solid phase synthesis_1

18
SolidPhase Synthesis of 1,2,5Benzothiadiazepin4one 1,1dioxides via A Cyclization/Release Strategy A short summer project carried out by Surendra Karwa Department of Chemistry, IIT- Kharagpur-721302 Under the supervision of Prof. Johan Van der Eycken Department of Organic Chemistry Lab. For Organic and Bioorganic synthesis Ghent University

Upload: prateek-jain

Post on 24-Oct-2015

40 views

Category:

Documents


3 download

DESCRIPTION

jjjhjhhj

TRANSCRIPT

Page 1: Solid Phase Synthesis_1

Solid-­‐Phase  Synthesis  of  1,2,5-­‐Benzothiadiazepin-­‐4-­‐one-­‐          1,1-­‐dioxides  via  A  Cyclization/Release  Strategy                                                                    

A short summer project carried out by

Surendra Karwa

Department of Chemistry, IIT- Kharagpur-721302

Under the supervision of

Prof. Johan Van der Eycken

Department of Organic Chemistry

Lab. For Organic and Bioorganic synthesis

Ghent University  

 

 

 

 

 

 

 

 

 

Page 2: Solid Phase Synthesis_1

Abstract: Benzodiazepine/ Benzothiadiazepine based heterocycles can be prepared efficiently on solid-support by employing different approaches. In this summer project, an effort has been made to highlight academic and industrial examples of combinatorial synthesis for this type of heterocycles published in the last decade. 1,2,5-Benzothiadiazepin-4-one-1,1-dioxides were synthesized by a simple procedure utilizing polymer supported amino acids and sulfonyl chloride as building block.Cyclization of common aminoamide intermediate with concomitant release from the support(resin-bound substrates) furnished the desired 1,2,5-Benzothiadiazepin-4-one-1,1-dioxides. The products were recovered in moderate yield and exhibited excellent purities. Further, the most relevant biological properties of these heterocycles have also been incorporated.

Introduction:

Benzothiazepines are important nitrogen and sulfur containing seven member heterocyclic compounds. Which are of great interest in the area of drug discovery and development due to their broad spectrum of Pharmacological activity. Benzothiazepine and its derivatives show a wide spectrum of Pharmacological activity such as anticonvulsant, antidepressant, CNS stimulant, anticancer, Anti-HIV, antihypertensive, antiulcer, Calcium channel blocker and antimicrobial agent.

                                                                                                                                                                               Fig.  1  Templates  for  Library  synthesis            We  purpose  the  synthesis  route  for  1,2,5-­‐Benzothiadiazepin-­‐4-­‐one-­‐1,1-­‐dioxides  using  solid  support.  The  retro  synthesis  of  our  template  is  given  below.          

     

Page 3: Solid Phase Synthesis_1

Experimental Details General Reaction Scheme:

Fig. 1 General Reaction Scheme

Herein we report the synthesis of Benzothioazapines (8 & 9) from commercially available starting materials as shown in Fig. 1 . We get the library synthesis of Benzothioazapines (8 & 9) by changing the substituent R1, R2 & R3 on it .

 α -­‐AMINO  ACID  COUPLING  ON  WANG  RESIN  

OH O

ONHFmoc

R11 2

1. Fmoc-AA-OH, DIC, DMAP, CH2Cl2, rt, 16h

2. Ac2O/DIPEA/CH2Cl2 1/1/3, rt, 2 x 2h  

OH O

ONH2

R1

O

O HN

R1

SNO2

O O

NH

NSO O

O

R1

R2

O

ON

R1

SNH2

O O

R2

Wang resin

O

ONHFmoc

R1

FmocHN

R1

COOH

DIC, DMAP, CH2Cl2

20% 4-Mepiperidine

in DMF

2x 10 min collidineCH2Cl2, 2x 1 h

R2OH, DIAD

PPh3, DCE2x 1 h

O

ON

R1

SNO2

O O

R2CrCl2

DMF/MeOH 9/12x 1 h

SO2Cl

NO2

FF

N N

N

O O

O

O

ON

R1

SNO2

O O

R2

F

80°C, MW 1 h

HN O

1M LiOtBu in THF, 4 h

N

NSO O

O

R1

R2N

O

R3

(i) K2CO3, DMF

(ii) R3-X, DMF

1 2 3 4

5 6 7

8 9

Page 4: Solid Phase Synthesis_1

 

 

GENERAL  PROCEDURE  :  

Preswell: The Wang resin 1 (1.50 g, 1.49 mmol, 1 eq) is preswollen first by suspending it in 20 ml of CH2Cl2 and by shaking it for 20 min. After filtration, this procedure is repeated for a second time.

Preactivation: To a stirring solution of an Na-Fmoc-protected amino acid (2.97 mmol, 2 eq) in 20 ml CH2Cl2 at 0°C is added DIC (2.97 mmol, 2 eq). This reaction mixture is stirred for 20 min at 0°C.

Coupling: The preactivated reaction mixture is then added to the preswollen Wang resin together with DMAP (0.30 mmol, 0.2 eq) and shaken for 16 h at room temperature. The resin was subsequently washed 3 times with DMF, MeOH and CH2Cl2.

Capping of remaining OH: The resin is suspended in a mixture of Ac2O/DIPEA/CH2Cl2 1/1/3 (20 mLl) and the mixture is shaken for 2h. The resin is filtered and washed with CH2Cl2, after which it is suspended in Ac2O/DIPEA/CH2Cl2 1/1/3 again and shaken for 2h. The resin is filtered and washed consecutively with CH2Cl2, DMF, MeOH and CH2Cl2. The obtained resin 2 is dried under vacuum.

Determination of loading: The loading of the coupled resin was determined by Fmoc UV-quantification using 4-methylpiperidine/DMF 1/4 (calibration line: A=8.3585c).

AMINE DEPROTECTION

 

O

ONH2

R13

20% 4-methylpiperidine in DMF, rT, 2x10 min

O

ONHFmoc

R12  

 

GENERAL  PROCEDURE  

 

Deprotection: The resin is suspended in a solution of 20 ml 20% 4-methylpiperidine in DMF and shaken for 10 min. The resin is subsequently washed with DMF, MeOH and CH2Cl2 and this procedure is repeated for a second time, delivering the resin-bound deprotected a-amino acid 3.

Page 5: Solid Phase Synthesis_1

SULFONYL CHLORIDE BUILDING BLOCK COUPLING

O

ONH2

R1

O

O HN

R1

SNO2O O

3 4

sym-collidine, CH2Cl2, rt, 2x1 h

F

NO2

SO2ClF

 

GENERAL PROCEDURE

The solid supported a-amino acid 7 (0.500 g, 0.37 mmol, 1 eq) is suspended in 10 ml of CH2Cl2 and shaken in the presence of sulfonyl chloride building block (0.92 mmol, 2.5 eq) and sym-collidine (1,86 mmol, 5 eq). After 1 h shaking at room temperature, the resin is filtered off and washed subsequently with DMF, MeOH and CH2Cl2. This reaction is repeated for a second time, delivering the sulfonamide 4.

MITSUNOBU ALKYLATION

 

O

O HN

R1

SNO2O O

O

ON

R1

SNO2O O

R2

4 5

R2-OH, DIAD, PPh3, DCE, rt, 2x1h

F F

 

GENERAL PROCEDURE

Resin bound compound 4 (0.37 mmol, 1 eq) is suspended in 10 ml of 1,2-dichloroethane, followed by addition of respectively an alcohol (3.7 mmol, 10 eq), triphenylphosphine (0.488 g, 1.86 mmol, 5 eq) and DIAD (0.37 ml, 1.86 mmol, 5 eq). After shaking this yellow mixture for 1 h, the resin is filtered off and washed consecutively 3 times with DMF, MeOH and CH2Cl2. This procedure is repeated for a second time, yielding the desired alkylated compound 5.

Page 6: Solid Phase Synthesis_1

ON-RESIN NUCLEOPHILIC AROMATIC SUBSTITUTION

O

ON

SNO2

F

R2

O OO

ON

SNO2

N

R2

O ONMP, 80°C MW, 60 min

5 6

O

morpholine

R1 R1

 

To the fluoro containing resin 5 (0.349 mmol, 1 eq), brought in a microwave tube, is added subsequently 5 ml of NMP and morpholine (6.99 mmol, 20 eq). This suspension is heated for 60 min using microwave heating with constant cooling (Powermax method), then filtered off and washed 3x with DMF, MeOH and CH2Cl2. This readily delivers the aminated compounds 6.

NITRO REDUCTION

 

O

ON

R1

SNO2O O

R2

6

O

ON

R1

SNH2O O

R2

7

Cr(II)Cl2, DMF/MeOH 9/1RT, 2x 1 h

N N

O O

 

GENERAL PROCEDURE

To the resin bound compound 9 (0.37 mmol, 1 eq) is added 6 ml of a mixture of DMF/MeOH 9/1 and chromium(II) chloride (2.96 mmol, 8 eq). This green suspension is shaken for 1 h, followed by filtration and washing 3 times with DMF, MeOH and CH2Cl2. The reduction and washing procedure is repeated for a second time, delivering the desired aniline 10.

RING CLOSURE VIA CYCLIZATION/RELEASE

O

ON

R1

SNH2O O

R2

7NH

NSO

O

O

R1

R2

8

1M LiOtBu in THFRT, 4 h

NO

 

Page 7: Solid Phase Synthesis_1

 

GENERAL PROCEDURE

To resin 7 (0.34 mmol, 1 eq) is added 4 ml of a 1M solution of LiOtBu in THF. This suspension is shaken for 4 h at room temperature, followed by filtrating off the resin and washing with THF. The filtrate is then evaporated under reduced pressure, redissolved in 12 ml of EtOAc and washed 2 times with a 5% solution of NaHCO3 in water and 1 time with 10 ml brine. The organic phase is then dried over MgSO4 and evaporated again to yield a brownish oil. This oil is purified using column chromatography or recrystallization, yielding the desired 1,2,5-benzothiadiazepin-4-one-1,1-dioxides.

ALKYLATION OF N5-POSITION IN SOLUTION

 

N

NSO

O

O

R1

R2

9

(i) K2CO3, DMF NO

NH

NSO

O

O

R1

R2

8

NO

R3

(ii) R3-X, DMF

 

 

GENERAL PROCEDURE

Substance  8  (0.34  mmol,  1eq.)  is  dissolved  in  DMF  and    K2CO3  is  added  to  this  solution.  Now  a  solution  of  R3-­‐X  (0.34  mmol,  1eq)  in  DMF  is  added  to  above  prepared  solution  of  substance  8  .  Reaction  mixture  is  stirred  for  2  h  at  room  temperature.  DMF  is  evaporated  and  compound  9  is  redissolved  in  8  ml  of  EtoAC  and  washed  with  a 5% solution of NaHCO3 in water and 1 time with 10 ml brine.    The  organic  phase  is  then  evaporated  and  final  product  9  is  column  purified.  

Result:

During my summer internship , I have synthesized library of 12 (twelve) Benzothiadiazepine compound. List of synthesized compound is given below with yield and crude purity .

                                   

Page 8: Solid Phase Synthesis_1

 

 

 

 

Page 9: Solid Phase Synthesis_1

NMR spectra :

1.

500 MHz.7108.001.1r.esp

16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

2.821.114.201.124.231.040.011.001.070.805.300.66

H2O

CDCl3

7.90

7.33

7.27

7.26

7.02 6.89

6.87

4.67

4.65 3.

87 3.86

3.85

3.19 3.18

3.17

3.13

3.11 1.

571.

54

 

 

Page 10: Solid Phase Synthesis_1

2.

 

 

300 MHz.7151.001.1r.esp

9 8 7 6 5 4 3 2 1Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nor

mal

ized

Inte

nsity

2.393.981.131.104.100.361.000.002.021.185.320.84

CDCL3

8.78

7.39 7.39

7.36 7.33

7.27

7.25

7.00 6.

996.

96 4.47 4.45

4.44

4.42

4.14

4.12

3.88 3.

863.

853.

673.

653.

353.

20 3.18 3.18

3.17

3.07

3.05

2.94 2.91

2.89

2.05

1.37

1.33 1.27

1.24

0.87

0.85

0.82

 

 

 

 

 

Page 11: Solid Phase Synthesis_1

3.

10 9 8 7 6 5 4 3 2 1 0 -1Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

Inte

nsity

8.23 4.15 4.091.01 1.00

DMSO-d6

H2O

Page 12: Solid Phase Synthesis_1

4.

 

 

300 MHz.7125.001.1r.esp

16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

6.884.824.414.481.082.261.261.00

H2O

CDCL3

8.49 7.

34 7.33

7.27

6.97

6.94

4.66 4.63

4.61

3.88 3.

863.

853.

493.

192.

801.

90 1.88 1.87

1.85

1.04

1.01

0.99

 

 

 

 

 

Page 13: Solid Phase Synthesis_1

5.

300 MHz.7161.001.1r.esp

10 9 8 7 6 5 4 3 2Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Nor

mal

ized

Inte

nsity

3.044.084.042.103.081.00

DMSO

H2O

10.3

6 7.26 7.26

7.13

4.14

3.75 3.

733.

713.

343.

13 3.11

3.10

2.69

2.51 2.

502.

492.

49

 

 

Page 14: Solid Phase Synthesis_1

6.

 

300 MHz.7146.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nor

mal

ized

Inte

nsity

4.434.985.031.242.511.320.001.00

H2O

H2O

CDCL3

8.71 7.

347.

337.

277.

077.

047.

026.

99

4.65

4.64 4.

63

4.60

4.58

3.88 3.

86

3.85

3.20 3.19

3.17

2.81

2.05 1.67

1.58

1.56

 

Page 15: Solid Phase Synthesis_1

7.  

 

 

 

 

300 MHz.7141.001.1r.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nor

mal

ized

Inte

nsity

9.302.884.020.631.013.860.480.961.950.771.991.940.930.60

H2O

CDCL3

8.67

8.15

8.12

7.68

7.60 7.

327.

277.

257.

257.

03 6.96

6.93

6.92 4.85

4.84

4.83 4.83

4.82

4.81

4.80 4.14

4.12

4.10

3.88 3.

863.

843.

703.

673.

253.

223.

20 3.19

3.17

3.05

2.82

2.79

2.77

2.41 2.18

2.05

1.88 1.71

1.67

1.39 1.

29 1.27

 

Page 16: Solid Phase Synthesis_1

8.

 

 

 

300 MHz.7163.001.1r.esp

10 9 8 7 6 5 4 3 2 1Chemical Shift (ppm)

0

0.05

0.10

0.15

Nor

mal

ized

Inte

nsity

9.333.091.073.711.033.700.916.760.90

DMSOH2O

10.1

6

7.15

7.12 7.

117.

097.

066.

946.

776.

75

4.45 4.44

4.42

4.40

3.62

3.60

3.59

3.23

3.20

2.99 2.

972.

962.

852.

822.

502.

392.

382.

371.

97 1.87 1.25

1.15

1.06

 

Page 17: Solid Phase Synthesis_1

9.

 

300 MHz.7165.001.1r.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

Nor

mal

ized

Inte

nsity

3.003.991.061.034.010.911.004.190.102.030.051.040.860.84

H2O

CDCL3

8.66

8.17 7.

67 7.65 7.

35 7.32 7.31

7.27

7.10

6.98

6.96

6.93

4.79 4.77

4.77

4.75

4.17

4.15

4.12

4.10

3.87

3.85

3.84

3.73

3.71

3.32

3.30

3.18

3.17

3.15

2.78

2.32

2.06

1.72

1.29

1.27

1.25

Page 18: Solid Phase Synthesis_1

Conclusions: Ø Cyclization/release strategy is successfully developed.

Ø Model library is synthesized.

Ø Synthesized high purity of crude cyclization products

Ø large diversity possible: a- and β-amino acids

Ø N4-alkyl derivatives: steric effects are important for amide formation: practically limited to cis- and trans-aminocyclohexanecarboxylic acids

Ø Application to further libraries is under investigation

Acknowledgments: I am thankful to Ghent University and Prof. Johan Van der Eycken group for providing financial support during my summer internship.

References:

1. Constantine G. Boojamra, Kristina M.Burow, and Jonathan A. Ellman ,J.Org. Chem 1996,60,5742-5743

2. Constantine G. Boojamra,† Kristina M. Burow, Lorin A. Thompson, and

Jonathan A. Ellman* , J. Org. Chem. 1997, 62, 1240-1256

3. Douglas A. Horton,† Gregory T. Bourne,†,‡ and Mark L. Smythe*,†,‡, Chem. Rev. 2003, 103, 893-930

4. Ahmed Kamal*, K. Laxma Reddy, V. Devaiah, N. Shankaraiah and D.

Rajasekhar Reddy, Mini-Reviews in Medicinal Chemistry, 2006, 6, 53-69