some $$l^p$$ l p estimates for rotationally invariant systems of viscous conservation laws

14
Comp. Appl. Math. DOI 10.1007/s40314-014-0141-z Some L p estimates for rotationally invariant systems of viscous conservation laws Pablo Braz e Silva · Wilberclay G. Melo · Paulo R. Zingano Received: 22 October 2013 / Revised: 27 February 2014 / Accepted: 7 April 2014 © SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2014 Abstract We study the Cauchy problem for a system of one-dimensional viscous conserva- tion laws with rotational invariance, u t + |u| 2 u x = u xx ,with the aim of deriving some a priori estimates for various L p norms of its solutions through a direct method. Keywords Rotationally invariant systems · L p estimates · Viscous conservation laws Mathematics Subject Classification (2010) 35B40 (primary) · 35B45 · 35K15 1 Introduction In this work, we will derive some estimates for bounded solutions u(·, t ) of the Cauchy problem for the system of advection–diffusion equations u t (x , t ) + |u(x , t )| 2 u(x , t ) x = u xx (x , t ), (1) u(·, 0) = u 0 L p 0 (R) L (R), Communicated by André Nachbin. P. Braz e Silva was partially supported by CNPq, # 305015/2012-5, Brazil. W. G. Melo was partially supported by CAPES, Ciência sem fronteiras, # 2778-13-0. P. Braz e Silva (B ) Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE 50740-540, Brazil e-mail: [email protected] W. G. Melo Departamento de Matemática, Universidade Federal de Sergipe, São Cristóvão, SE 49100-000, Brazil e-mail: [email protected] P. R. Zingano Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91500-900, Brazil e-mail: [email protected] 123

Upload: paulo-r

Post on 24-Jan-2017

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Comp. Appl. Math.DOI 10.1007/s40314-014-0141-z

Some L p estimates for rotationally invariant systemsof viscous conservation laws

Pablo Braz e Silva · Wilberclay G. Melo ·Paulo R. Zingano

Received: 22 October 2013 / Revised: 27 February 2014 / Accepted: 7 April 2014© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2014

Abstract We study the Cauchy problem for a system of one-dimensional viscous conserva-tion laws with rotational invariance, ut + [ |u|2u

]x = uxx ,with the aim of deriving some a

priori estimates for various L p norms of its solutions through a direct method.

Keywords Rotationally invariant systems · L p estimates · Viscous conservation laws

Mathematics Subject Classification (2010) 35B40 (primary) · 35B45 · 35K15

1 Introduction

In this work, we will derive some estimates for bounded solutions u(·, t) of the Cauchyproblem for the system of advection–diffusion equations

ut (x, t) + [ |u(x, t)|2u(x, t)]

x = uxx (x, t), (1)

u(·, 0) = u0 ∈ L p0 (R) ∩ L∞(R),

Communicated by André Nachbin.

P. Braz e Silva was partially supported by CNPq, # 305015/2012-5,Brazil. W. G. Melo was partially supported by CAPES, Ciência sem fronteiras, # 2778-13-0.

P. Braz e Silva (B)Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE 50740-540, Brazile-mail: [email protected]

W. G. MeloDepartamento de Matemática, Universidade Federal de Sergipe, São Cristóvão, SE 49100-000, Brazile-mail: [email protected]

P. R. ZinganoDepartamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul,Porto Alegre, RS 91500-900, Brazile-mail: [email protected]

123

Page 2: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

where x ∈ R, t ∈ [0, T ], 1 ≤ p0 < ∞, u(x, t) = (u1(x, t), u2(x, t), ..., un(x, t)), and | · |is the Euclidean norm in R

n . The initial condition is satisfied in the sense of L1loc(R), i.e.,

limt→0 ‖u(·, t) − u0‖L1(K) = 0 for each compact set K ⊂ R. Standard results (see e.g.,Serre (1999), Ch. 6) assure the existence of a smooth classical solution u(·, t) defined for0 < t ≤ T , for some T > 0, and satisfying

|u(x, t)|2 ≤ B(T ), ∀ x ∈ R, 0 < t ≤ T . (2)

It follows from Theorem 2.1 in Braz e Silva et al. (submitted) and Theorem 3 in Sect. 2below that this solution u(·, t) is uniquely defined for t ∈ [0, T ] and we actually haveu(·, t) ∈ C0([0, T ] , L p0 (R)), so that, in particular,

‖ u(·, t) − u0 ‖L p0 (R)

→ 0 as t → 0.

We will also prove in Sect. 2 that, for each p0 ≤ p < ∞, we have

‖u(·, t)‖L p(R) ≤ K (t)‖u0‖L p(R), ∀ t ∈ [0, T ] ,

where K (t) = K (t, T, p) = exp{

B(T )2(p−1)2 t

}, and

‖u(·, t)‖L2p(R) ≤ Cγ t−3

4p , ∀ t ∈ (0, T ],where Cγ > 0 is a constant depending only on the parameters

γ = {n, T, p, ‖u0‖L p(R)

}.

Finally, in Sect. 3 we will derive the supnorm estimate

‖u(·, t)‖L∞(R) ≤ Cκ t−1

2p , ∀ t ∈ (0, T ],where Cκ is a positive constant depending on the parameters given in the list κ ={n, T, p, ‖u0‖L p(R)}. Similar results can be obtained using our approach for solutions u(·, t)of the more general equations given in (3) below, but for simplicity we will restrict ourattention to solutions of (1) only.

The estimates above are derived through a direct method, extending the treatment inSchütz (2008), Zingano (1999) to rotationally invariant systems. Let us briefly review themain results found in these references.

In Zingano (1999), the system considered is

ut (x, t) + [ϕ(|u(x, t)|)u(x, t)]x = (B(u)ux (x, t))x , (3)

where ϕ is a smooth real function, x ∈ R, t > 0, and B(u(x, t)) = (bi (u(x, t)))n×n is ann × n diagonal matrix with real smooth entries such that bi (u(x, t)) ≥ μ, ∀ i = 1, 2, ..., n,where μ is a positive constant. The author establishes the inequality

‖u(·, t)‖L2(R) ≤ K�(1 + t)−14 , ∀ t > 0,

where u0 ∈ L1(R) ∩ L2(R), and K� is a constant depending only on the parameters

� = {‖u(·, 0)‖L1(R), ‖u(·, 0)‖L2(R), n, μ}.In Schütz (2008), the author considers the multidimensional scalar equation

ut (x, t) + div[b(x, t, u(x, t))u(x, t)]=div[A(x, t, u(x, t))∇u(x, t)]+c(x, t, u(x, t))u(x, t),

123

Page 3: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

where x ∈ Rm , t ∈ (0, T ] e b, c are smooth functions such that

|b(x, t, u)| ≤ B(T ), |c(x, t, u)| ≤ C(T ),

and A(x, t, u) = (ai j (x, t, u))m×m is an m × m real positive definite matrix with smoothentries ai j such that

m∑

i, j=1

ai j (x, t, u)ξi ξ j ≥ μ

n∑

i=1

ξ2i ,

where μ, B(T ), C(T ) are positive constants and ξi ∈ R, ∀ i = 1, 2, ..., m. The main resultsobtained therein for a solution u(x, t) are the bounds

‖u(·, t)‖L p(Rm ) ≤ K p‖u0‖L p(Rm ), ∀ t ∈ [0, T ],

‖u(·, t)‖L∞(Rm ) ≤ K∞ ‖u0‖L p(Rm ) t−m2p , ∀ t ∈ (0, T ],

where K p = K p(p, T, μ) and K∞ = K∞(m, p, T, μ).There is a vast literature on systems of advection–diffusion equations in various settings

using different techniques from those used here, see, for example, Braz e Silva and Zingano(2006), Brio and Hunter (1990), Carlen and Loss (1996), Chern (1991), Chern and Liu (1987),Duro and Carpio (2001), Duro and Zuazua (1999), Escobedo et al. (1993), Escobedo andZuazua (1991), Freistühler (1990), Freistühler and Serre (2001), Harabetian (1988), Ilin et al.(1962), Kawashima (1987), Keyfitz and Kranzer (1979/1980), Schonbek (1980), Schonbek(1986). Our aim here is to use a direct method to derive bounds for the solutions easily,without the need to use very technical arguments.

Throughout this work we use the notation

‖u(·, t)‖pL p(R) :=

n∑

i=1

‖ui (·, t)‖pL p(R) (4)

and

‖u(·, t)‖L∞(R) := maxi=1,...,n

{‖ui (·, t)‖L∞(R)

}. (5)

2 L p estimates

Let p ∈ [ p0,∞) be given (fixed but arbitrary). We begin by showing that there is a constantCγ > 0, depending on γ = γ

(n, T, p, ‖u0‖L p(R)

)such that

‖u(·, t)‖L2p(R) ≤ Cγ t−3

4p , ∀ t ∈ (0, T ]. (6)

To prove inequality (6), we first show that a solution of system (1) is bounded in L p . Moreprecisely,

Theorem 1 (L p estimate I) Given T > 0, let u(·, t) ∈ C0([0, T ], L p(R)) be a solution forsystem (1) satisfying the hypothesis (2). Then

‖u(·, t)‖L p(R) ≤ K (t)‖u0‖L p(R), ∀ t ∈ [0, T ], (7)

where K (t) = K (t, T, p) = exp{

B(T )2(p−1)2 t

}.

123

Page 4: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

Proof We begin by defining what we call a regularized sign function (see also Kreiss andLorenz (1989), Lemma 4.3.1): Let Sgn ∈ C∞(R) be a fixed function such that

⎧⎨

Sgn(y) = −1, for y ≤ −1,

Sgn(y) = 1, for y ≥ 1,

Sgn(0) = 0,

and

Sgn′(y) ≥ 0, for all y ∈ R.

For each δ > 0, define Sgnδ ∈ C∞(R) by

Sgnδ(y) = Sgn(y/δ), for all y ∈ R.

The function Lδ given by

Lδ(y) =y∫

0

Sgnδ(x)dx, for all y ∈ R, (8)

is called a regularized sign function. Note that

limδ→0

Lδ(y) = |y|, uniformly on R,

limδ→0

L ′δ(y) = sgn(y), for each y ∈ R,

L ′′δ (y) ≥ 0, and |yL ′′

δ (y)| ≤ C, for all δ > 0, y ∈ R,

where C is a positive constant and sgn is the sign function.We now proceed to prove the theorem. Consider �δ(·) = Lδ(·)p and T > 0. We show

that the desired estimate is valid for each component of a solution for (1), (2), i.e.,

‖ui (·, t)‖L p(R) ≤ K (t)‖ui0‖L p(R), ∀ t ∈ [0, T ],for each i = 1, . . . n. To this end, let f be a C∞

0 (R) function such that

f (x) ={

1, |x| < 1,

0, |x| ≥ 2,

with 0 < f (x) < 1 for 1 < |x | < 2. For a given R > 0, define the function fR ∈ C∞0 (R) by

fR(x) = f (x/R), for all x ∈ R. For each i = 1, . . . , n, multiply the equation

uit + [|u|2ui]

x = uixx

by fR(x)�′δ(ui ) and integrate over R × [t0, t], where t0 ∈ (0, t) and t ∈ (0, T ]. One gets

t∫

t0

R

fR(x)�′δ(ui )uiτ dxdτ +

t∫

t0

R

fR(x)�′δ(ui )

[|u|2ui]

x dxdτ

=t∫

t0

R

fR(x)�′δ(ui )uixx dxdτ. (9)

123

Page 5: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

Let us examine each term in the above equation. The first term in the left hand side of equation(9) can be written, using the Fundamental Theorem of Calculus, as

t∫

t0

2R∫

−2R

f (x/R)�′δ(ui )uiτ dxdτ =

2R∫

−2R

f (x/R)

t∫

t0

d

dτ[�δ(ui )]dτdx

=2R∫

−2R

f (x/R)�δ(ui (·, t))dx −2R∫

−2R

f (x/R)�δ(ui (·, t0))dx .

Taking the limit as R → ∞, one has

t∫

t0

R

�′δ(ui )uiτ dτ =

R

�δ(ui (·, t))dx −∫

R

�δ(ui (·, t0))dx,

since f (0) = 1. For the second term on the left hand side of Eq. (9), one gets throughintegration by parts that

2R∫

−2R

f (x/R)�′δ(ui )

[|u|2ui]

x dx = [ f (x/R)�′δ(ui )|u|2ui

] ∣∣2R−2R

−2R∫

−2R

f (x/R)�′′δ (ui )|u|2ui uix dx − 1

R

2R∫

−2R

f ′(x/R)�′δ(ui )|u|2ui uix dx

= −2R∫

−2R

f (x/R)�′′δ (ui )|u|2ui uix dx − 1

R

2R∫

−2R

f ′(x/R)�′δ(ui )|u|2ui uix dx,

since f (−2) = f (2) = 0. Passing to the limit as R → ∞, one finds∫

R

�′δ(ui )

[|u|2ui]

x dx = −∫

R

�′′δ (ui )|u|2ui uix dx .

Then, using that �′′δ (·) ≥ 0 and condition (2), one has

R

�′δ(ui )

[|u|2ui]

x dx ≥ −∫

R

�′′δ (ui )|u|2|ui ||uix |dx

≥ −1

2

R

�′′δ (ui )|u|4u2

i dx − 1

2

R

�′′δ (ui )u

2i x dx

≥ − B(T )2

2

R

�′′δ (ui )u

2i dx − 1

2

R

�′′δ (ui)u

2ixdx. (10)

Lastly, for the right hand side of (9), integrate by parts to write

2R∫

−2R

f (x/R)�′δ(ui )uixx dx = −

2R∫

−2R

f (x/R)�′′δ (ui )u

2i x dx − 1

R

2R∫

−2R

f ′(x/R)�′δ(ui )uix dx .

123

Page 6: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

Taking the limit as R → ∞, one gets∫

R

�′δ(ui )uixx dx = −

R

�′′δ (ui )u

2i x dx . (11)

Therefore, from identity (9), one obtains

R

�δ(ui (·, t))dx ≤∫

R

�δ(ui (·, t0))dx + B(T )2

2

t∫

t0

R

�′′δ (ui )u

2i dxdτ

− 1

2

t∫

t0

R

�′′δ (ui )u

2i x dxdτ

≤∫

R

�δ(ui (·, t0))dx + B(T )2

2

t∫

t0

R

�′′δ (ui )u

2i dxdτ.

Passing to the limit as δ → 0 and using Lebesgue’s Dominated Convergence Theorem,one obtains

R

|ui (·, t)|pdx ≤∫

R

|ui (·, t0)|pdx + B(T )2 p(p − 1)

2

t∫

t0

R

|ui |pdxdτ,

i.e.,

‖ui (·, t)‖pL p(R) ≤ ‖ui (·, t0)‖p

L p(R) + B(T )2 p(p − 1)

2

t∫

t0

‖ui‖pL p(R)dτ.

By Gronwall’s Lemma, it follows that

‖ui (·, t)‖pL p(R) ≤ ‖ui (·, t0)‖p

L p(R) exp

{B(T )2 p(p − 1)

2(t − t0)

}, for all t ∈ (0, T ].

Thus, taking the pth root and passing to the limit as t0 → 0,

‖ui (·, t)‖L p(R) ≤ ‖ui0‖L p(R) exp

{B(T )2(p − 1)

2t

}, for all t ∈ (0, T ]. (12)

Consequently, summing on i from 1 to n [see (4)], one gets the desired bound

‖u(·, t)‖L p(R) ≤ K (t)‖u0‖L p(R), for all t ∈ [0, T ],

where u0 = (u10, u20, ..., ui0, ..., un0) and K (t) = K (t, T, p) = exp{ B(T )2(p−1)

2 t}. �

The following theorem gives the desired estimate (6).

Theorem 2 (L p estimate II) Given T > 0, let u(·, t) ∈ C0([0, T ], L p(R)) be a solution ofsystem (1) under the hypothesis (2). Then

‖u(·, t)‖2pL2p(R)

≤ C3‖u0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

t−32 , ∀ t ∈ (0, T ],

123

Page 7: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

where C = C(n) is a positive constant and

F(t) = F(t, T, p) = 3

2

⎝t∫

0

K (τ )2pdτ

23

+ 2p(2p − 1)B(T )2

2

⎝t∫

0

τ32 K (τ )2pdx

23

.

Proof Consider �δ(·) = Lδ(·)2p . For each i = 1, . . . , n, multiply the equation

uit + [|u|2ui]

x = uixx

by (t − t0)32 �′

δ(ui ) and integrate over R × [t0, t], where t0 ∈ (0, t) and t ∈ (0, T ], to get

t∫

t0

R

(τ − t0)32 �′

δ(ui )uiτ dxdτ +t∫

t0

R

(τ − t0)32 �′

δ(ui )[|u|2ui

]x dxdτ

=t∫

t0

R

(τ − t0)32 �′

δ(ui )uixx dxdτ. (13)

Note that

t∫

t0

(τ − t0)32 �′

δ(ui )uiτ dτ =t∫

t0

(τ − t0)32

d

dτ[�δ(ui )]dτ

= (τ − t0)32 �δ(ui (·, τ ))|tt0 − 3

2

t∫

t0

(τ − t0)12 �δ(ui )dτ

= (t − t0)32 �δ(ui (·, t)) − 3

2

t∫

t0

(τ − t0)12 �δ(ui )dτ. (14)

Recalling that [see (10) and (11)]∫

R

�′δ(ui )

[|u|2ui]

x dx ≥ − B(T )2

2

R

�′′δ (ui )u

2i dx − 1

2

R

�′′δ (ui )u

2i x dx, (15)

and∫

R

�′δ(ui )uixx dx = −

R

�′′δ (ui )u

2i x dx, (16)

we get, using (14), (15), (16) in (13) and passing to the limit when δ → 0, that

(t − t0)32 ‖ui (·, t)‖2p

L2p(R)+ 2p(2p − 1)

2

t∫

t0

(τ − t0)32

R

|ui |2p−2u2i x dxdτ

≤ 3

2

t∫

t0

(τ − t0)12 ‖ui‖2p

L2p(R)dτ + 2p(2p − 1)B(T )2

2

t∫

t0

(τ − t0)32 ‖ui‖2p

L2p(R)dτ.

123

Page 8: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

Therefore, letting t0 → 0, we obtain

t32 ‖ui (·, t)‖2p

L2p(R)+ 2p(2p − 1)

2

t∫

0

τ32

R

|ui |2p−2u2i x dxdτ

≤ 3

2

t∫

0

τ12 ‖ui‖2p

L2p(R)dτ + 2p(2p − 1)B(T )2

2

t∫

0

τ32 ‖ui‖2p

L2p(R)dτ.

Now, define the function

wi (x, t) ={

ui (x, t), if p = 1,

|ui (x, t)|p, if p > 1,

where x ∈ R and t ∈ [0, T ]. In particular, w2i x = p2|ui |2p−2u2

i x and ‖wi‖2L2(R)

=‖ui‖2p

L2p(R). Define

X (t) := t32 ‖ui (·, t)‖2p

L2p(R)+ 2p(2p − 1)

2

t∫

0

τ32

R

|ui |2p−2u2i x dxdτ

= t32 ‖wi (·, t)‖2

L2(R)+ 2p(2p − 1)

2p2

t∫

0

τ32

R

w2i x dxdτ

= t32 ‖wi (·, t)‖2

L2(R)+ 2p(2p − 1)

2p2

t∫

0

τ32 ‖wi x‖2

L2(R)dτ. (17)

[Note that X (t) = X (t, p)]. Therefore,

X (t) ≤ 3

2

t∫

0

τ12 ‖ui‖2p

L2p(R)dτ + 2p(2p − 1)B(T )2

2

t∫

0

τ32 ‖ui‖2p

L2p(R)dτ

= 3

2

t∫

0

τ12 ‖wi‖2

L2(R)dτ + 2p(2p − 1)B(T )2

2

t∫

0

τ32 ‖wi‖2

L2(R)dτ.

Using the Sobolev inequality

‖v‖L2(R) ≤ C‖v‖23L1(R)

‖vx‖13L2(R)

, ∀ v ∈ C10(R), (18)

one obtains

X (t) ≤ 3

2

t∫

0

τ12 C2‖wi‖

43L1(R)

‖wi x‖23L2(R)

+2p(2p − 1)B(T )2

2

t∫

0

τ32 C2‖wi‖

43L1(R)

‖wi x‖23L2(R)

123

Page 9: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

≤ 3

2C2

t∫

0

τ12 ‖ui‖

4p3

L p(R)‖wi x‖23L2(R)

+2p(2p − 1)B(T )2

2C2

t∫

0

τ32 ‖ui‖

4p3

L p(R)‖wi x‖23L2(R)

≤ 3

2C2‖ui0‖

4p3

L p(R)

t∫

0

τ12 K (τ )

4p3 ‖wi x‖

23L2(R)

+ 2p(2p − 1)B(T )2

2C2‖ui0‖

4p3

L p(R)

t∫

0

τ32 K (τ )

4p3 ‖wi x‖

23L2(R)

≤ 3

2C2‖ui0‖

4p3

L p(R)

⎝t∫

0

K (τ )2pdτ

23⎛

⎝t∫

0

τ32 ‖wi x‖2

L2(R)dτ

13

+ 2p(2p − 1)B(T )2

2C2‖ui0‖

4p3

L p(R)

⎝t∫

0

τ32 K (τ )2pdτ

23⎛

⎝t∫

0

τ32 ‖wi x‖2

L2(R)dτ

13

≤ C2‖ui0‖4p3

L p(R)F(t)

⎝t∫

0

τ32 ‖wi x‖2

L2(R)dτ

13

, ∀ t ∈ [0, T ],

where F(t) = F(t, T, p)=[

3

2

(∫ t

0K (τ )2pdτ

) 23

+ 2p(2p−1)B(T )2

2

(∫ t

32K(τ )2pdτ

) 23]

.

Therefore, using the definition (17) of X (t), one gets

X (t) ≤ C2‖ui0‖4p3

L p(R)F(t)

(2p(2p − 1)

2p2

)− 13

X (t)13 .

Thus,

X (t)23 ≤ C2‖ui0‖

4p3

L p(R)F(t)

(2p(2p − 1)

2p2

)− 13

,

that is,

X (t) ≤ C3‖ui0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

.

Using definition (17), one concludes that

t32 ‖ui (·, t)‖2p

L2p(R)+ 2p(2p − 1)

2

t∫

0

τ32

R

|ui |2p−2u2i x dxdτ

≤ C3‖ui0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

,

123

Page 10: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

for all t ∈ [0, T ]. Therefore,

‖ui (·, t)‖2pL2p(R)

≤ C3‖ui0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

t−32

≤ C3‖u0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

t−32 , ∀ t ∈ (0, T ]. (19)

Finally, summing i = 1, . . . , n, [see (4)], one gets the desired result

‖u(·, t)‖2pL2p(R)

≤ C3‖u0‖2pL p(R)F(t)

32

(2p(2p − 1)

2p2

)− 12

t−32 , ∀ t ∈ (0, T ],

where C = C(n) is a positive constant. �

We close this section by observing that bounded solutions of (1) are uniquely defined bytheir initial data, as shown by the following result.

Theorem 3 (well posedness) Given u0, v0 ∈ L∞(R), let u(·, t), v(·, t) be any pair of(bounded) solutions of (1) with initial states u(·, 0) = u0, v(·, 0) = v0, respectively, bothdefined for 0 ≤ t ≤ T and such that ‖ u(·, t) ‖

L∞(R)≤ B(T ) and ‖ v(·, t) ‖

L∞(R)≤ B(T )

for all t ∈ [0, T ]. Then, for every p ≥ 2, we have

‖ u(·, t) − v(·, t) ‖L p(R)

≤ ‖ u0 − v0 ‖L p(R)

exp{(2n + 1) (p − 1) B(T )2 t

}

for all t ∈ [0, T ].

This result can be shown in the same way as Theorem 1 above.

3 Estimates for the sup norm

In this section we will derive bounds for the supnorm of solutions of (1), (2). Again, letp ∈ [ p0,∞) be given. We will prove that

‖u(·, t)‖L∞(R) ≤ Ct−1

2p , ∀ t ∈ (0, T ],where C is a positive constant depending on the parameters C = C(n, T, p, ‖u0‖L p(R)).

Theorem 4 (Estimate for the Supnorm) Let T > 0 be given and u(·, t) ∈ C0([0, T ], L p(R))

be the solution of system (1), under the hypothesis in (2).Then

‖u(·, t)‖L∞(R) ≤ C3p

n ‖u0‖L p(R)28p 3− 1

2p p3p C

32pT exp

{B(T )2

43pt

}t−

12p

for all t ∈ (0, T ], where Cn is a positive constant depending on n only and CT =[12 + B(T )2T

2

].

123

Page 11: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

Proof Firstly, note that

F(t) = 3

2

⎝t∫

0

K (τ )2pdτ

23

+ 2p(2p − 1)B(T )2

2

⎝t∫

0

τ32 K (τ )2pdτ

23

≤ 3

2

⎝t∫

0

K (τ )2pdτ

23

+ 2p(2p − 1)B(T )2T

2

⎝t∫

0

K (τ )2pdτ

23

≤[

3

2+ 2p(2p − 1)B(T )2T

2

]⎛

⎝t∫

0

K (τ )2pdτ

23

≤ (2p)2[

1

2+ B(T )2T

2

]⎛

⎝t∫

0

K (τ )2pdτ

23

≤ (2p)2CT

⎝t∫

0

K (τ )2pdτ

23

≤ (2p)2CT K (t)2p 23 t

23 ,

for all t ∈ (0, T ], where CT =[

12 + B(T )2T

2

]. Therefore,

F(t)32 ≤ (2p)3C

32T K (t)2pt, ∀ t ∈ (0, T ].

By computations analogous to the ones used to derive inequality (19), one can establish

‖ui (·, t)‖2pL2p(R)

≤ C3‖ui (·, s)‖2pL p(R)

(2p(2p − 1)

2p2

)− 12

×[(2p)3C

32T exp

{B(T )2

22p(p − 1)(t − s)

}]· (t − s)−

12 , where 0 ≤ s < t ≤ T .

Now, let k ∈ N be arbitrary. Define recursively t0 := t

4k, and t j := t j−1 + 3t

4 j, for j ∈ N

and 1 ≤ j ≤ k. One has tk = t , and

‖ui (·, t j )‖2 j p

L2 j p(R)≤ C3‖ui (·, t j−1)‖2 j p

L2 j−1 p(R)

(2 j p(2 j p − 1)

22 j−1 p2

)− 12

(2 j p)3C32T

· exp

{B(T )2

22 j p(2 j−1 p − 1)

(3t

4 j

)}(3t

4 j

)− 12

123

Page 12: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

≤ C3‖ui (·, t j−1)‖2 j p

L2 j−1 p(R)

(2(2 j p − 1)

2 j p

)− 12

(2 j p)3C32T

· exp

{B(T )2

2p(2 j−1 p − 1)

(3t

2 j

)}(3t

4 j

)− 12

≤ C3‖ui (·, t j−1)‖2 j p

L2 j−1 p(R)2− 1

2

(2 j p − 1

2 j p

)− 12

(2 j p)3C32T

· exp

{B(T )2

2p(2 j−1 p)

(3t

2 j

)}(3t

4 j

)− 12

≤ C3‖ui (·, t j−1)‖2 j p

L2 j−1 p(R)(2 j p)3C

32T exp

{B(T )2

4p23t

}(3t

4 j

)− 12

.

Taking j = k, k − 1, . . . , 1 successively, one then obtains

‖ui (·, t)‖L2k p(R)

≤ C3

2k p ‖ui (·, tk−1)‖L2k−1 p(R)(2k p)

32k p C

32k+1 pT exp

{B(T )2

4p3t

1

2k

}(3t

4k

)− 12k+1 p

≤k∏

j=1

C3

2 j p ‖ui (·, t0)‖L p(R)

k∏

j=1

(2 j p)3

2 j p

k∏

j=1

C3

2 j+1 pT

k∏

j=1

exp

{B(T )2

4p3t

1

2 j

}

·k∏

j=1

(3t

4 j

)− 12 j+1 p

≤ C3p

∑kj=1

12 j ‖ui (·, t0)‖L p(R)

k∏

j=1

(2 j p)3

2 j p C3

2p

∑kj=1

12 j

T exp

⎧⎨

⎩B(T )2

4p3t

k∑

j=1

1

2 j

⎫⎬

·k∏

j=1

(3t

4 j

)− 12 j+1 p

≤ C

3p

k∑

j=1

1

2 j

‖ui (·, t0)‖L p(R)23p

∑kj=1

j2 j p

3p

∑kj=1

12 j C

32p

∑kj=1

12 j

T

× exp

⎧⎨

⎩B(T )2

4p3t

k∑

j=1

1

2 j

⎫⎬

· (3t)− 1

2p

∑kj=1

12 j 2

1p

∑kj=1

j2 j

≤ C3p

∑kj=1

12 j ‖ui (·, t0)‖L p(R)2

4p

∑kj=1

j2 j p

3p

∑kj=1

12 j C

32p

∑kj=1

12 j

T

× exp

⎧⎨

⎩B(T )2

4p3t

k∑

j=1

1

2 j

⎫⎬

123

Page 13: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

Viscous conservation laws

· (3t)− 1

2p

∑kj=1

12 j , ∀ t ∈ (0, T ].

Therefore,

‖ui (·, t)‖L2k p(R)

≤ C3p

(1− 1

2k

)

‖ui (·, t0)‖L p(R)24p

∑kj=1

j2 j p

3p

(1− 1

2k

)

C3

2p

(1− 1

2k

)

T

· exp

{B(T )2

43pt

(1 − 1

2k

)}(3t)

− 12p

(1− 1

2k

)

, ∀ t ∈ (0, T ].

Passing to the limit when k → ∞ and using that, by hypothesis, u(·, t) ∈ C0 ([0, T ], L p(R)),one obtains

‖ui (·, t)‖L∞(R) ≤ C3p ‖ui0‖L p(R)2

8p 3− 1

2p p3p C

32pT exp

{B(T )2

43pt

}t−

12p ,

for all t ∈ (0, T ]. Therefore, using definition (5), one gets the desired inequality

‖u(·, t)‖L∞(R) ≤ C3p ‖u0‖L p(R)2

8p 3− 1

2p p3p C

32pT exp

{B(T )2

43pt

}t−

12p , ∀ t ∈ (0, T ],

where C = C(n) is a positive constant. �Acknowledgments Wilberclay G. Melo would like to thank the Math Department from the UniversidadeFederal de Sergipe for supporting his long-term visit to the University of New Mexico during the academicyear 2013–2014.

References

Braz e Silva P, Melo W G, Zingano PR (submitted) An asymptotic supnorm estimate for solutions of 1-Dsystems of convection–diffusion equations

Braz e Silva P, Zingano PR (2006) Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in L p(R). C R Math Acad Sci Paris Ser 342:465–467

Brio M, Hunter JK (1990) Rotationally invariant hyperbolic waves. Comm Pure Appl Math 43:1037–1053Carlen EA, Loss M (1996) Optimal smoothing and decay estimates for viscously damped conservation laws,

with application to the 2-D Navier–Stokes equation. Duke Math J 86:135–157Chern I-L (1991) Multiple-mode diffusion waves for viscous non-strictly hyperbolic conservation laws. Comm

Math Phys 138:51–61Chern I-L, Liu TP (1987) (1-ANL) Convergence to diffusion waves of solutions for viscous conservation laws.

Comm Math Phys 110:503–517Duro G, Carpio A (2001) Asymptotic profile for convection–diffusion equations with variable diffusion. Nonl

Anal TMA 45:407–433Duro G, Zuazua E (1999) Large time behavior for convection–diffusion equations in R

N with asymptoticallyconstant diffusion. Comm Partial Diff Eqs 24:1283–1340

Escobedo M, Vázquez JL, Zuazua E (1993) A diffusion–convection equation in several space dimensions.Indiana Univ Math J 42:1413–1440

Escobedo M, Zuazua E (1991) Large time behavior for convection–diffusion equations in Rn . J Func Anal

100:119–161Freistühler H (1990) Rotationaly degeneracy of hyperbolic systems of conservation laws. Arch Rat Mech Anal

113:39–64Freistühler H, Serre D (2001) The L1-stability of boundary layers for scalar viscous conservation laws. J Dyn

Diff Equ 13:745–755Harabetian E (1988) Rarefactions and large time behavior for parabolic equations and monotone schemes.

Comm Math Phys 114:527–536Ilin AM, Kalashnikov AS, Oleinik OA (1962) Second-order linear equations of parabolic type. Russ Uspechi

Math Nauk 17:3–146Kawashima S (1987) Large-time behavior of solutions to hyperbolic–parabolic systems of conservation laws

and applications. Proc Roy Soc Edinburgh Sect A 106:169–194

123

Page 14: Some $$L^p$$ L p estimates for rotationally invariant systems of viscous conservation laws

P. Braz e Silva et al.

Keyfitz B, Kranzer HC (1980) A system of nonstrictily hyperbolic conservation laws arising in elasticitytheory. Arch Rat Mech Anal 72:219–241

Kreiss H-O, Lorenz J (1989) Initial-boundary value problems and the Navier–Stokes equations. AcademicPress, Boston

Schonbek ME (1980) Decay of solutions to parabolic conservation laws. Comm Partial Diff Eqs 7:449–473Schonbek MH (1986) Uniform decay rates for parabolic conservation laws. Nonl Anal TMA 10:943–956Schütz L (2008) Some results about advestion–diffusion equations, with applications to the Navier–Stokes

equations (Portuguese). Doctorate Thesis, Universidade Federal do Rio Grande do Sul, Porto AlegreSerre D (1999) Systems of conservation laws, vol 1. Cambridge University Press, CambridgeZingano PR (1999) Nonlinear L2-stability under large disturbances. J Comp Appl Math 103:207–219

123