

Page 27: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Comparison

Isotropic Anisotropic

Page 28: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Assessing uncertaintyCov(Z(p),Z(q)) =2r(p,q)

Page 29: Some remarks about Lab 1. image(parana.krige,val=sqrt(parana.kri ge$krige.var)) contour(parana.krige,loc=loci,add=T)

Another current climate problem

General circulation models require accurate historical ocean surface temperature records

Data from buoys, ships, satellites