solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfpiero della...

61
Solutions to x 3 + y 3 + z 3 + w 3 =(x + y + z + w ) 3 : cubic surfaces, 27 lines, and the icosahedron. Marcello Bernardara Institut de Math´ ematiques de Toulouse Marcello Bernardara (IMT) Cubic surfaces 1 / 19

Upload: others

Post on 15-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Solutions to x3 + y 3 + z3 + w 3 = (x + y + z + w)3:cubic surfaces, 27 lines, and the icosahedron.

Marcello Bernardara

Institut de Mathematiques de Toulouse

Marcello Bernardara (IMT) Cubic surfaces 1 / 19

Page 2: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings withmodern perspective.

The parallel lines on the floorconverge to the same point

L.B.Alberti: De pictura (1430s),Piero della Francesca DeProspectiva Pingendi (1470s)

Marcello Bernardara (IMT) Cubic surfaces 2 / 19

Page 3: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings withmodern perspective.

The parallel lines on the floorconverge to the same point

L.B.Alberti: De pictura (1430s),Piero della Francesca DeProspectiva Pingendi (1470s)

Marcello Bernardara (IMT) Cubic surfaces 2 / 19

Page 4: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings withmodern perspective.

The parallel lines on the floorconverge to the same point

L.B.Alberti: De pictura (1430s),Piero della Francesca DeProspectiva Pingendi (1470s)

Marcello Bernardara (IMT) Cubic surfaces 2 / 19

Page 5: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings withmodern perspective.

The parallel lines on the floorconverge to the same point

L.B.Alberti: De pictura (1430s),Piero della Francesca DeProspectiva Pingendi (1470s)

Marcello Bernardara (IMT) Cubic surfaces 2 / 19

Page 6: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings withmodern perspective.

The parallel lines on the floorconverge to the same point

L.B.Alberti: De pictura (1430s),Piero della Francesca DeProspectiva Pingendi (1470s)

Marcello Bernardara (IMT) Cubic surfaces 2 / 19

Page 7: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.How to add “infinite points” to the Euclidean plane?

A point Pcorresponds to aline through N.

The ∞ point ofli ’s correspondsto a line tangentat N with thesame direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Marcello Bernardara (IMT) Cubic surfaces 3 / 19

Page 8: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.How to add “infinite points” to the Euclidean plane?

A point Pcorresponds to aline through N.

The ∞ point ofli ’s correspondsto a line tangentat N with thesame direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Marcello Bernardara (IMT) Cubic surfaces 3 / 19

Page 9: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.How to add “infinite points” to the Euclidean plane?

A point Pcorresponds to aline through N.

The ∞ point ofli ’s correspondsto a line tangentat N with thesame direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Marcello Bernardara (IMT) Cubic surfaces 3 / 19

Page 10: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.How to add “infinite points” to the Euclidean plane?

A point Pcorresponds to aline through N.

The ∞ point ofli ’s correspondsto a line tangentat N with thesame direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Marcello Bernardara (IMT) Cubic surfaces 3 / 19

Page 11: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.How to add “infinite points” to the Euclidean plane?

A point Pcorresponds to aline through N.

The ∞ point ofli ’s correspondsto a line tangentat N with thesame direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Marcello Bernardara (IMT) Cubic surfaces 3 / 19

Page 12: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2: Mathematics

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Equation of such a line l : λ(x0, x1, x2), where P = (x0, x1, x2) is a point onl , and (x0, x1, x2) 6= (0, 0, 0).

{Points of P2} ↔ {triples (x0, x1, x2) 6= 0}/(x0, x1, x2) = (λx0, λx1, λx2)

Homogeneous coordinates. A point of P2 is determined by an equivalenceclass of triples denoted (x0 : x1 : x2). Infinite points have coordinates(x1 : x2 : 0).

Bezout’s Theorem (1779)

Two curves of degree m and n meet exactly in n ·m points of P2.

The projective space Pn of dimension n has points with homogeneouscoordinates (x0 : . . . : xn)

Marcello Bernardara (IMT) Cubic surfaces 4 / 19

Page 13: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2: Mathematics

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Equation of such a line l : λ(x0, x1, x2), where P = (x0, x1, x2) is a point onl , and (x0, x1, x2) 6= (0, 0, 0).

{Points of P2} ↔ {triples (x0, x1, x2) 6= 0}/(x0, x1, x2) = (λx0, λx1, λx2)

Homogeneous coordinates. A point of P2 is determined by an equivalenceclass of triples denoted (x0 : x1 : x2). Infinite points have coordinates(x1 : x2 : 0).

Bezout’s Theorem (1779)

Two curves of degree m and n meet exactly in n ·m points of P2.

The projective space Pn of dimension n has points with homogeneouscoordinates (x0 : . . . : xn)

Marcello Bernardara (IMT) Cubic surfaces 4 / 19

Page 14: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2: Mathematics

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Equation of such a line l : λ(x0, x1, x2), where P = (x0, x1, x2) is a point onl , and (x0, x1, x2) 6= (0, 0, 0).

{Points of P2} ↔ {triples (x0, x1, x2) 6= 0}/(x0, x1, x2) = (λx0, λx1, λx2)

Homogeneous coordinates. A point of P2 is determined by an equivalenceclass of triples denoted (x0 : x1 : x2). Infinite points have coordinates(x1 : x2 : 0).

Bezout’s Theorem (1779)

Two curves of degree m and n meet exactly in n ·m points of P2.

The projective space Pn of dimension n has points with homogeneouscoordinates (x0 : . . . : xn)

Marcello Bernardara (IMT) Cubic surfaces 4 / 19

Page 15: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

The projective plane P2: Mathematics

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Equation of such a line l : λ(x0, x1, x2), where P = (x0, x1, x2) is a point onl , and (x0, x1, x2) 6= (0, 0, 0).

{Points of P2} ↔ {triples (x0, x1, x2) 6= 0}/(x0, x1, x2) = (λx0, λx1, λx2)

Homogeneous coordinates. A point of P2 is determined by an equivalenceclass of triples denoted (x0 : x1 : x2). Infinite points have coordinates(x1 : x2 : 0).

Bezout’s Theorem (1779)

Two curves of degree m and n meet exactly in n ·m points of P2.

The projective space Pn of dimension n has points with homogeneouscoordinates (x0 : . . . : xn)

Marcello Bernardara (IMT) Cubic surfaces 4 / 19

Page 16: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 17: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 18: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 19: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 20: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 21: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 22: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomialswith nonzero coefficients all have the same total degree.If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the ZeroLocus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 21 · G1

a triple line: F = F 31

Marcello Bernardara (IMT) Cubic surfaces 5 / 19

Page 23: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Lines on cubic surfaces

A Cubic Surface in P3 is the zero locus S = Z (F ) of a degree 3homogeneous polynomial. We suppose that S is smooth.

Theorem (Cayley-Salmon 1849)

There are exactly 27 lines on S.

Arthur Cayley (1821 - 1895)George Salmon (1819 - 1904)

Marcello Bernardara (IMT) Cubic surfaces 6 / 19

Page 24: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Marcello Bernardara (IMT) Cubic surfaces 7 / 19

Page 25: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or3, then they are coplanar.Every plane intersects S along either an irreducible cubic or a conic plus aline or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is adegree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19

Page 26: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or3, then they are coplanar.Every plane intersects S along either an irreducible cubic or a conic plus aline or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is adegree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19

Page 27: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or3, then they are coplanar.Every plane intersects S along either an irreducible cubic or a conic plus aline or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is adegree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19

Page 28: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

Third Step

l a line on S . There are exactly 5 pairs (li , l′i ) of lines on S meeting l s.t.

for i = 1, . . . 5, l , li , and l ′i are coplanar

for i 6= j , li ∪ l ′i does not intersect lj ∪ l ′j .

PROOF: take l and a plane Π ⊃ l , Then Π ∩ S is one of the following:

We want exactly 5 planes giving a) or b). If l : (z = w = 0) then we canwrite F = Ax2 + Bxy + Cy2 + Dx + Ey + G which is the equation of aconic in the plane (x , y) depending on z ,w . Exactly 5 of them arereducible.

Marcello Bernardara (IMT) Cubic surfaces 9 / 19

Page 29: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

Third Step

l a line on S . There are exactly 5 pairs (li , l′i ) of lines on S meeting l s.t.

for i = 1, . . . 5, l , li , and l ′i are coplanar

for i 6= j , li ∪ l ′i does not intersect lj ∪ l ′j .

PROOF: take l and a plane Π ⊃ l , Then Π ∩ S is one of the following:

We want exactly 5 planes giving a) or b). If l : (z = w = 0) then we canwrite F = Ax2 + Bxy + Cy2 + Dx + Ey + G which is the equation of aconic in the plane (x , y) depending on z ,w . Exactly 5 of them arereducible.

Marcello Bernardara (IMT) Cubic surfaces 9 / 19

Page 30: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Proof of the Theorem

Third Step

l a line on S . There are exactly 5 pairs (li , l′i ) of lines on S meeting l s.t.

for i = 1, . . . 5, l , li , and l ′i are coplanar

for i 6= j , li ∪ l ′i does not intersect lj ∪ l ′j .

Marcello Bernardara (IMT) Cubic surfaces 10 / 19

Page 31: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 32: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 33: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′i

Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 34: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 35: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 36: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.

Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 37: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 38: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l′i ).

No double line on S =⇒ m cannot meet both li and l ′iBeing in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m′i ) are given by mi = li and m′

i ∩ l ′i = ∅.Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ nis double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19

Page 39: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

A double six is a configuration of 12 lines (a1, . . . a6, b1, . . . , b6) in theprojective space such that

ai ∩ aj = bi ∩ bj = ∅ for i 6= j

ai ∩ bi = ∅, for all i = 1, . . . 6

ai ∩ bj is a point if i 6= j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Schlafli’s Theorem (1858)

The 27 lines are completely determined by a double six. There are 36double sixes for a given cubic surface.

Marcello Bernardara (IMT) Cubic surfaces 12 / 19

Page 40: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

A double six is a configuration of 12 lines (a1, . . . a6, b1, . . . , b6) in theprojective space such that

ai ∩ aj = bi ∩ bj = ∅ for i 6= j

ai ∩ bi = ∅, for all i = 1, . . . 6

ai ∩ bj is a point if i 6= j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Schlafli’s Theorem (1858)

The 27 lines are completely determined by a double six. There are 36double sixes for a given cubic surface.

Marcello Bernardara (IMT) Cubic surfaces 12 / 19

Page 41: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

A double six is a configuration of 12 lines (a1, . . . a6, b1, . . . , b6) in theprojective space such that

ai ∩ aj = bi ∩ bj = ∅ for i 6= j

ai ∩ bi = ∅, for all i = 1, . . . 6

ai ∩ bj is a point if i 6= j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Schlafli’s Theorem (1858)

The 27 lines are completely determined by a double six. There are 36double sixes for a given cubic surface.

Marcello Bernardara (IMT) Cubic surfaces 12 / 19

Page 42: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

Marcello Bernardara (IMT) Cubic surfaces 13 / 19

Page 43: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

Marcello Bernardara (IMT) Cubic surfaces 13 / 19

Page 44: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

Marcello Bernardara (IMT) Cubic surfaces 13 / 19

Page 45: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

Cubic Surfaces

Schlafli’s double six

Marcello Bernardara (IMT) Cubic surfaces 13 / 19

Page 46: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The blow-up of a point

Consider a point on a surface, and “replace it with a line”

The red line (the exceptional divisor) parameterizes all the lines throughthe red point (the center of the blow-up).

Marcello Bernardara (IMT) Cubic surfaces 14 / 19

Page 47: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in theprojective plane P2.

Given a double six (a1, . . . , a6|b1, . . . , b6) the ai ’s are the exceptionaldivisors of such blow up.

There are 72 choices of 6 lines giving a map S → P2.

Marcello Bernardara (IMT) Cubic surfaces 15 / 19

Page 48: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in theprojective plane P2.

Given a double six (a1, . . . , a6|b1, . . . , b6) the ai ’s are the exceptionaldivisors of such blow up.

There are 72 choices of 6 lines giving a map S → P2.

Marcello Bernardara (IMT) Cubic surfaces 15 / 19

Page 49: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in theprojective plane P2.

Given a double six (a1, . . . , a6|b1, . . . , b6) the ai ’s are the exceptionaldivisors of such blow up.

There are 72 choices of 6 lines giving a map S → P2.

Marcello Bernardara (IMT) Cubic surfaces 15 / 19

Page 50: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 51: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 52: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 53: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 54: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 55: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of theseconics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)

Marcello Bernardara (IMT) Cubic surfaces 16 / 19

Page 56: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

The Clebsch cubic

Consider the homogeneous polynomial

F (x , y , z ,w) = x3 + y3 + z3 + w3 − (x + y + z + w)3

the cubic surface in P3 defined as Z (F ) is the locus of points(x : y : w : z) satisfying

x3 + y3 + z3 + w3 = (x + y + z + w)3

This cubic is smooth and is called the Clebsch cubic

Marcello Bernardara (IMT) Cubic surfaces 17 / 19

Page 57: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are givenby the lines in the euclidean space joining opposite vertices of a regularicosahedron, with assigned vertex coordinates.

The center of the icosahedron is the origin.

The 6 points in P2 have to be defined over Q[√−5].

There are 72 such icosahedra.

Marcello Bernardara (IMT) Cubic surfaces 18 / 19

Page 58: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are givenby the lines in the euclidean space joining opposite vertices of a regularicosahedron, with assigned vertex coordinates.

The center of the icosahedron is the origin.

The 6 points in P2 have to be defined over Q[√−5].

There are 72 such icosahedra.

Marcello Bernardara (IMT) Cubic surfaces 18 / 19

Page 59: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are givenby the lines in the euclidean space joining opposite vertices of a regularicosahedron, with assigned vertex coordinates.

The center of the icosahedron is the origin.

The 6 points in P2 have to be defined over Q[√−5].

There are 72 such icosahedra.

Marcello Bernardara (IMT) Cubic surfaces 18 / 19

Page 60: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are givenby the lines in the euclidean space joining opposite vertices of a regularicosahedron, with assigned vertex coordinates.

The center of the icosahedron is the origin.

The 6 points in P2 have to be defined over Q[√−5].

There are 72 such icosahedra.

Marcello Bernardara (IMT) Cubic surfaces 18 / 19

Page 61: Solutions to x3 + y3 + z3 + w3 = (x+y+z+w)3: cubic ...mbernard/images/cubic-surface.pdfPiero della Francesca De Prospectiva Pingendi (1470s) Marcello Bernardara (IMT) Cubic surfaces

The Clebsch cubic surface

The Icosahedron

Marcello Bernardara (IMT) Cubic surfaces 19 / 19