some mathematical aspects of wave propagation in the cold...

52
L.-M. Imbert-G´ erard Some mathematical aspects of wave propagation in the cold plasma model Lise-Marie Imbert-G´ erard, Courant Institute of Mathematical sciences, NYU. - Collaboartors : B. Despr´ es (UPMC-Paris 6), P. Monk (U. Delaware) and R. Weder (UNAM, M´ exico). April, 4th 2014. Some mathematical aspects of wave propagation in the cold plasma model p. 1 / 43

Upload: others

Post on 02-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Some mathematical aspects of wave

propagation in the cold plasma model

Lise-Marie Imbert-Gerard,Courant Institute of Mathematical sciences, NYU.

-Collaboartors : B. Despres (UPMC-Paris 6), P. Monk (U.

Delaware) and R. Weder (UNAM, Mexico).

April, 4th 2014.

Some mathematical aspects of wave propagation in the cold plasma model p. 1 / 43

Page 2: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Plan

1 Wave propagation in plasmas

2 Numerical simulation of a cut-offDesign of the basis functionsInterpolation2D simulations

3 About the resonanceA theoretical studyA numerical study

Some mathematical aspects of wave propagation in the cold plasma model p. 2 / 43

Page 3: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Different models

Microscopic approachKinetic approach

1 Kinetic description2 Gyro-kinetic description

Macroscopic approach : Fluid description1 Euler-Maxwell2 Newton-Maxwell

For each species s :

ms (∂tus + us · ∇us) = qs (E + us ∧B) ,

coupled with the Maxwell’s equations

− 1c2 ∂tE + ∇∧ B = µ0J,

∂tB + ∇∧ E = 0, ∇ · B = 0,J =

∑s qsnsus .

Notice that ns has to be provided to close the system.

Some mathematical aspects of wave propagation in the cold plasma model p. 3 / 43

Page 4: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Linearization

Under the hypothesis

E = 0 +E1,B = B0 +B1,us = 0 +us

1,

the system becomes

ms∂tus1 = qs (E1 + us

1 ∧ B0) ,

coupled with

− 1c2 ∂tE1 + ∇∧B1 = µ0J1,

∂tB1 + ∇∧ E1 = 0,J1 =

∑s qsnsu

s1.

The system is closed.

Some mathematical aspects of wave propagation in the cold plasma model p. 4 / 43

Page 5: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The time-harmonic equations

iωc2 E + ∇∧ B = µ0qeneue ,

−iωB + ∇∧ E = 0,−iωmeue = qe (E + ue ∧ B0)

So suppose B0 = |B0|ez , then the Cold Plasma model reads :

∇∧∇ ∧ E =ω2

c2

I −

ω2p

ω2

ω2

ω2−ω2c

i ωωc

ω2−ω2c

0

−i ωωc

ω2−ω2c

ω2

ω2−ω2c

0

0 0 1

E,

where ωc = |qe |B0

meand ω2

p = e2ne (x)ε0me

.

Stix : A general analysis of this model is able to provide a

surprisingly comprehensive view of plasma waves.

Remark In this work ω is such that ω 6= ωc .

Some mathematical aspects of wave propagation in the cold plasma model p. 5 / 43

Page 6: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Classical notation

Define M = I − ω2p

ω2

ω2

ω2−ω2c

i ωωc

ω2−ω2c

0

−i ωωc

ω2−ω2c

ω2

ω2−ω2c

0

0 0 1

= M∗, then

M =

S −iD 0iD S 00 0 P

with S = 12 (R + L), D = 1

2 (R − L) and

R = 1 − ω2p

ω2ω

ω−ωc,

L = 1 − ω2p

ω2ω

ω+ωc,

P = 1 − ω2p

ω2 .

Some mathematical aspects of wave propagation in the cold plasma model p. 6 / 43

Page 7: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Dispersion relation

Wave propagation in the plasmaConsider that the coefficients are locally constant, and look forplane wave solutions

E(x) = e e i(k,x), and e ∈ C3.

Condition for propagation : ω ∈ R for k ∈ R3.

Dispersion relationSuppose k = kn and n = (sin θ, 0, cos θ).Define M(n) = −n ∧ n∧ = I − n ⊗ n, then it reads

det

(M− k2c2

ω2M(n)

)= 0 = A

(k2c2

ω2

)2

− Bk2c2

ω2+ C .

with

A = S sin2 θ + P cos2 θ, B = RL sin2 θ + PS(1 + cos2 θ),

C = detM = PRL.

Some mathematical aspects of wave propagation in the cold plasma model p. 7 / 43

Page 8: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Cut-offs and Resonances

Definition : Cutoff k = 0.Corresponds to PRL = 0.

P = 0 ⇔ ω = ±ωp.

R = 0 ⇔ ω =ωc ±

√ω2

c + 4ω2p

2.

L = 0 ⇔ ω =−ωc ±

√ω2

c + 4ω2p

2.

⇒ ω2p = ω2 + ηωωc , η = −1, 0, 1.

Definition : Resonance k = ∞.Corresponds to A = 0, i.e. tan2 θ = −P

S.

S = 0 for θ =π

2⇔ ω2

p = ω2 − ω2c .

Some mathematical aspects of wave propagation in the cold plasma model p. 8 / 43

Page 9: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Plan

1 Wave propagation in plasmas

2 Numerical simulation of a cut-offDesign of the basis functionsInterpolation2D simulations

3 About the resonanceA theoretical studyA numerical study

Some mathematical aspects of wave propagation in the cold plasma model p. 9 / 43

Page 10: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

O-mode equation and cut-off

Model : wave equation in two dimensions

−∆u + βu = f

smooth varying coefficient

boundary condition : (∂n + iγ) u = g , γ > 0

sign(β) = ±1, Cutoff ⇔ β = 0

β < 0i.e. ne < nc

⇒ Wave propagation

β > 0i.e. ne > nc

⇒ Wave absorption

With nc =c2ε0me

q2e

ω2.

Example : the Airy functions

−u′′ + xu = 0

Some mathematical aspects of wave propagation in the cold plasma model p. 10 / 43

Page 11: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The Ultra Weak Variational formulation,a Plane Wave method

Mesh dependent formulation

Ω = ∪Ωk

Plane wave idea : test functione such that −∆e + βe = 0

∫Ωk

(−∆u + βu)e = 0∫Ωk

(−∆e + βe)u = 0

⇒ ∫

Ωk∇u · ∇e +

∫Ωk

βue −∫∂Ωk

∂νue = 0∫Ωk

∇u · ∇e +∫Ωk

βue −∫∂Ωk

∂νeu = 0

and (∂ν + iγ)u(∂ν + iγ)e − (∂ν − iγ)u(∂ν − iγ)e

= 2iγ(u∂νe + e∂νu)

Some mathematical aspects of wave propagation in the cold plasma model p. 11 / 43

Page 12: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

UWVF Bibliography

B. Despres et al.1994 An ultra-weak-type variational formulation C. R. Acad. Sci.

1998, 2003 with Cessenat on Helmholtz, Maxwell and acoustic waves

2013 with LMIG combining with generalized plane waves, smooth varying coefficients(1)

P. Monk et al.2002, 2004, 2007, 2008, 2012 with Huttunen et al. on Maxwell and elastic waves

2007, 2008, 2012 with Darrigrand combining with FMM

2008 with Buffa on error estimates

R. Hiptmair et al.2009, 2011 with Moiola, Perugia, Gittelson on p and h convergence

2009, 2011 ( Vekua theory )

(1) For some approximation parameter q

−∆ϕ + βqϕ = 0 ⇒ −∆ϕ + βϕ = (β − βq)ϕ= O(hq)

Some mathematical aspects of wave propagation in the cold plasma model p. 12 / 43

Page 13: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DGeneralized plane wave

Case of a constant coefficient

(−∆ − ω2)e iω−→k ·(x ,y) =

(ω2∣∣∣−→k∣∣∣2− ω2

)e iω

−→k ·(x ,y) = 0.

Some mathematical aspects of wave propagation in the cold plasma model p. 13 / 43

Page 14: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DGeneralized plane wave

Case of a constant coefficient

(−∆ − ω2)e iω−→k ·(x ,y) =

(ω2∣∣∣−→k∣∣∣2− ω2

)e iω

−→k ·(x ,y) = 0.

Case of a smooth non constant coefficient

Consider G ∈ R2 s.t. |(x − xG , y − yG )| ≤ h

ϕ(x , y) = eP(x ,y) and P(x , y) =dP∑

i+j=0

λi ,j(x − xG )i (y − yG )j

(−∆ + β)ϕ=((−∂2

xP − ∂2yP − (∂xP)2 − (∂yP)2) + β

⇒ Results in a non linear system⇒ which unknowns are the coefficients λi ,j of P

How to get an explicitly invertible system ?

Some mathematical aspects of wave propagation in the cold plasma model p. 13 / 43

Page 15: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DGeneralized plane wave

Consider a given order q ∈ N∗ such that

β −(∂2

xP + (∂xP)2 + ∂2yP + (∂yP)2

)= O(hq).

Resulting system

λ0,0 = 0 ⇒ ϕ(x , y) bounded

Nun = (dP+1)(dP+2)2 − 1 unknowns

l

k

0

0

d P

d P

Every colored point (k, l) suchthat 0 ≤ k + l ≤ dP

corresponds to the unknownλk,l , coefficient of thepolynomial P .

Some mathematical aspects of wave propagation in the cold plasma model p. 14 / 43

Page 16: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DGeneralized plane wave

Consider a given order q ∈ N∗ such that

β −(∂2

xP + (∂xP)2 + ∂2yP + (∂yP)2

)= O(hq).

Resulting system

λ0,0 = 0 ⇒ ϕ(x , y) bounded

Nun = (dP+1)(dP+2)2 − 1 unknowns

Neq = q(q+1)2 equations

l

k

q-1

q-1

0

0

Every (k, l) belonging to thecolored triangle is such that0 ≤ k + l ≤ q − 1 andcorresponds to the equationthat stems from the coefficient(k, l) of the Taylor expansionup to order q.

Some mathematical aspects of wave propagation in the cold plasma model p. 14 / 43

Page 17: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DGeneralized plane wave

Consider a given order q ∈ N∗ such that

β −(∂2

xP + (∂xP)2 + ∂2yP + (∂yP)2

)= O(hq).

Resulting system

λ0,0 = 0 ⇒ ϕ(x , y) bounded

Nun = (dP+1)(dP+2)2 − 1 unknowns

Neq = q(q+1)2 equations

Choosing the degree of P

dP ≤ q − 1 ⇔ overdetermined system

dP = q ⇒ q equations have no linear term

dP ≥ q + 1 ⇒ underdetermined system

⇒ dP = q + 1 for cheaper computationsand Nun − Neq = 2q + 2

Some mathematical aspects of wave propagation in the cold plasma model p. 14 / 43

Page 18: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DResulting system for the coefficients

∀(i, j) ∈ [[0, q − 1]]2\i + j ≤ q − 1

∂ ix∂j

y β(G)

i !j!= (i + 2)(i + 1)λi+2,j + (j + 2)(j + 1)λi,j+2

+

iX

k=0

jX

l=0

(i − k + 1)(k + 1)λi−k+1,j−lλk+1,l

+

jX

k=0

iX

l=0

(j − k + 1)(k + 1)λi−l,j−k+1λl,k+1.

For a given (i , j) such that0 ≤ i + j ≤ q − 1, the colored(k, l)s represent the λk,l

appearing in the correspondingequation of the system.

Some mathematical aspects of wave propagation in the cold plasma model p. 15 / 43

Page 19: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Basis function design in 2DExplicit solution of the system

∀(i, j) ∈ [[0, q − 1]]2\i + j ≤ q − 1

(i + 2)(i + 1)λi+2,j =∂ i

x∂jy β(G)

i !j!− (j + 2)(j + 1)λi,j+2

−i

X

k=0

jX

l=0

(i − k + 1)(k + 1)λi−k+1,j−lλk+1,l

jX

k=0

iX

l=0

(j − k + 1)(k + 1)λi−l,j−k+1λl,k+1.

l

k

q-1

q-1

0

0

q+1

q+1

i

jTO BE COMPUTED

Fixed or

already computed

where x marks represent thecoefficients that are previouslyfixed to compute the rest ofthe coefficients, namely theλk,l such that k = 0, 1.

Some mathematical aspects of wave propagation in the cold plasma model p. 16 / 43

Page 20: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Summary : designing the basis functions

Normalization : Fix λi ,j for i ∈ 0, 1(λ0,1, λ1,0) = N(cos θ, sin θ),N =

√β(G ) or N = i ,

the other coefficients are set to 0 (including λ0,0).

⇒ λi ,j , 0 ≤ i ≤ q + 1, 0 ≤ j ≤ q + 1 − i is explicitly known

The corresponding basis function satisfies(−∆ + βN,θ

q

)ϕ = 0,

whereβN,θ

q = ∂2xP + ∂2

yP + (∂xP)2 + (∂yP)2

Local set of approximated solutions

∀l s.t. 1 ≤ l ≤ p, θl = 2πl/p∀l s.t. 1 ≤ l ≤ p,⇒ E(G , p) = ϕl1≤l≤p

Some mathematical aspects of wave propagation in the cold plasma model p. 17 / 43

Page 21: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Interpolation property of the GPWTheorem, proved thanks to Faa Di Bruno formula

Suppose u is a solution of Helmholtz equation around G ∈ R2.

In addition, suppose that N 6= 0, n ∈ N, q ≥ n + 1, p = 2n + 1and that u satisfies u ∈ Cn+1.Then there are a function ua ∈ SpanE(G , p) depending on αand n and a constant C only depending on α such that ∀X

|u(X ) − ua(X )| ≤ Chn+1 ‖u‖Cn+1 ,

‖∇u(X ) −∇ua(X )‖ ≤ Chn ‖u‖Cn+1 .

Construction ua =

p∑

l=1

xlϕl in O-mode

Since −∆u + βu = 0 and −∆ua + βua = O(hq),

consider the Taylor expansion of u − ua,

⇒ xl , 1 ≤ l ≤ p is the solution of an explicit linear system.

Some mathematical aspects of wave propagation in the cold plasma model p. 18 / 43

Page 22: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Exact solution and its interpolationβ(x , y) = x − 1 and u = Airy(x)e iy

Around G = (−3, 1), approximation computed with p = 7 basisfunctions, at the order q = 4.

Some mathematical aspects of wave propagation in the cold plasma model p. 19 / 43

Page 23: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

h convergence at G = (−3, 1), p = 7 and q = 4

|u(X ) − ua(X )| ≤ Chn+1 ‖u‖Cn+1 ,n = 3, p = 2n + 1 and q = n + 1.

Consider the error as maxℜ(u − ua) and n = 3 :⇒ expected convergence rate n + 1 = 4.

h 1/2 1/22 1/23 1/24 1/25 1/26

error 7.5e-4 4.6e-5 2.7e-6 1.6e-7 1.0e-8 6.2e-10rate - 4.04 4.08 4.05 4.02 4.01

error PW 1.1e-2 4.1e-3 1.9e-3 9.2e-4 4.6e-4 2.3e-4rate PW - 1.41 1.12 1.03 1.01 1.00

Some mathematical aspects of wave propagation in the cold plasma model p. 20 / 43

Page 24: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Behaviour of the basis functions around the cutoff,p = 7 and q = 4.

Getting closer to the cutoff

From the propagative zone G = (1 − h, 1)

h 1/2 1/22 1/23 1/24 1/25 1/26

error 3.2e-4 2.1e-5 1.4e-6 8.9e-8 5.7e-9 3.6e-10rate - 3.91 3.94 3.97 3.97 3.98

error PW 3.8e-3 4.1e-4 5.9e-5 1.1e-5 2.2e-6 5.0e-7rate PW - 3.23 2.78 2.47 2.27 2.15

From the non propagative zone G = (1 + h, 1)

h 1/2 1/22 1/23 1/24 1/25 1/26

error 3.2e-4 2.2e-5 1.4e-6 9.1e-8 5.8e-9 3.7e-10rate - 3.88 3.93 3.96 3.98 3.98

Some mathematical aspects of wave propagation in the cold plasma model p. 21 / 43

Page 25: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

2D Code

Based on the Ultra Weak Variational Formulation

A Method based on the skeleton of the meshCoupling at the interface between cellsNo exact integral formulaApproximated solutions + quadrature formulasimplemented for smooth non constant coefficients

Collaboration with Peter Monk, University of Delaware

Coded in Matlab

Linear system solved with Matlab \ command

Toy code, with good performances nevertheless

Typically :

the mesh has up to 30000 elements, the size of the matrices is 250000× 250000, the computing time is 3 hours.

Some mathematical aspects of wave propagation in the cold plasma model p. 22 / 43

Page 26: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

2D Code

First numerical result,proposed by O. Maj, Max-Planck-Institut fur Plasmaphysik, Garching, Germany.

Exact solution ue(x , y) = Airy(x)e iy ,

solution of Helmholtz equation −∆u + (x − 1)u = 0.

Some mathematical aspects of wave propagation in the cold plasma model p. 23 / 43

Page 27: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Code 2D : convergence results

Approximation of ue(x , y) = Airy(x)e iy ,using Weddle quadrature formula on [−6, 3] × [−1, 1].

100

101

102

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

L2 error at the center of the mesh cells

p=3, q=2p=3, q=3p=3, q=4p=3, q=5p=3, q=6p=5, q=2p=5, q=3p=5, q=4p=5, q=5p=5, q=6p=7, q=2p=7, q=3p=7, q=4p=7, q=5p=7, q=6p=9, q=2p=9, q=3p=9, q=4p=9, q=5p=9, q=6

Some mathematical aspects of wave propagation in the cold plasma model p. 24 / 43

Page 28: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Examples of numerical results obtained withgeneralized PW

A reflectometry test caseApproximation of Helmholtz equationwith a smooth coefficient vanishing along the line x = 4

Some mathematical aspects of wave propagation in the cold plasma model p. 25 / 43

Page 29: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Plan

1 Wave propagation in plasmas

2 Numerical simulation of a cut-offDesign of the basis functionsInterpolation2D simulations

3 About the resonanceA theoretical studyA numerical study

Some mathematical aspects of wave propagation in the cold plasma model p. 26 / 43

Page 30: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Focus on a typical X mode equation

Model equation in two dimensions

Introducing the vorticity W the system reads

W +∂yEx −∂xEy = 0,∂yW −αEx −iγEy = 0,

−∂xW +iγEx −αEy = 0.Resonance at α = 0

The Budden problem example : a singular solution

For α(x , y) = −x

For γ(x , y) =√

x2 − x/4 + 1,Ex is not integrable at the resonance

Ey (x , y) = −ex/2 + xe−x/2Ei(x),

Ex(x , y) = i

√x2− x

4+1

xEy .

Some mathematical aspects of wave propagation in the cold plasma model p. 27 / 43

Page 31: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

A simpler problem

x0 H−L

y RESONANCE

COERCIVE ZONE

WALL

Real geometry Simplified geometrycourtesy of S. Heuraux

W +iθU −(V )′ = 0iθW −(α(x) + iν)U −iγ(x)V = 0−(W )′ +iγ(x)U −(α(x) + iν)V = 0

Some mathematical aspects of wave propagation in the cold plasma model p. 28 / 43

Page 32: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Different points of view

W +iθU −(V )′ = 0iθW −(α(x) + iν)U −iγ(x)V = 0−(W )′ +iγ(x)U −(α(x) + iν)V = 0

A Cauchy problem

d

dx

(V

W

)= Aν(x)

(V

W

)

where Aν(x) =

(θγ(x)

α(x)+iν 1 − θ2

α(x)+iνγ(x)2

α(x)+iν − α(x) − iν − θγ(x)α(x)+iν

)

An integral equation

(α(x) + iν)U(x) −∫ x

G

K ν(x , z)U(z)dz = F νG (x),

Some mathematical aspects of wave propagation in the cold plasma model p. 29 / 43

Page 33: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The integral point of view

Integral equations in 1D

First kind ind

∫K (x , y)u(y)dy = f (x)

Second kind u(x) −∫

K (x , y)u(y)dy = f (x)

Third kind id g(x)u(x) −∫

K (x , y)u(y)dy = f (x).

See Picard (1911) and Hilbert (1956) for g(x) = x .

⇒ See Bart-Warnock (1973) for K (0, 0) = 0 and g(0) = 0.

u(x) = w0δ(x) + V .P .

[ϕ(x)

g(x)

].

Non uniqueness since the Dirac function δ(t) is in thekernel of the homogeneous operator.

Some mathematical aspects of wave propagation in the cold plasma model p. 30 / 43

Page 34: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

A first estimate. . . satisfyingwhich is not satisfactory

Consider G = H :

(α(x) + iν)U(x)−∫ x

H

K (x , z)U(z) = FH(x), ‖FH‖∞ ≤ C .

Then : (r2x2 + ν2) |U(x)| ≤ ‖FH‖∞ +

∫ H

x

|K (x , z)||U(z)|dz

Since for 0 ≤ x ≤ z ‖K (x , z)‖L∞ ≤ β|x − z |Since for 0 ≤ x ≤ z ‖K (x , z)‖L∞ ≤ βz

Since for 0 ≤ x ≤ z : ‖K (x , z)‖L∞ ≤ β√

r2z2 + ν2 , then

√r2x2 + ν2|U(x)| ≤ c‖FH‖∞ + β

∫ H

x

√r2z2 + ν2|U(z)|dz .

Gronwall ⇒ |U(x)| ≤ C

r2x2 + ν2, UNBOUNDED as ν → 0.

Some mathematical aspects of wave propagation in the cold plasma model p. 31 / 43

Page 35: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Define two convenient basis solutions

Idea : define two basis functions focusing on

their behavior at x = 0⇒ Linear independence

their behavior at x = ∞⇒ Distinguish a physical solution

The first basis function

U1(0) = 0+ a normalization for the two other components

exponentially growing at large scale

The second basis function : the physical one

exponentially decreasing at large scale

U2(0) = 1iν

Some mathematical aspects of wave propagation in the cold plasma model p. 32 / 43

Page 36: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

A second estimate : a heating estimateA convenient tool

Q(U) = V1(H)W (H) − W1(H)V (H).

This quantity is the Wronskian of the current solution U andthe first basis function.It is independent of the position H.

Proposition : There existsa constant Cθ (with continuous dependence with respect to θ)and a continuous function ν 7→ ǫ(ν) with ǫ(0) = 0 such that

∣∣∣∣ |ν| ‖U‖2L2(−L,H) −

∣∣∣∣πQ(U)2

α′(0)

∣∣∣∣∣∣∣∣ ≤ Cθǫ(ν)‖H‖2.

U2 is the physical solution and Q(U2) = 1

⇒ The heating of the ions isπ

|α′(0)| .

Some mathematical aspects of wave propagation in the cold plasma model p. 33 / 43

Page 37: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Explicit singular solutions

Theorem

U2 → U,±2 =

(P .V .

1

α(x)± iπ

α′(0)δD + u±

2 , v±2 , w±

2

)

where u±2 , v±

2 ,w±2 ∈ L2(−L,∞)

and δD is the Dirac mass at the origin.

The limits U±2 are solutions in the sense of distributions. They

will be called the singular solutions.

Back to Bart-Warnock

Non uniqueness of the solution of the initial equation

α(x)Uν=0(x) −∫ x

G

K ν=0(x , z)Uν=0(z)dz = F ν=0G (x),

Some mathematical aspects of wave propagation in the cold plasma model p. 34 / 43

Page 38: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Numerically approximated system : ν 6= 0

d

dx

(V

W

)= Aν(x)

(V

W

)

where Aν(x) =

(θγ(x)

α(x)+iν 1 − θ2

α(x)+iνγ(x)2

α(x)+iν − α(x) − iν − θγ(x)α(x)+iν

)

together with U = 1α(x)+iν (iθW − iγ(x)V )

x = −L x = H

x

α(x)

slope −r

γ(x)

Some mathematical aspects of wave propagation in the cold plasma model p. 35 / 43

Page 39: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The first basis functionθ = 0, ν = 10−2

For any bounded θ : θ ∈ [θ−, θ+],

∥∥∥∥(

U1(x) − F ν(x)

α(x) + iν

)−(Uν=0

1 − F ν=0)(x)

∥∥∥∥L∞(]−L,H[)

→ 0

U1 converges in L∞loc(] − L, 0[∪]0,H[)

V1 and W1 converge in L∞(] − L,H[)

Some mathematical aspects of wave propagation in the cold plasma model p. 36 / 43

Page 40: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The first basis functionθ = 0, ν = 10−2

For any interval bounded θ,∥∥∥∥(

U1(x) − F ν(x)

α(x) + iν

)−(Uν=0

1 − F ν=0)(x)

∥∥∥∥L∞(]−L,H[)

→ 0

U1 converges in L∞loc(] − L, 0[∪]0,H[)V1 and W1 converge in L∞(] − L,H[)

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1 µ=10−2

Re v1Re w1Re u1

−10 −5 0 5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ=10−2

Im v1Im w1Im u1

Some mathematical aspects of wave propagation in the cold plasma model p. 37 / 43

Page 41: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The first basis functionθ = 0, ν = 10−3

For any interval bounded θ,∥∥∥∥(

U1(x) − F ν(x)

α(x) + iν

)−(Uν=0

1 − F ν=0)(x)

∥∥∥∥L∞(]−L,H[)

→ 0

U1 converges in L∞loc(] − L, 0[∪]0,H[)V1 and W1 converge in L∞(] − L,H[)

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1 µ=10−3

Re v1Re w1Re u1

−10 −5 0 5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ=10−3

Im v1Im w1Im u1

Some mathematical aspects of wave propagation in the cold plasma model p. 37 / 43

Page 42: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The first basis functionθ = 0, ν = 10−4

For any interval bounded θ,∥∥∥∥(

U1(x) − F ν(x)

α(x) + iν

)−(Uν=0

1 − F ν=0)(x)

∥∥∥∥L∞(]−L,H[)

→ 0

U1 converges in L∞loc(] − L, 0[∪]0,H[)V1 and W1 converge in L∞(] − L,H[)

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1 µ=10−4

Re v1Re w1Re u1

−10 −5 0 5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ=10−4

Im v1Im w1Im u1

Some mathematical aspects of wave propagation in the cold plasma model p. 37 / 43

Page 43: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 1.5, ν = 10−2

For any bounded θ,∃C , Cp independent of ν s. t.

|V2(H)| + |W2(H)| ≤ C .

∥∥∥∥U2 −1

α(·) + iν

∥∥∥∥Lp(−L,H)

≤ Cp, 1 ≤ p < ∞.

Some mathematical aspects of wave propagation in the cold plasma model p. 38 / 43

Page 44: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 1.5, ν = 10−2

For any bounded θ,∃C , Cp independent of ν s. t. |V2(H)| + |W2(H)| ≤ C ,

∥∥∥∥U2 −1

α(·) + iν

∥∥∥∥Lp(−L,H)

≤ Cp, 1 ≤ p < ∞.

−10 −5 0 5−60

−40

−20

0

20

40

60µ=10−2

Re v2Re w2Re u2Re 1/(−x+imu)

−10 −5 0 5−60

−40

−20

0

20

40

60µ=10−2

Re v2Re w2Re u2

Some mathematical aspects of wave propagation in the cold plasma model p. 39 / 43

Page 45: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 1.5, ν = 10−3

For any bounded θ,∃C , Cp independent of ν s. t. |V2(H)| + |W2(H)| ≤ C ,

∥∥∥∥U2 −1

α(·) + iν

∥∥∥∥Lp(−L,H)

≤ Cp, 1 ≤ p < ∞.

−10 −5 0 5−600

−400

−200

0

200

400

600µ=10−3

Re v2Re w2Re u2Re 1/(−x+imu)

−10 −5 0 5−60

−40

−20

0

20

40

60µ=10−3

Re v2Re w2Re u2

Some mathematical aspects of wave propagation in the cold plasma model p. 39 / 43

Page 46: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 1.5, ν = 10−4

For any bounded θ,∃C , Cp independent of ν s. t. |V2(H)| + |W2(H)| ≤ C ,

∥∥∥∥U2 −1

α(·) + iν

∥∥∥∥Lp(−L,H)

≤ Cp, 1 ≤ p < ∞.

−10 −5 0 5−6000

−4000

−2000

0

2000

4000

6000µ=10−4

Re v2Re w2Re u2Re 1/(−x+imu)

−10 −5 0 5−60

−40

−20

0

20

40

60µ=10−4

Re v2Re w2Re u2

Some mathematical aspects of wave propagation in the cold plasma model p. 39 / 43

Page 47: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionpositive and negative regularization

U+2 (x) = U−

2 (x) 0 < x .

U+2 (x) − U−

2 (x) =−2iπ

α′(0)Uν=0

1 (x) x < 0.

Some mathematical aspects of wave propagation in the cold plasma model p. 40 / 43

Page 48: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 0, ν = ±10−2

U+2 (x) = U−

2 (x) 0 < x .

U+2 (x) − U−

2 (x) =−2iπ

α′(0)Uν=0

1 (x) x < 0.

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1µ= ± 10−2

Re u1Im (u2+ − u2−)/2pi

Some mathematical aspects of wave propagation in the cold plasma model p. 40 / 43

Page 49: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 0, ν = ±10−3

U+2 (x) = U−

2 (x) 0 < x .

U+2 (x) − U−

2 (x) =−2iπ

α′(0)Uν=0

1 (x) x < 0.

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1µ= ± 10−3

Re u1Im (u2+ − u2−)/2pi

Some mathematical aspects of wave propagation in the cold plasma model p. 41 / 43

Page 50: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

The second basis functionθ = 0, ν = ±10−4

U+2 (x) = U−

2 (x) 0 < x .

U+2 (x) − U−

2 (x) =−2iπ

α′(0)Uν=0

1 (x) x < 0.

−10 −5 0 5−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1µ= ± 10−4

Re u1Im (u2+ − u2−)/2pi

Some mathematical aspects of wave propagation in the cold plasma model p. 41 / 43

Page 51: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

On going work

O-X mode conversionExpansion in the mode conversionregion

(∂x + d∂y )E = xE + yB

(∂x + d∂y )B = xE − xB

Weak FormulationZ

Ω

1 dr

dr |d|2

« „

∂xu

∂y u

«

·

∂x v

∂y v

«

− 2idi

Z

Ωx∂y uv

+

Z

Ω

1 +1

µ+ x(x + y)

«

uv + iσ

Z

∂Ωuv =

Z

∂Ωgv.

Some mathematical aspects of wave propagation in the cold plasma model p. 42 / 43

Page 52: Some mathematical aspects of wave propagation in the cold ...apam.columbia.edu/.../pdf-files/IMBERTGERARD201404.pdf · Imbert-G´erard Wave propagation in plasmas Numerical simulation

L.-M.Imbert-Gerard

Wavepropagationin plasmas

Numericalsimulation ofa cut-off

Design of thebasis functions

Interpolation

2D simulations

About theresonance

A theoreticalstudy

A numericalstudy

Thanks for your attention.

Some mathematical aspects of wave propagation in the cold plasma model p. 43 / 43