solea stone oak - oden hughes · solea stone oak 3.7 lightweight concrete: locate in areas in...

121
Solea Stone Oak 21914 Hardy Oak San Antonio, Texas 78258 Technical Specifications Construction Set November 18, 2015 Owner STREAM REALTY 515 Congress Ave. Ste. 1300 Austin, Tx 78701 Architect ALAMO ARCHITECTS 1512 South Flores Street San Antonio, Texas 78204 (210) 227-2612 fax (210) 227-9457

Upload: others

Post on 29-Oct-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Solea Stone Oak

21914 Hardy Oak San Antonio, Texas 78258

Technical Specifications Construction Set

November 18, 2015

Owner STREAM REALTY

515 Congress Ave. Ste. 1300 Austin, Tx 78701

Architect

ALAMO ARCHITECTS 1512 South Flores Street

San Antonio, Texas 78204 (210) 227-2612

fax (210) 227-9457

SOLEA STONE OAK

CONSTRUCTION SET

TECHNICAL SPECIFICATIONS

ATTACHMENTS:

ATTACHMENT A:  GEOTECHNICAL REPORT

ATTACHMENT B:  ACOUSTICAL REPORT (IF APPLICABLE)

ATTACHMENT C:  ENERGY COMPLIANCE REPORTS

ATTACHMENT D:  LIST OF EXPECTED SUBMITTALS

ATTACHMENT E:  SUSTAINABLE DESIGN CHECKLIST (IF APPLICABLE)

ATTACHMENT F:  OWNER'S DOCUMENTS (IF APPLICABLE)

ATTACHMENT G: MISCELLANEOUS DOCUMENTS (IF APPLICABLE)

DIVISION 1 ‐ GENERAL REQUIREMENTS

1.1 GENERAL CONDITIONS: AIA DOCUMENT A201, GENERAL CONDITIONS OF THE CONTRACT, CURRENT EDITION.

1.2 WORK RESTRICTIONS AND REQUIREMENTS: COMPLY WITH FEDERAL, STATE AND LOCAL ORDINANCES, 

APPLICABLE CODES AND REGULATIONS.

1.3 PERMITS: OWNER WILL PAY FOR THE BUILDING PERMIT AND IMPACT FEES. CONTRACTORS SHALL INCLUDE THE 

COST OF ALL OTHER PERMITS, FEES, LICENSES, TAXES, ETC., AS REQUIRED FOR COMPLETE INSTALLATION OF THE 

WORK.

1.4 PROJECT IDENTIFICATION: SOLEA STONE OAK, ALAMO ARCHITECTS PROJECT NUMBER 2015‐16

1. PROJECT LOCATION:  21914 HARDY OAK, SAN ANTONIO, TEXAS, 78258

1.5 CONTRACTOR USE OF PREMISES:  THE CONTRACTOR HAS THE USE OF THE PREMISES DURING THE CONSTRUCTION 

PERIOD FOR CONSTRUCTION OPERATIONS.  DO NOT DISTURB PORTIONS OF THE SITE BEYOND THE AREAS 

INDICATED.1. DRIVEWAYS AND ENTRANCES: KEEP DRIVEWAYS AND ENTRANCES CLEAR AND AVAILABLE TO THE OWNER, 

OWNER'S EMPLOYEES AND EMERGENCY VEHICLES AT ALL TIMES.2.  CONSTRUCTION ENTRANCE AND CONSTRUCTION TRAFFIC: CONSTRUCTION ENTRANCE AND CONSTRUCTION 

TRAFFIC FOR CONSTRUCTION PERIOD SHALL BE SEPARATED FROM AREAS RELEASED TO OWNER FOR OCCUPANCY 

WITH OUT OWNERS CONSENT.

1.6 PRE‐INSTALLATION MEETINGS: TO BE SCHEDULED AND COORDINATED BY THE CONTRACTOR PRIOR TO THE  

MAJOR SEQUENCING OF EACH WORK.

1.7 APPLICATIONS FOR PAYMENT:  COORDINATE THE SCHEDULE OF VALUES AND APPLICATIONS FOR PAYMENT WITH 

THE CONSTRUCTION SCHEDULE FOR THE CONSTRUCTION PERIOD AND SUBMITTAL SCHEDULE.  PROVIDE AN AIA 

G702 AND AIA G703 FOR ARCHITECT AND OWNER'S REVIEW.1.  PROVIDE THE SCHEDULE OF VALUES AIAG703 AND APPLICATION FOR PAYMENT AIA G702 A MINIMUM OF 2 

DAYS PRIOR TO THE SCHEDULED SITE VISIT.2.  EACH APPLICATION FOR PAYMENT SHALL BE CONSISTENT WITH PREVIOUS APPLICATIONS, NOTARIZED BY THE 

CONTRACTOR AND THEN CERTIFIED BY THE ARCHITECT AND PAID FOR BY THE OWNER PRIOR TO PAYMENT.

1

SOLEA STONE OAK

3.  WAIVERS OF MECHANICS LIEN: SUBMIT PARTIAL WAIVERS ON EACH ITEM FOR THE AMOUNT REQUESTED AND 

FINAL WAIVERS PRIOR TO THE FINAL AMOUNTS RELEASED.4.  APPLICATION FOR PAYMENT AT SUBSTANTIAL COMPLETION:  SUBMIT APPLICATION FOR PAYMENT REFLECT 

CERTIFICATES OF PARTIAL COMPLETION ISSUED PREVIOUSLY FOR OWNER OCCUPANCY.  INCLUDE CERTIFICATES 

OF OCCUPANCY, REQUIRED WARRANTIES, RECORD DOCUMENTS, TEST BALANCE RECORDS, MAINTENANCE 

INSTRUCTIONS, METER READINGS, START UP PERFORMANCE REPORTS, FINAL CLEANING, LIST OF INCOMPLETE 

WORK RECOGNIZED AS EXCEPTIONS TO THE ARCHITECT'S CERTIFICATE OF SUBSTANTIAL COMPLETION.

5.  FINAL PAYMENT APPLICATION:  SUBMIT THE FINAL APPLICATION FOR PAYMENT AND INCLUDE THE 

FOLLOWING:A. COMPLETION OF CLOSEOUT REQUIREMENTS.B.  PROOF OF COMPLETION OF ITEMS SPECIFIED FOR COMPLETION AFTER SUBSTANTIAL COMPLETION.C.  ENSURE ALL UNSETTLED CLAIMS WILL BE SETTLED.D.  ENSURE ALL WORK NOT ACCEPTABLE AS COMPLETE WILL BE COMPLETED WITHOUT DELAY.E.  PROOF THAT TAXES, FEES AND SIMILAR OBLIGATIONS AS PAID.  REMOVAL OF TEMPORARY FACILITIES AND 

SERVICES.F.  REMOVAL OF SURPLUS AND DEBRIS.G.  CHANGE OF DOOR LOCKS TO OWNER'S ACCESS.

1.8 ACOUSTIC PERFORMANCE: REFER TO ATTACHMENT B AND THE ACOUSTICAL COMPLIANCE PLAN AND NOTES IN 

ARCHITECTURAL DRAWINGS. (IF APPLICABLE)

1.9 CONFLICTING REQUIREMENTS: PROVIDE GREATER QUANTITY AND/OR BETTER QUALITY. SUBMIT QUESTIONS 

RELATED TO CONFLICTING REQUIREMENTS TO OWNER AND ARCHITECT FOR CLARIFICATION.

1.10 TESTING:1. CONTRACTOR WILL CONDUCT FIELD TESTING AT FREQUENCIES AS REQUIRED BY CODE AND ENGINEER OF 

RECORD, PAID FOR BY THE OWNER (AGREEMENT OF PAYMENT BETWEEN OWNER AND CONTRACTOR), TO 

CONFIRM COMPLIANCE WITH REQUIREMENTS. CONTRACTORS SHALL BEAR THE COST OF RETESTING WHERE 

INITIAL TESTING INDICATES NON‐COMPLIANCE WITH REQUIREMENTS2. ADDITIONAL TESTING: CONTRACTORS SHALL BE RESPONSIBLE FOR AND BEAR THE COST OF ANY OTHER 

TESTING REQUIRED TO CERTIFY COMPLIANCE WITH REQUIREMENTS.

1.11 SUBMITTALS:1. REFER TO ATTACHMENT D FOR EXPECTED SUBMITTAL SCHEDULE2. SUBMIT THREE (3) COPIES U.N.O. WITHIN 15 CALENDAR DAYS OF AGREEMENT EXECUTION FOR NRP AND 

ARCHITECT REVIEW AND APPROVAL.3. PRODUCT DATA: DESCRIBE PRODUCT INCLUDING BUT NOT LIMITED TO AVAILABLE FINISHES, CODE 

COMPLIANCE.4. SHOP DRAWING OF OFF‐SITE FABRICATED ITEMS: DESCRIBE CONSTRUCTION AND INSTALLATION 

REQUIREMENTS5. SHOP DRAWINGS OF FIELD ASSEMBLED ITEMS: DESCRIBE CONSTRUCTION, ASSEMBLY AND INSTALLATION 

REQUIREMENTS.6. SAMPLES: SUBMIT FULL RANGE OF COLORS AND FINISHES AVAILABLE.7. PRODUCT CERTIFICATES: MFR LETTERHEAD CERTIFYING COMPLIANCE WITH REQUIREMENTS AND SUITABLE FOR 

USE INDICATED.8. INSTALLER CERTIFICATIONS: MANUFACTURER LETTERHEAD CERTIFYING INSTALLER IS CERTIFIED OR OTHERWISE 

AN ACCEPTABLE INSTALLER COMPLYING WITH REQUIREMENTS AND WARRANTY REQUIREMENTS.

2

SOLEA STONE OAK

1.12 SUBSTITUTIONS: PROVIDE SUMMARY LIST OF PROPOSED SUBSTITUTIONS WITH SUBMITTALS FOR OWNER 

SPECIFIC APPROVAL.1. DEVIATIONS TO THE CONTRACT DOCUMENTS IN REFERENCE TO PRODUCTS, MATERIALS, SCOPE AND DESIGN 

NOT DEFINED IN THE DOCUMENTS AND TECHNICAL SPECIFICATIONS SHALL BE SUBMITTED TO THE ARCHITECT 

FOR REVIEW AND APPROVAL PRIOR TO INSTALLATION2. SUBMIT SUBSTITUTIONS PER 1.113. PROVIDE ALL TECHNICAL INFORMATION NECESSARY FOR ARCHITECT TO MAKE AN INFORMED ASSESSMENT OF 

PROPOSED CHANGE.4. AT MINIMUM, MEET ALL REQUIRED CODE, ASSEMBLY AND TESTING STANDARDS DEFINED IN THE CONTRACT 

DOCUMENTS5. SUBMIT WRITTEN CERTIFICATION FROM MANUFACTURER FOR PROPOSED CHANGES.  INCLUDE PERFORMANCE, 

ALTERNATE TESTING METHODS PROVING SAME/SIMILAR CODE REQUIREMENTS DEFINED IN CONTRACT 

DOCUMENTS.6. ALLOW ARCHITECT AT MINIMUM 14 DAYS FOR REVIEW.7. SUBSTITUTIONS SHOULD BE APPROVED PRIOR TO INSTALLATION OF MATERIALS. 

1.13 QUALITY CONTROL:1. MONITOR QUALITY CONTROL OF SUPPLIERS, MANUFACTURERS PRODUCTS SERVICES, SITE CONDITIONS AND 

WORKMANSHIP TO PRODUCE WORK.2. COMPLY WITH MANUFACTURERS INSTRUCTIONS, PERFORM WORK BY PERSONS TRAINED AND QUALIFIED TO 

PRODUCE WORKMANSHIP OF SPECIFIED QUALITY. 3.  PROVIDE MOCK‐UP PER DOCUMENT TO BE PROVIDED.

1.14 TEMPORARY FACILITIES: CONTRACTOR SHALL PROVIDE THE FOLLOWING TEMPORARY FACILITIES DURING 

CONSTRUCTION:1. WATER2. ELECTRICITY3. HEAT (IF APPLICABLE)4. TELEPHONE SERVICE: AS NEEDED TO FACILITATE CONSTRUCTION ON JOB SITE.5. SANITARY SERVICES: CONTRACTOR WILL MAKE REASONABLE FACILITIES AVAILABLE TO SUBCONTRACTORS.

6. TEMP ENCLOSURES: WHERE NOT AVAILABLE, SUBCONTRACTORS SHALL PROVIDE TEMPORARY ENCLOSURES AS 

REQUIRED FOR EXECUTION OF THE WORK.

1.15 AS‐BUILTS:1. CONTRACTORS SHALL MAINTAIN AS‐BUILT INFORMATION BY MARKING THE OWNER'S ONSITE PLAN SET 

IDENTIFIED FOR THIS USE. AS‐BUILTS SHALL BE UPDATED AS THE WORK PROGRESSES AND SHALL BE SUBJECT TO 

REVIEW FOR APPROVAL AS A CONDITION FOR ACCEPTANCE OF MONTHLY DRAW REQUESTS.2. ALTERNATIVELY, CONTRACTORS MAY SUBMIT ELECTRONIC SCANS OF MONTHLY AS‐BUILT UPDATES, WITH 

MONTHLY DRAW REQUESTS.

1.16 MOCK‐UP:1. CONSTRUCT MOCK‐UP ACCORDING TO MOCK‐UP DOCUMENTS PROVIDED AS A SUPPLEMENTAL DURING 

CONSTRUCTIONA.  SIZE:  10' HIGH X 20' LONG1) PARTIAL ROOF DETAILS AT TOP OF WALLS2) LENGTH SHALL BE DIVIDED INTO 4 WALL SECTIONS AT 90 DEGREES TO EACH OTHER

B. MATERIALS:  MOCK‐UP TO REPRESENT EXTERIOR FINISHES AND COLORS FOR PROJECT AND AT MINIMUM AS 

DESCRIBED BELOW.1) ROOF MATERIAL, FASCIA, EAVES AND RELATED DETAILS2) SIDING3) TRIM MATERIAL4) STUCCO5) MANUFACTURED STONE IF APPLICABLE TO PROJECT6) FACE BRICK IF APPLICABLE TO PROJECT7) BURNISHED CMU IF APPLICABLE TO PROJECT

3

SOLEA STONE OAK

1.16 OWNER ACCEPTANCE OF WORK FOR SUBSTANTIAL COMPLETION: COMPLETION OF WORK OF ALL TRADES 

ALLOWING OWNER FREE AND LEGAL USE OF THE PREMISES BY NON‐CONSTRUCTION PERSONNEL AND NO 

INTERRUPTIONS TO INTENDED USE OF THE FACILITY.

1.17 DAILY CLEAN‐UP:1. MAINTAIN EXTERIOR AREAS FREE OF DEBRIS. DEBRIS SUBJECT TO SCATTERING BY WIND SHALL BE 

IMMEDIATELY DISPOSED OF IN CONTAINERS.2. INTERIOR AREAS SHALL BE MAINTAINED BROOM CLEAN AT ALL TIMES.

DIVISION 2 ‐ SITE WORK

2.1 REFER TO CIVIL DRAWINGS FOR SITE WORK INCLUDING SITE UTILITIES

2.2 REFER TO RETAINING WALL DRAWINGS FOR ALL RETAINING WALL WORK.

2.3 REFER TO LANDSCAPE AND  IRRIGATION FOR REFERENCED WORK.

2.4 TERMITE TREATMENT:1. COMPLY WITH FHA DOCUMENT M7‐15‐3 "TERMITE PROTECTION".2. SUBJECT TO COMPLIANCE WITH APPLICABLE CODES, ORDINANCES AND REGULATIONS AS DETERMINED BY 

AUTHORITIES HAVING JURISDICTION, SOLUTION RATIO (MINIMUM STRENGTH BY WEIGHT): DURSBAND TC 1% OR 

DRAGNET FT 0.5%.3. INSTALL PER MANUFACTURER RECOMMENDATIONS4. AREAS COVERED SHALL INCLUDE BUILDING PERIMETER, PIERS, SLABS ON GRADE.5. APPLICATOR SHALL BE BONDED AND LICENSED AS REQUIRED BY LOCAL JURISDICTION6. WARRANTY AND GUARANTEE: 5 YEARS AGAINST TERMITE DAMAGE.

DIVISION 3 ‐ CONCRETE

3.1 REFER TO CIVIL DRAWINGS FOR SITE WORK INCLUDING SITE UTILITIES

3.2 REFER TO RETAINING WALL DRAWINGS FOR ALL RETAINING WALL WORK

3.3 REFER TO STRUCTURAL, MEP, LANDSCAPE AND  IRRIGATION FOR REFERENCED WORK.

3.4 CONCRETE FINISHING: PER ACI 301, CONCRETE TOLERANCE PER ACK 117 AND PER STRUCTURAL DRAWINGS1. ROUGH‐FORMED FINISH: CONCRETE SURFACES NOT EXPOSED TO VIEW2. SMOOTH‐FORMED FINISH: CONCRETE WORK EXPOSED TO VIEW OR FINISH MATERIAL APPLY DIRECTLY TO 

CONCRETE SURFACE.3. SCRATCH FINISH: APPLY TO SURFACE TO RECEIVE CONCRETE TOPPING OR MORTAR SETTING BED FOR TILE OR 

STUCCO.4. FLOAT FINISH: APPLY TO SURFACE TO FLUID OR SHEET WATERPROOFING, MEMBRANES.5. TROWEL FINISH: APPLY TO SURFACES COVERED WITH RESILIENT FLOORING, CARPET, TILE SET OVER CLEAVAGE 

MEMBRANE, PAINT OR OTHER FILM FINISH.6. TROWEL AND BROOM FINISH: STAIRS, STEPS, EXPOSED EXTERIOR SURFACES AND SURFACES TO RECEIVE THIN 

SET CERAMIC OR PORCELAIN TILE.

3.5 CONCRETE FLOOR SEAL COATING:SUBMITTALS: PRODUCT DATA, SHOP DRAWING, SAMPLES ‐ MINIMUM OF THREE (3)

3.6 ACOUSTICAL SOUND ABSORBING MAT:1. MODEL NO.: ACOUSTIC‐MAT II BY MAXXON OR APPROVED SUBSTITUTION.2. LOCATION: LOCATE AT AREAS SCHEDULED TO RECEIVE HARD SURFACE FLOORING INCLUDING TILE, VCT.  

EXTEND MAT 12" BEYOND EXTENT OF TILED AREA SHOWN.

4

SOLEA STONE OAK

3.7 LIGHTWEIGHT CONCRETE:  LOCATE IN AREAS IN CORRIDORS AND COMMON AREAS AT FLOORS ABOVE GRADE

3.8 GYP‐CRETE FLOORING:  LOCATE IN AREAS INSIDE ENTIRE FLOOR AREA OF UNITS AT FLOORS ABOVE GRADE.1.  1‐1/4" UNIFORM THICKNESS, 1" OVER SOUND ABSORBING MAT UNLESS SPECIFIED OTHERWISE BY 

MANUFACTURER OF SOUND MAT.

3.9 T‐BAR SLAB EDGE TRIM:1. PREFINISHED EXTRUDED ALUMINUM WITH 60 MIL 4 X 4 ELASTOMERIC SPACERS AND S/S FASTENERS.  PROVIDE 

MANUFACTURER'S STANDARD COLORS FOR ARCHITECT'S SELECTION.2. INSTALLATION:  INSTALL T‐BAR ON ELSTOMERIC SPACERS SPACED AT 12" O.C. TO ALLOW DRAINAGE UNDER T‐

BAR.

DIVISION 4 ‐ MASONRY

4.1 CONCRETE MASONRY UNITS (CMU):1. TYPE I, MOISTURE CONTROLLED, LIGHT WEIGHT UNITS COMPLING WITH ASTM C90 BY FEATHERLITE OR 

APPROVED SUBSTITUTION2.  CLEAN MASONRY PRIOR TO SEALING3.  SEALER TO BE A BREATHABLE TO MINIMIZE EFFLORESCENCE.A.  SPLIT‐FACE CMU AT TRASH ENCLOSURES AND POOL EQUIPMENT ENCLOSURE.B. STANDARD PAINTED CMU AT ELEVATOR SHAFTS 

4.2 MORTAR AND GROUT: ASTM 270, DO NOT USE CALCIUM CHLORIDE, DO NOT USE MASONRY CEMENT, USE TYPE S 

EXCEPT USE TYPE M FOR BELOW GRADE MASONRY.

4.3 JOINT REINFORCEMENT: 9 GA, 2 WIRE DIAGONAL, GALVANIZED

4.4 CLEANING: PER MANUFACTURER STANDARDS

4.5 CONTROL JOINTS: LOCATE AT INTERIOR CORNERS, EVERY 25' O.C. AND NOT LESS THAN 10'‐0" FROM ONE SIDE OF 

A CORNER.1. TOLERANCES:A. FACE VARIATION FROM PLUMB: 1/4" IN 10', MAXIMUM AGGREGATE VARIATION 3/8" IN 20'.B. VERTICAL LINES: 1/4" IN 20' AND 1/2" IN 40' OR MORE.C. VERTICAL ALIGNMENT IN HEAD JOINTS: 1/4" IN 10', 1/2" MAX.D. VARIATION FROM LEVEL: BED JOINTS AND LINES OF LINTELS, SILLS, PARAPETS, HORIZONTAL GROOVES AND 

OTHER CONSPICUOUS LINES, 1/4" IN ANY BAY OR 20' MAX, 1/2" IN 40' OR MORE.E. VARIATION FROM LEVEL: TOP OF WALL 1/8" IN 10' OR 1/16" IN SINGLE UNIT, 1/2" IN 40' MAX.F. VARIATION IN MORTAR JOINT THICKNESS: PLUS/MINUS 1/8", MAX THICKNESS = 1/2".

DIVISION 5 ‐ METALS

5.1 STANDARDS: PROVIDE METALS COMPLYING WITH THE FOLLOWING, UNLESS NOTED OTHERWISE1. STEEL TUBING: ASTM A500, GRADE B2. STEEL PIPE: ASTM A 533. ROLLED STEEL SHAPES: CONFORM TO A572‐504. BOLTS, NUTS AND WASHERS: ASTM A307 OR ASTM A36 AND A3255. ALUMINUM: ASTM B 632, PATTERN 1, ALLOY 6063‐T66. WELDING: AWS D1.17. PRIMER: FS TT‐P‐664

5.2 GROUT: NON‐SHRINK, NON‐METALLIC

5

SOLEA STONE OAK

5.3 FABRICATION:1. WELDING AT HANDRAILS AND GUARDRAILS: GRIND SMOOTH TO TOUCH AND FREE OF PITS, BUMPS, VISUAL 

DEFECTS.2. WELDED CONNECTIONS SHALL SHED WATER.3. CLEAN FABRICATED ITEMS PER SSPC‐SP2 (HAND TOOL), SSPC‐SP3 (POWER TOOL), SSPC‐SP6 (SANDBLASTING)

4. SHOP PRIMED: ONE (1) COAT, 2 MIL MIN, DO NOT PRIME SURFACES TO BE FIELD WELDED OR EMBEDDED IN 

CONCRETE.

5.4 ERECTION:ERECT STAIRS, PIT LADDERS, RAILS AND FENCING SQUARE, LEVEL AND PLUMB, FREE FROM DISTORTION OR 

DEFECTS DETRIMENTAL TO APPEARANCE AND PERFORMANCE.

5.5 GUARDRAILS1.  COMPLY WITH 2015 IBC SECTION 10132.  STRUCTURAL DESIGN REQUIREMENTS: REFER TO STRUCTURAL DRAWINGS FOR LOAD REQUIREMENTS.

5.6 HANDRAILS1.  COMPLY WITH 2015 IBC SECTION 10122.  STRUCTURAL DESIGN REQUIREMENTS: REFER TO STRUCTURAL DRAWINGS FOR LOAD REQUIREMENTS.3.  REFER TO CONSTRUCTION DOCUMENTS FOR DESIGN

DIVISION 6 ‐ WOOD

6.1 WOOD PRODUCTS: COMPLY WITH DOC PS20 AND APPLICABLE GRADING RULES FOR INSPECTION AGENCIES 

CERTIFIED BY THE AMERICAN LUMBER STANDARDS COMMITTEES.

6.2 DRESSING: PROVIDE DRESSED LUMBER, S4S WITH EACH PIECE MARKED WITH GRADE STAMP.

6.3 FRAMING1. ERECT STRUCTURAL FRAMING AND SHEATHING PER STRUCTURAL DRAWINGS. INSTALL BLOCKING, 

MECHANICAL ROOF CURBS, DRAFT STOPPING, BACKING, AND BRIDGING. INSTALL EXTERIOR SHEATHING, 

INTERIOR AND EXTERIOR STRUCTURAL SHEATHING, AND DECKING. INSTALL WINDOWS. CONSTRUCT FURR 

DOWNS INSTALL BLOCKING FOR WALL MOUNTED ITEMS2. REFER TO STRUCTURAL DRAWINGS FOR ADDITIONAL INFORMATION.3. SOLID WOOD BLOCKING FOR WALL MOUNTED ITEMS.4. PLYWOOD DRAFTSTOPS IN CONCEALED SPACES PER IBC 2015 CHAPTER 7.5. ISOLATION GASKET AT WOOD TO CONCRETE CONTACT: PROVIDE CLOSED CELL VINYL FOAM STRIPS, 1/8" THICK, 

APPROXIMATELY 1/2" LESS THAN STUD WIDTH.

6.4 WOOD INTERIOR TRIM:1. UNIT INTERIOR TRIM, CASING, WINDOW SILL AND APRONS: REFER TO FINISH SCHEDULES  A.  PRIME ALL EXPOSED SURFACES ON WOOD TRIM  B.  PRIME ALL CUTS ON PRE‐PRIMED CARPENTRY AND MDF TRIM.2. COMMON AREA INTERIOR TRIM, CASING, WINDOW SILLS: REFER TO FINISH SCHEDULES  A.  PRIME ALL EXPOSED SURFACES ON WOOD TRIM  B.  PRIME ALL CUTS ON PRE‐PRIMED CARPENTRY3. AMENITY CENTER CROWN MOLDING (IF APPLICABLE): FINGER JOINT PINE, FINISH TO MATCH BASE  A.  PRIME ALL EXPOSED SURFACES ON WOOD TRIM  B.  PRIME ALL CUTS ON PRE‐PRIMED CARPENTRY4. AMENITY CENTER BASE TRIM: REFER TO FINISH SCHEDULES  A.  PRIME ALL EXPOSED SURFACES ON WOOD TRIM  B.  PRIME ALL CUTS ON PRE‐PRIMED CARPENTRY

6.5 WOOD EXTERIOR TRIM: WOODTONE REAL TRIM PLUS

6

SOLEA STONE OAK

6.6 WOOD CORNER POSTS: WOODTONE REAL POST, REFER TO DRAWINGS FOR SIZE

6.7 PLASTIC SHEET PANELING:1. GLASS‐FIBER‐REINFORCED PLASTIC PANELING, 0.075" MIN. THICKNESS, SMOOTH SURFACE FINISH, WHITE 

COLOR.2. LOW‐VOC‐EMITTING MATERIALS: PANELING AND ADHESIVES.3. SURFACE‐BURNING CHARACTERISTICS: A. FLAME SPREAD INDEX: 25 OR LESS.B. SMOKE‐DEVELOPED INDEX: 450 OR LESS.

INSTALLATION: COMPLY WITH MANUFACTURER'S RECOMMENDATIONS FOR INSTALLATION ON GYP BOARD.

DIVISION 7 ‐ THERMAL AND MOISTURE PROTECTION

7.1 GENERAL: PROVIDE ANCHORS AND MISCELLANEOUS ACCESSORIES FOR COMPLETE INSTALLATION

7.2 INSTALLATION: COMPLY WITH MANUFACTURER'S INSTALLATION RECOMMENDATIONS

7.3 WATERPROOFING AT EXTERIOR CORRIDORS:1. 60 MIL., SELF‐ADHERED SHEET WATERPROOFING MEMBRANE BY TAMKO, CARLISLE, CETCO OR APPROVED 

SUBSTITUTION2. INSTALL PER MANUFACTURERS RECOMMENDATIONS.

7.4 FLUID APPLIED WATERPROOFING MEMBRANE: SUBSURFACE LOCATIONS.  PLANTER WALLS (IF APPLICABLE),  

CONCRETE STEM WALLS AND SUBSURFACE WALLS IN ELEVATOR PIT.1.  ROLLED OR SPRAYED APPLICATION‐30 MIL ON WALL SURFACES AND 60MIL AT WALL INTERSECTIONS2.  ENSURE ADEQUATE SEALING AND WATERPROOFING OF PIT BELOW GRADE.  PROVIDE EFFECTIVE PREVENTION 

OF STORM WATER AND GROUND WATER INTO ELEVATOR PIT.

7.5 BUILDING INSULATION:1. BATT: ASTM C665, FIBERGLASS, FRICTION FIT SOUND ATTENUATION UNFACED BATT AS FOLLOWS:A. R‐30 IN ROOF TRUSS SPACE, BLOWN; SOLID FILL WHERE NOTED ON PLANS.B. R‐13 IN EXTERIOR WALLS, UNFACED BATTSC. R‐11 IN DWELLING UNIT DEMISING WALLS, EACH SIDE OF AIR SPACE, UNFACED BATTSD. R‐13 IN FLOORS UNDER DWELLING UNITS AND CONDITIONED SPACES WITH NON‐CONDITIONED SPACES 

BELOW, UNFACED BATTSE. 3 1/2" IN FLOORS SEPERATING DWELLING UNITS AND/OR SEPERATING A DWELLING UNIT FROM OTHER 

CONDITIONED SPACES, UNFACED BATTSF. INSTALL FRICTION FITT SOUND ATTENUATION UNFACED BATTS FOR FULL WIDTH, DEPTH AND HEIGHT OF ALL 

INTERIOR STUD WALLS OF RETAIL SPACES AND AMENITY CENTER AND PERIMETER WALLS OF CONDITIONED 

COMMON AREA ROOMSG. PROVIDE ADDITIONAL LAYER OF 6" SOUND ATTENUATION UNFACED BATTS IN FLOOR/CEILING ASSEMBLY 

ABOVE ENTIRE AMENITY CENTER AND RETAIL SPACES.  LAY BATTS ON TOP OF BOTTOM CHORD OF FLOOR 

7.6 BUILDING WRAP (AIR BARRIER):1. MAKE AND MODEL: WEATHERMATE BY STYROFOAM, MOLD BLOCKER BY PRO INSTALLER, BARRICADE BY BERRY 

PLASTICS OR APPROVED SUBSTITUTION.2. COMPLY WITH MFRS INSTALLATION RECOMMENDATIONS INCLUDING BUT NOT LIMITED TO Y‐CUTS AT DOOR 

AND WINDOW OPENINGS, TAPING ALL JOINTS.3. SUBMITTAL: PRODUCT DATA

7

SOLEA STONE OAK

7.7 FIBER CEMENT SIDING AND SOFFIT PANELS1.MANUFACTURERS: JAMES HARDIE BUILDING PRODUCTS, CERTAINTEED, NICHIHA OR APPROVED SUBSTITUTION.

2. FACTORY PRIMED, FIELD PRIME ALL CUTS AND PAINT.3. INSTALL PER MANUFACTURES RECOMMENDATIONS.4. TYPES:A. LAP SIDING: 7 1/4" LAP SIDING WITH 6" EXPOSURE, SMOOTH TEXTUREB. VERTICAL SIDING PANEL: 1/4" THICKNESS, SMOOTH FINISHC. SOFFIT PANEL: 1/4" NON‐VENTED, SMOOTH FINISH

7.8 ASPHALT SHINGLE ROOFING:1.  MANUFACTURER: OWENS CORNING DURATION SHINGLE OR APPROVED SUBSTITUTION.2.  INSTALL PER MANUFACTURERS INSTALLATION RECOMMENDATIONS AND AS REQUIRED TO PROVIDE FULL 

WARRANTY.3.  MINIMUM 30 YEAR WARRANTY4.  UNDERLAYMENT.  2:12‐4:12 PITCH ‐ (2) LAYERS OF ROOFER'S SELECT OR (1) LAYER NO. 30 ASTM D 4869 

UNDERLAYMENT. 4:12 AND GREATER ‐ (1) LAYER OF ROOFERS' SELECT PERPENDICULAR TO SLOPE, LAPPED.5.  VALLEY AND EAVE PROTECTION: PROVIDE VALLEY AND EAVE PROTECTION ON ALL ROOF SURFACES REQUIRED 

FOR WARRANTY.6.  PROVIDE UNDERLAYMENT, FLASHING, FASTENERS, WATER PROTECTION AT EAVES AND OTHER ROOF 

ACCESSORIES IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS.  FORM FLASHING PROFILES AND 

LOCATE FLASHING AT ALL LOCATIONS REQUIRED FOR WATER TIGHTNESS IN BUILDING ENVELOPE AND AS 

INDICATED ON DRAWINGS7.  PAINT ALL EXPOSED ROOF ACCESSORIES8.  FORM FLASHING PROFILES AND LOCATE FLASHING AT ALL LOCATIONS REQUIRED FOR WATER TIGHTNESS IN 

BUILDING ENVELOPE AND AS INDICATED ON DRAWINGS.9.  COLOR: REFERENCE CONSTRUCTION DRAWINGS10. DO NOT PERMIT TRAFFIC OVER FINISHED ROOF SURFACE.11. PROVIDE CONTINUOUS SELF‐ADHERING, SELF‐SEALING, COLD‐APPLIED RUBBERIZED ASPHALT MEMBRANE 

ROOFING UNDERLAYMENT WITH CROSS‐LAMINATED POLYETHYLENE FILM COATING, LOCATED AS INDICATED ON 

DRAWINGS.12. EXPANSION JOINT FLASHING BY ROOFING MANUFACTURER.

7.9 LOW‐SLOPE TPO ROOFING:1.  CONFORM TO APPLICABLE ASTM, FM AND UL STANDARDS.2.  MAKE AND MODEL: ULTRA PLY TPO BY FIRESTONE, EVERGUARD TPO BY GAF, SURE‐WELD TPO BY CARLISLE OR 

APPROVED SUBSTITUTION.3. INSTALLER SHALL BE CERTIFIED BY OR OTHERWISE ACCEPTABLE TO ROOFING MANUFACTURER4. HORIZONTAL APPLICATION SYSTEM DESCRIPTION:A.  MECHANICALLY FASTENED 60 MIL THERMOPLASTIC POLYOLEFIN (TPO) MEMBRANEB.  1/4" DENS‐DECK PRIME COVER BOARD WITH TAPED / SEALED JOINTSC.  PREFORMED CRICKETS OF TAPERED POLYISOCYANURATE RIGID INSULATION, MINIMUM 1/2" THICKNESS

D. ROOF DECKING AS SPECIFIED ON STRUCTURAL DRAWINGS.5. VERTICAL APPLICATION SYSTEM DESCRIPTION:A.  MECHANICALLY FASTENED 45 MIL THERMOPLASTIC POLYOLEFIN (TPO) MEMBRANEB.  1/2" DENS‐DECK PRIME SHEATHING WITH TAPED / SEALED JOINTS

6. COORDINATION WITH TRADES AFFECTING ROOFING INSTALLATION: PROVIDE REQUIRED DETAILS TO TRADE 

SUB‐CONTACTORS AFFECTING ROOF SYSTEM INSTALLATION , INCLUDING BUT NOT LIMITED TO WOOD FRAMING 

AND FLASHING7.  BASE FLASHING BY ROOFING MANUFACTURER8.  COUNTERFLASHING BY ROOFING MANUFACTURER9.  EXPANSION JOINT ROOF FLASHING BY ROOFING MANUFACTURER10.  CAP FLASHING BY ROOFING MANUFACTURER, SUBJECT TO CONFORMANCE WITH PROJECT REQUIREMENTS

8

SOLEA STONE OAK

11.  ACCESSORIES:A.  METAL SCUPPERS, AND OVER FLOW SCUPPERS AT ROOF. REFER TO CONSTRUCTION DRAWINGSB.  PREFORMED FLASHING BOOTS FOR PENETRATIONS 1" THRU 8" OUTSIDE DIAMETER.C.  FLASHING POCKET WHERE PREFORMED FLASHING BOOTS CANNOT BE USED.D.  WIND UPLIFT: CONFORM TO REQUIREMENTS OF FM 1‐60E.  COLOR: TO BE DETERMINEDF.  NEATLY FIT INSULATION AND DECK MATERIALS TO ALL PENETRATIONS, PROJECTIONS AND NAILERS WITH NO 

GAPS GREATER THAN 1/4"; JOINTS AND GAPS SHALL BE SEALEDG.  PROVIDE WALK PAD TO EQUIPMENT AND AROUND EQUIPMENT PROVIDED BY ROOFING MANUFACTURER, 

OR APPROVED SUBSTITUTION.  REFER TO CONSTRUCTION DRAWINGS.12.  ROOFING INSTALLER GUARANTEE: 2 YEAR SPECIAL WORKMANSHIP13.  SUBMITTALS: INSTALLER CERTIFICATION, PRODUCT DATA, INSTALLATION INSTRUCTIONS, SHOP DRAWINGS 

OF ANCHORAGE PATTERNS, TAPERED INSULATION, PENETRATION DETAILS.14.  INSTALLER CERTIFICATION SHALL BE SUBMITTED ON MFR LETTERHEAD AND SIGNED BY ROOFING MFR 

AUTHORIZED REPRESENTATIVE.

7.1 MEMBRANE FLASHING:1. SELF‐ADHERING FLEXIBLE MEMBRANE FLASHINGA. SERIES 400 MEMBRANE FLASHING; POLYGUARD PRODUCTS, INC. OR APPROVED SUBSTITUTION.

7.11 ROOF ACCESSORIES:1.  STATIC ROOF VENTS:A. MAKE AND MODEL: AIRHAWK RGV‐55 SLANT GALVANIZED ROOF VENT BY AIR VENT, SBV 603 GV GALVANIZED 

SLANT BACK VENT BY VENTAMATIC OR APPROVED SUBSTITUTIONB. FINISH: PRIME AND PAINT 1 SHADE DARKER THAN ROOF SHINGLE COLOR.

2. RIDGE VENTS:A. MAKE AND MODEL:  SHINGLEVENT II‐7A SHINGLES OVER RIDGE VENT BY AIR VENT, OR APPROVED 

SUBSTITUTE3. STRIP VENTS:A. MAKE AND MODEL: COR‐A‐VENT S‐400 STRIP VENT OR APPROVED SUBSITUTE

4.  CONTINUOUS SOFFIT VENTS:A. MAKE AND MODEL: SV202 CONTINUOUS SOFFIT VENT BY AIR VENT, EZVENT EZV148 CONTINUOUS SOFFIT 

VENT BY TAMLYN OR APPROVED SUBSTITUTIONB. FINISH: PRIME AND PAINT TO MATCH SOFFIT COLOR.

5.  ROOF HATCHES AND ROOF ACCESS LADDERS:A. MAKE AND MODEL: PRECISION LADDERS, LLC, SUPER SIMPLEX DISAPPEARING ALUMINUM STAIRWAY WITH 

30" X 54" ALUMINUM ROOF HATCH

7.12 METAL FLASHING, GUTTERS, DOWNSPOUTS AND FASCIA:PERFORM WORK IN ACCORDANCE WITH SMACNA AND NRCA STANDARDS1. EXPOSED TO PUBLIC VIEW FLASHING AND FASCIA: ALUMINUM, PREFINISHED KYNAR COATING, COLOR AS 

SELECTED BY ARCHITECT2. NOT EXPOSED TO PUBLIC VIEW FLASHING: CLEAR ANODIZED ALUMINUM3. COORDINATE INSTALLATION OF SUBSTRATES AND FABRICATE PROFILES AND SIZES TO FIT CONDITION AND AS 

INDICATED TO REMAIN WATERTIGHT.4. INCLUDE PROVISIONS FOR EXPANSION.5. PROVIDE SEPARATION MEASURES TO PREVENT ELECTROLYSIS.6. FABRICATE CLEATS OF SAME MATERIAL AS SHEET, MIN 2 INCH WIDE, INTERLOCKED WITH SHEET.7. METAL DOWNSPOUTS AND GUTTERS: GAUGES PER SMACNA RECOMMENDED GAUGES  PROVIDE 5" GUTTERS 

AT ALL SHED ROOF CONDITIONS.8. EXTEND COUNTERFLASHING UP VERTICAL SURFACES, 6 INCH MIN.9. SEAL JOINTS WATERTIGHT.

9

SOLEA STONE OAK

10.  GUTTERS AND DOWNSPOUTS:A. ALL ALUMINUM SHALL BE MADE OF 3025, 3105, OR EQUAL ALUMINUM ALLOY & H0 ‐ H34 HARNES.B. COIL THICKNESS SHALL BE EQUAL OR BETTER THAN:1) .019" NOMINAL ‐ SIDING, SOFFIT & ACCESSORIES W/ +/‐ .002"2) .019" NOMINAL ‐ SIDING & FASCIA W +/‐ .002"3) .027" NOMINAL ‐ GUTTER COIL W +/‐ .002"C. PROVIDE 5" GUTTERS AT ALL SHED ROOF CONDITIONS

D. PROVIDE FULL RANGE OF STANDARD COLORSE. COATING: MORTON POLYCREAM 780, NO GREATER THAN NO. 8 CHALK RATING WITHIN 5 YEARSF. PROVIDE HIDDEN HANGERSG. ADDITIONAL DESIGN/FASTENING REQUIREMENTS FOR AREAS WITH HEAVY RAINFALL AND WINDSTORM 

PROTECTION AREAS.

7.13 JOINT SEALANTS:1.  OBTAIN EACH SEALANT TYPE THROUGH ONE SOURCE FROM A SINGLE MANUFACTURER.2.  INSTALL SEALANTS IN COMPLIANCE WITH MANUFACTURER'S RECOMMENDATIONS.3.  PROVIDE BACKINGS, TAPES AND RELATED MATERIALS THAT ARE COMPATIBLE WITH JOINT SUBSTRATES.4.  COLORS: AS SELECTED BY ARCHITECT FROM  MANUFACTURERS FULL RANGE OF AVAILABLE COLORS.5.  ELASTOMERIC SEALANTS: COMPLY WITH ASTM C 9206.  JOINT BACKING: COMPLY WITH ASTM C 13307.  BOND BREAKER TAPE, PRIMERS, CLEANERS: PER MANUFACTURERS RECOMMENDATIONS.8.  INSTALLATION STANDARD: ASTM C 11939.  SUBMITTALS: PRODUCT DATA, SAMPLES FOR INITIAL SELECTION

7.14 SEALANT LOCATION: PROVIDE SEALANTS WHERE INDICATED IN DRAWINGS AND AS FOLLOWS:1. CONTROL AND EXPANSION JOINTS IN CAST IN PLACE CONCRETE2. CONTROL AND EXPANSION JOINTS IN MASONRY3. JOINTS BETWEEN CONCRETE AND MASONRY4. PERIMETER JOINTS OF EXTERIOR OPENINGS INCLUDING FLOORS, WALLS AND ROOF5. PERIMETER JOINTS OF INTERIOR DOORS, WINDOWS, ELEVATOR HOISTWAY DOORS6. JOINTS BETWEEN PLUMBING FIXTURES AND ADJOINING WALLS, FLOORS AND COUNTERS7. OTHER JOINTS AS INDICATED IN DRAWINGS

7.15 SEALANT INSTALLATION:1. MAINTAIN WATERTIGHT AND AIRTIGHT CONTINUOUS JOINT SEALS WITHOUT STAINING OR DETERIORATING 

JOINT SUBSTRATES.2. TOOL NONSAG SEALANTS IMMEDIATELY AFTER APPLICATION AND BEFORE SKINNING OR CURING BEGINS TO 

ENSURE FIRM, FULL CONTACT.3. JOINT SHAPE: CONCAVE CONFIGURATION PER FIGURE 5A, ASTM C 1193, U.N.O.

7.16 SEALANT SCHEDULE:SEALANT 1: MULTICOMPONENT NONSAG URETHANE SEALANTTYPE M (MULTICOMPONENT), GRADE NS (NONSAG), CLASS 25,  EXPOSURE T (TRAFFIC) AND NT (NON‐TRAFFIC)

LOCATION: CONCRETE FLATWORK AND TRAFFIC USE HORIZONTAL AREAS.

10

SOLEA STONE OAK

SEALANT 2: SINGLE‐COMPONENT NONSAG URETHANE SEALANTTYPE S (SINGLE COMPONENT), GRADE NS (NONSAG), CLASS 25,  EXPOSURE T (TRAFFIC) AND NT (NON‐TRAFFIC)

LOCATIONS AS FOLLOW:A. UNDER THRESHOLDSB. INTERSECTION OF DISSIMILAR MATERIALS THAT COULD ALLOW WATER OR AIR FILTRATIONC. PERIMETER JOINTS OF DOOR FRAMES, WINDOW FRAMES AND OTHER FRAMED OPENINGS IN WALLS, 

INTERIOR AND EXTERIOR FACES.D. OPEN JOINTS AT WALL PENETRATIONSE. OPEN JOINTS THROUGH NON‐RATED WALLS INTENDED TO BE SEALED AIR TIGHT.F. OPEN JOINTS THROUGH NON‐RATED CEILINGS INTENDED TO BE SEALED AIR TIGHT.G. OPEN JOINTS THROUGH NON‐RATED FLOORS INTENDED TO BE SEALED AIR TIGHT.H. OPEN JOINTS THROUGH DISSIMILAR MATERIALS INTENDED TO BE AIR TIGHT.I. JOINTS WHERE EDGE TRIM OF DRYWALL AND METAL SIDING ABUT IRREGULAR SURFACES, INCLUDING 

MASONRY, AND LEAVES AN OPEN JOINT.J. WITHIN AND PERIMETER OF MASONRY SYSTEM.K. INTERSECTION OF DISSIMILAR MATERIALS.

SEALANT 3: ACID‐CURING SILICONE SEALANTTYPE S (SINGLE COMPONENT), GRADE NS (NONSAG), CLASS 25,  EXPOSURE NT (NON‐TRAFFIC)LOCATIONS: TOILET AND BATH FIXTURES, ACCESSORIES AND CERAMIC TILE

SEALANT 4: LOW‐MODULUS NEUTRAL CURING SILICONE SEALANTTYPE S (SINGLE COMPONENT), GRADE NS (NONSAG), CLASS 25,  EXPOSURE NT (NON‐TRAFFIC)LOCATION: ROOF SYSTEM METAL TO METAL JOINTS.

SEALANT 5: LATEX SEALANTASTM C 834, TYPE P, GRADE NF MILDEW RESISTANTLOCATION: INTERIOR JOINTS AND PROTECTED EXTERIOR JOINTS WITH LESS THAN 5% MOVEMENT.

SEALANT 6: ELASTOMERIC FIRE STOP SEALANTLOCATIONS: PENETRATIONS THRU FIRE RATED ASSEMBLY OUTSIDE SURFACES INCLUDING CABLES, CONDUIT, 

PIPES, FRAMING TERMINATIONS, FRAMING PENETRATIONS AND SIMILAR PENETRATIONS AT WALLS, FLOORS AND 

CEILINGS.

SEALANT 7: ACOUSTICAL SEALANTLOCATION: ALL PENETRATIONS THROUGH EXTERIOR SHEATHING IN ACOUSTICAL WALLS AND ALL INTERIOR 

CONCEALED JOINTS IN NON‐ACOUSTICAL WALLS.

SEALANT 8: SINGLE COMPONENT MILDEW‐RESISTANT SILICONE SEALANTTYPE S (SINGLE COMPONENT), GRADE NS (NONSAG), CLASS 25,  EXPOSURE NT (NON‐TRAFFIC) FORMULATED 

WITH FUNGICIDELOCATION: HIGH HUMIDITY AND HIGH TEMPERATURE EXTREMES IN INTERIOR JOINTS WITH NON‐POROUS 

SURFACES.

DIVISION 8 ‐ DOORS AND WINDOWS

8.1 GENERAL REQUIREMENTS:1.  REFER TO DOOR, WINDOW AND HARDWARE SCHEDULES FOR ACCEPTABLE CODE COMPLIANCE AND MINIMUM 

PERFORMANCE STANDARDS.2.  SUBMIT THREE (3) COPIES U.N.O., OF HARDWARE SCHEDULE, WITH IN 15 CALENDAR DAYS OF AGREEMENT 

EXECUTION FOR NRP AND ARCHITECT REVIEW AND APPROVAL.3.  PRODUCT DATA: ALL HARDWARE4.  SHOP DRAWINGS OF FIELD ASSEMBLED ITEMS: DESCRIBE CONSTRUCTION, ASSEMBLY AND INSTALLATION 

REQUIREMENTS.

11

SOLEA STONE OAK

5. SAMPLES: SUBMIT FULL RANGE OF STANDARD COLORS AND FINISHES AVAILABLE INCLUDING COLOR AS 

SPECIFIED IN CONSTRUCTION DRAWINGS.6.  PROVIDE ANCHORS AND MISCELLANEOUS ACCESSORIES FOR COMPLETE INSTALLATION7.  ALL THRESHOLDS TO BE ALUMINUM ALLOY 606315 OR T6 WITH MILL FINISH, THICKNESS TO BE .085 IN MIN. 

THICK WHERE UNIFORM AND .125 THICK MIN. WHERE FLUTED.  SCREWS TO BE STEEL.  REFERENCE HARDWARE 

SCHEDULE AND CONSTRUCTION DRAWINGS FOR PROFILES AND MANUFACTURERS.8.  COMPLY WITH MANUFACTURER'S INSTALLATION RECOMMENDATIONS9. WARRANTY:  A. CLOSERS: 10 YEAR WRITTEN WARRANTY  B. EXIT DEVICES: 3 YEAR WRITTEN WARRANTY  C. GRADE 1 LOCKSETS: 7 YEAR WRITTEN WARRANTY  D. EXIT DEVICES: 3 YEAR WRITTEN WARRANTY

8.2 DOORS:1.  DWELLING UNIT ENTRY DOORS: DOORS AND FRAME TO MEET MINIMUM RATINGS PER DOOR SCHEDULE ON 

CONSTRUCTION DRAWINGS A.  COMPLY W/ ANSI/SDI 100, FIRE‐RATED ASSEMBLIES NFPA 80 LISTED BY UL OR OTHER TESTING AGENCY.

B. DOOR: 1‐3/4" THICK, INSULATED, TWO (2) PANEL, 24 GA STEEL WITH WOOD EDGE ‐ PAINTEDC.  FRAME: KERFED, ADJUSTABLE THROAT STEEL DOOR FRAME WITH WEATHERSTRIPPING OR APPROVED 

SUBSTITUTIOND.  LABEL PER NFPA 80 STANDARD IF REQUIRED BY CODE.E.  HARDWARE: REFER TO CONSTRUCTION DRAWINGS FOR DOOR HARDWARE SCHEDULESF. REFER TO ACOUSTICAL COMPLIANCE SCHEDULE AND PLAN FOR DOORS WHICH REQUIRE ACOUSTICAL SEALS 

(IF APPLICABLE)

2. DWELLING UNIT INTERIOR DOORS: CRAFTMASTER INTERIOR PREHUNG DOOR SYSTEM REFERENCE DOOR 

SCHEDULE ON CONSTRUCTION DRAWINGS.A.  DOOR: 1‐3/8", TWO (2) PANEL, HC WOOD, FLUSH FINISH.B.  FRAME: WOOD, STYLE TO BE SELECTED BY ARCHITECT FROM MFR STDC.  HARDWARE: REFER TO CONSTRUCTION DRAWINGS FOR DOOR HARDWARE SCHEDULES

4.  COMMON AREA STEEL DOORS: DOORS AND FRAME TO MEET MINIMUM RATINGS PER DOOR SCHEDULE ON 

CONSTRUCTION DRAWINGS A. COMPLY W/ ANSI/SDI 100, FIRE‐RATED ASSEMBLIES NFPA 80 LISTED BY UL OR OTHER TESTING AGENCY 

INCLUDING POSITIVE PRESSURE TESTING ACCEPTABLE TO AUTHORITIES HAVING JURISDICTION IF APPLICABLE.

B.  DOOR: 1 3/4" FLUSH, INSULATED, 24 GA. STEEL DOOR WITH STEEL EDGE ‐ PAINTEDC.  FRAME: ADJUSTABLE THROAT STEEL DOOR FRAME OR APPROVED SUBSTITUTION.  PROVIDE KERFED FRAME 

WITH WEATHERSTRIPPING WHERE DOOR ENCLOSES TEMPERATURE CONTROLLED SPACED.  LABEL PER NFPA 80 STANDARD IF REQUIRED BY CODE.E.  HARDWARE: REFER TO CONSTRUCTION DRAWINGS FOR DOOR AND HARDWARE SCHEDULESF.  GLAZING: REFER TO DOOR SCHEDULE. 

5.  COMMON AREA HOLLOW METAL DOORS:  DOORS AND FRAME TO MEET MINIMUM RATINGS PER DOOR 

SCHEDULE ON CONSTRUCTION DRAWINGS A. COMPLY W/ ANSI/SDI 100, FIRE‐RATED ASSEMBLIES NFPA 80 LISTED BY UL OR OTHER TESTING AGENCY 

INCLUDING POSITIVE PRESSURE TESTING ACCEPTABLE TO AUTHORITIES HAVING JURISDICTION.  IF APPLICABLE.

B.  DOOR: 1 3/4" FLUSH, INSULATED, 16 GA. STEEL DOOR WITH STEEL EDGE ‐ PAINTEDC.  FRAME: 2" PROFILE, STANDARD HOLLOW METAL FRAME, REFER TO DOOR SCHEDULE FOR FIRE RATING 

REQUIREMENTSD.  LABEL PER NFPA 80 STANDARD IF REQUIRED BY CODE.E.  HARDWARE: REFER TO CONSTRUCTION DRAWINGS FOR DOOR AND HARDWARE SCHEDULESF.  GLAZING: REFER TO DOOR SCHEDULE. 

12

SOLEA STONE OAK

6.  COMMON AREA WOOD DOORS: PROVIDE DOOR PER DOOR SCHEDULE AND HARDWARE SCHEDULES.A. COMPLY W/ ANSI/SDI 100, FIRE‐RATED ASSEMBLIES NFPA 80 LISTED BY UL OR OTHER TESTING AGENCY 

INCLUDING POSITIVE PRESSURE TESTING ACCEPTABLE TO AUTHORITIES HAVING JURISDICTION.  IF APPLICABLE.

B.  DOOR: 1 3/4" FLUSH, SOLID CORE WOOD DOOR ‐ STAINED AND SEALED FINISHC.  FRAME: PRE‐HUNG SOLID WOOD FRAMESD.  HARDWARE: REFER TO CONSTRUCTION DRAWINGS FOR DOOR AND HARDWARE SCHEDULESE.  GLAZING: REFER TO DOOR SCHEDULE. 

7. OVERHEAD DOORS:1. MAINTENANCE & GARAGE OVERHEAD DOOR: OVERHEAD INSULATED PANEL GARAGE DOOR WITH AUTOMATIC 

OPENER BY OVERHEAD GARAGE DOOR COMPANY, SIZE PER DOOR SCHEDULE.A. HARDWARE: PROVIDE HARDWARE BY MANUFACTURER. INCLUDE LOCK, SPRING‐LOADED DEAD BOLT, 

OPERATING HANDLE, CAM PLATE AND ADJUSTABLE LOCKING BAR TO ENGAGE THRU TRACKS.B. PROVIDE WEATHER SEALS TO HEAD, JAMB AND SILL, MANUFACTUER STD. FOR INSULATED DOORS.

8.3 WINDOWS:1. VINYL SINGLE HUNG WINDOWS: REFER TO WINDOW SCHEDULES FOR LOCATIONS AND PERFORMANCEA.  MAKE AND MODEL: BUILDER SERIES PROVIDED BY PLYGEM WINDOWS OR APPROVED SUBSTITUTIONB.  STYLE: DOUBLE PANE, SINGLE HUNG, COLOR TO BE SELECTED FROM MANUFACTURERS STANDARD COLOR

C.  STC: IF APPLICABLE, REFER TO ACOUSTICAL COMPLIANCE PLAN AND SCHEDULE FOR REQUIREMENTSD.  U FACTOR AND SHGC FACTOR: REFERENCE WINDOW SCHEDULE FOR PERFORMANCE.E.  GLASS: CLEAR LOW‐E HIGH PERFORMANCE PER WINDOW SCHEDULE, INSULATED, NO MUTTONS.F.  PROVIDE SAFETY GLASS WHERE REQUIRED BY CODE.

2.  VINYL PICTURE WINDOWS: REFER TO WINDOW SCHEDULES FOR LOCATIONS AND PERFORMANCEA.  MAKE AND MODEL: SILENT GUARD SERIES 8200 PROVIDED BY CHAMPION WINDOWS OR ATRIUM WINDOWS 

OR APPROVED SUBSTITUTIONB.  STYLE: DOUBLE PANE, PICTURE, COLOR TO BE SELECTED FROM MANUFACTURERS STANDARD COLORC.  STC: IF APPLICABLE, REFER TO ACOUSTICAL COMPLIANCE PLAN AND SCHEDULE FOR REQUIREMENTSD.  U FACTOR AND SHGC FACTOR: REFERENCE WINDOW SCHEDULE FOR PERFORMANCE.E.  GLASS: CLEAR LOW‐E HIGH PERFORMANCE PER WINDOW SCHEDULE, INSULATED, NO MUTTONS.F.  PROVIDE SAFETY GLASS WHERE REQUIRED BY CODE.

3.  ALUMINUM STOREFRONT ASSEMBLIES: YES 45 XT, LOW‐E, BY YKK OR APPROVED EQUAL, SUBJECT TO THE 

FOLLOWING:1. GLASS: 1" INSULATED, LOW‐E, CLEAR.2. STC: 33 MINIMUM FOR ASSEMBLY.3. MAX "U" VALUE = .363. DOOR: 3‐1/2" MEDIUM STYLE, MEGOTHERM 35XT ENTRANCE, FULL GLASS WITH 3/8" LAMINATED CLEAR 

GLASS.4. GLASS: PROVIDE TEMPERED GLASS AS REQUIRED BY CODE AND AS NOTED.5. EXTERIOR ASSEMBLIES ACOUSTICAL PERFORMANCE: STC 32 MINIMUM6. KAWNEER, VISTAWALL ACCEPTABLE.7. ISOLATE INCOMPATIBLE METALS AS REQUIRED.8. INTERIOR BORROW LIGHT GLASS: SINGLE PANE CLEAR, THICKNESS AS REQUIRED FOR SIZE OF OPENING, 1/4" 

THICK MIN., PROVIDE SAFETY GLASS AS NOTED9. COLOR/FINISH: SUBMIT SAMPLES FROM MANUFACTURER'S STANDARD FINISHES.

13

SOLEA STONE OAK

8.4 GLASS:1.  SAMPLES: PRODUCT DATA, GLAZING SCHEDULE, PRODUCT CERTIFICATES.2.  SOURCE LIMITATIONS: OBTAIN FROM A SINGLE MFR FOR EACH GLASS TYPE.3.  MAINTAIN THE FOLLOWING STANDARDS IF APPLICABLE FOR THIS PROJECT:  A.  ANNEALED FLOAT GLASS: ASTM C 1036, TYPE 1 (TRANSPARENT), QUALITY Q3  B. HEAT TREATED FLOAT GLASS: ASTM C 1048, TYPE 1 (TRANSPARENT), QUALITY Q3  C.  LAMINATED GLASS TO COMPLY WITH ASTM C 1172  D.  INSULATED GLASS TO COMPLY WITH ASTM E 774 4. SAFETY GLASS: SUPERLITE 1 BY NGP OR APPROVED SUBSTITUTION.  A. LOCATIONS: AS REQUIRED BY 2012 IBC SECTION 2406  B. OBTAIN SAFETY GLAZING PRODUCTS PERMANENTLY MARKED WITH UL CLASSIFICATION.5.  WIRE GLASS: SUPERLITE 1‐W BY NGP OR APPROVED SUBSTITUTION.  A. LOCATIONS: AS REQUIRED PER APPLICABLE CODES  B. OBTAIN WIRE GLAZING PRODUCTS PERMANENTLY MARKED WITH UL CLASSIFICATION.

DIVISION 9 ‐ FINISHES

9.1 REFER TO FINISH RELATED SCHEDULES ON CONSTRUCTION DOCUMENTS.

9.2 SUBSTRUCTURE: REFER TO CONSTRUCTION DRAWINGS.

9.3 TYPICAL ASSEMBLIES ‐ EXTERIOR SHELL:1. TYPICAL EXTERIOR WALL ‐ STUCCOA.  STUCCO FINISH: 1 COAT STUCCO BY MAGNA WALL, EZWALL PREMIX, QUICKRETE OR APPROVED 

SUBSTITUTION1.  CONTROL JOINTS: REFER TO EXTERIOR ELEVATIONS AND PER MANUFACTURERS RECOMMENDATIONS.

2.  PREPARE WALLS, JOINTS AND TRANSITIONS PLUMB AND SQUARE.3. FINISH: SAND FINISH AND PAINT 2‐COATS ELASTOMERIC PAINT. SEE ARCHITECTURAL DRAWINGS FOR 

COLOR INFORMATIONB.  METAL LATH/SECONDARY BUILDING WRAP: PAPER BACKED METAL LATH OR METAL LATH OVER #15 FELT 

PAPERC.  BUILDING WRAP: PER 7.6D.  EXTERIOR SHEATHING:  AS SPECIFIED IN STRUCTURAL DRAWINGS OR AS REQUIRED WITH UL ASSEMBLY.  IF 

SHEATHING IS NOT INDICATED PROVIDE 7/16" OSB OR APPROVED SUBSTITUTION.  PROVIDE SUBSTITUTION 

PRIOR TO SCHEDULED CONSTRUCTION.E.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.F.  WALL INSULATION: PER 7.5G.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.  FINISH PER 9.6

2. TYPICAL EXTERIOR WALL ‐ LAP SIDINGA.  SIDING: PER 7.8  1. FINISH: (1) COAT ACRYLIC WALL PAINTB. BUILDING WRAP: PER 7.6C.  EXTERIOR SHEATHING:  AS SPECIFIED IN STRUCTURAL DRAWINGS OR AS REQUIRED WITH UL ASSEMBLY.  IN 

SHEATHING IS NOT INDICATED PROVIDE 7/16" OSB OR APPROVED SUBSTITUTION.  PROVIDE SUBSTITUTION 

PRIOR TO SCHEDULED CONSTRUCTION.D.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.E.  WALL INSULATION: PER 7.5F. RESILIENT CHANNELS: 1/2" RESILIENT CHANNELS PER UL ASSEMBLY REQUIREMENTSG.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD.  FINISH PER 9.6

14

SOLEA STONE OAK

3. TYPICAL CORRIDOR WALL ‐ GYPSUM WALL BOARDA.  EXTERIOR FACE: 5/8" EXTERIOR GRADE TYPE X GYPSUM WALL BOARD.  FINISH PER 9.6  1. FINISH: (1) COAT ACRYLIC WALL PAINTB. BUILDING WRAP: PER 7.6C.  EXTERIOR SHEATHING (IF REQUIRED):  AS SPECIFIED IN STRUCTURAL DRAWINGS OR AS REQUIRED WITH UL 

ASSEMBLY.  IN SHEATHING IS NOT INDICATED PROVIDE 7/16" OSB OR APPROVED SUBSTITUTION.  PROVIDE 

SUBSTITUTION PRIOR TO SCHEDULED CONSTRUCTION.D.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.E.  WALL INSULATION: PER 7.5F. RESILIENT CHANNELS: 1/2" RESILIENT CHANNELS PER UL ASSEMBLY REQUIREMENTSG.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD.  FINISH PER 9.6

9.4 TYPICAL ASSEMBLIES ‐ ROOF1. TYPICAL SHINGLE ROOFA.  ASPHALT SHINGLES: PER 7.9B. UNDERLAYMENT: PER 7.9C. ROOF DECKING WITH RADIANT BARRIER: AS SPECIFIED IN STRUCTURAL DRAWINGSD. ROOF TRUSS: AS SPECIFIED IN STRUCTURAL DRAWINGSE. INSULATION: PER 7.5.F. RESILIENT CHANNELS: 1/2" RESILIENT CHANNELS PER UL ASSEMBLY REQUIREMENTSG.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD.  FINISH PER 9.5 OR 9.6

2. TYPICAL LOW SLOPE ROOF   A.  ROOFING MEMBRANE: PER 7.9   B. COVER BOARD: PER 7.9   C. TAPERED INSULATION: PER 7.9   D. ROOF DECKING: AS SPECIFIED IN STRUCTURAL DRAWINGS   E. ROOF TRUSS: LOW SLOPE ROOF TRUSS AS SPECIFIED IN STRUCTURAL DRAWINGS   F. INSULATION: PER 7.5, INSTALL AT UNDERSIDE OF ROOF DECKING.   G. RESILIENT CHANNELS: 1/2" RESILIENT CHANNELS AT LOCATIONS WHERE FIRE RATINGS ARE REQUIRED ONLY, 

INSTALL PER UL ASSEMBLY REQUIREMENTS   H.  INTERIOR FACE: 5/8" TYPE "C" GYPSUM BOARD NON‐RATED OR 5/8" TYPE C GYPSUM BOARD AT LOCATIONS 

WHERE FIRE RATINGS ARE REQUIRED.  FINISH PER 9.5 OR 9.6

3. TYPICAL BUILDING SOFFITSA.  SOFFIT PANEL: PER 7.8B.  VENTING: EZV148 CONTINUOUS SOFFIT VENT BY TAMLYN OR APPROVED SUBSTITUTIONC.  TRIM AND FASCIA: REFER TO CONSTRUCTION DRAWINGSD.  PAINT: PER CONSTRUCTION DRAWINGS

4. TYPICAL BUILDING CEILINGS AT EXTERIORA. SOFFIT PANEL: PER 7.8B.  PANEL JOINTS:  HM148 SOFFIT H‐MOLD BY TAMLYN OR APPROVED EQUAL. INSTALL AT ALL PANEL JOINTS.

C.  TRIM: REFER TO CONSTRUCTION DRAWINGSD.  PAINT: PER CONSTRUCTION DRAWINGS

15

SOLEA STONE OAK

9.5 TYPICAL ASSEMBLIES ‐ FLOOR DECKS1. EXTERIOR CORRIDORS AND COMMON AREAS:A.  TOPPING: PER 3.7B.  UNDERLAYMENT:  PER 7.3C.  FLOOR DECKING: REFER TO STRUCTURAL DRAWINGS.D.  FRAMING: OPEN WEB WOOD FLOOR TRUSS, REFER TO STRUCTURAL DRAWINGS.E.  1/2" RESILIENT CHANNELS, SEE UL REQUIREMENTS IN CONSTRUCTION DRAWINGSF.  INTERIOR FACE: 5/8" TYPE C GYPSUM WALL BOARD OR 5/8" TYPE C MOISTURE RESISTANT GYPSUM WALL 

BOARD AT LOCATIONS EXPOSED TO EXTERIOR ELEMENTS. G. FINISH: 1‐COAT PRIME AND PUNCH, APPLY MEDIUM SPRAYED KNOCK‐DOWN TEXTURE FINISH, SECOND COAT 

TO BE SAME AS WALL PAINT.

2. DWELLING UNITS:A.  TOPPING: GYPCRETE PER 3.8B.  UNDERLAYMENT:  PER 3.6 AS APPLICABLEC.  FLOOR DECKING: REFER TO STRUCTURAL DRAWINGS.D.  FRAMING: OPEN WEB WOOD FLOOR TRUSS, REFER TO STRUCTURAL DRAWINGS.E. INSULATION: PER 7.5, INSTALL AT UNDERSIDE OF FLOOR DECKINGF.  1/2" RESILIENT CHANNELS, SEE UL REQUIREMENTS IN CONSTRUCTION DRAWINGSG.  INTERIOR FACE: 5/8" TYPE C GYPSUM WALL BOARD .  FINISH PER 9.6

9.6 INTERIOR PARTITIONS1. TYPICAL INTERIOR UNIT WALLA.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.B.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.C.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.D. TYPICAL FINISH:1. KITCHENS AND BATHROOMS: 1‐COAT PRIME WALL AND PUNCH, APPLY MEDIUM ORANGE PEEL FINISH 

TEXTURE, 2ND COAT SEMI‐GLOSS LATEX WALL PAINT2. AREAS OTHER THAN KITCHENS AND BATHROOMS: 1‐COAT PRIME WALL AND PUNCH, APPLY MEDIUM 

ORANGE PEEL FINISH TEXTURE, 2ND COAT EGG‐SHELL LATEX WALL PAINT3. INTERIOR WOODWORK AND DOORS: 1‐COAT PRIMER, 2ND COAT SEMI‐GLOSS LATEX ENAMEL4. CEILINGS: 1‐COAT PRIME AND PUNCH, APPLY MEDIUM TEXTURE, 2ND COAT EGG‐SHELL LATEX WALL PAINT.

2. TYPICAL INTERIOR AMENITY CENTER WALLA.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.B.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.C.  WALL INSULATION: PER 7.5D.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.E.  TYPICAL FINISH: 1‐COAT PRIME WALL AND PUNCH, APPLY MONTERREY KNOCKDOWN FINISH TEXTURE, 2ND 

COAT EGG‐SHELL LATEX WALL PAINT

3. TYPICAL INTERIOR WALLS IN COMMON AREAS.A.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.B.  FRAMING: WOOD STUDS AS SPECIFIED IN STRUCTURAL DRAWINGS.C.  WALL INSULATION: PER 7.5D.  INTERIOR FACE: 5/8" TYPE X GYPSUM WALL BOARD OR 5/8" GYPSUM WALL BOARD NON‐RATED ONLY AT 

LOCATIONS WHERE FIRE RATINGS ARE NOT REQUIRED.E.  TYPICAL FINISH: 1‐COAT PRIME WALL AND PUNCH, APPLY MEDIUM ORANGE PEEL FINISH TEXTURE, 2ND 

COAT EGG‐SHELL LATEX WALL PAINT

16

SOLEA STONE OAK

9.7 BATHTUB AND SHOWER TILE:1. STYLE: 12"X12" CERAMIC WALL TILE WITH STANDARD BULLNOSE EDGE TILE AND CORNER PIECE (STANDARD 

GRADE) 

2. INSTALLATION: MOUNTED WITH 1/16" JOINTS. THIN SET METHOD APPLICATION. PROVIDE ALL SPECIAL TILES 

AND ACCESSORIES AS SHOWN IN INTERIOR ELEVATIONS (INCLUDING TILE GRAB/SOAP DISH).3. FINISH: REFER TO UNIT FINISH SCHEDULE IN ARCHITECTURAL DRAWINGS.4. COLOR: REFER TO UNIT FINISH SCHEDULE IN ARCHITECTURAL DRAWINGS.

DIVISION 10 ‐ SPECIALTIES

10.1 MAIL BOXES:1. VERSATILE SERIES BY AUTH‐FLORENCE2. MODEL NO.: 4C, SUITE AS SHOWN ON ARCHITECTURAL DRAWINGS, REFER TO DRAWINGS FOR ADDITIONAL 

INFO.3. COMPLY WITH USPS REQUIREMENTS FOR CONSTRUCTION AND INSTALLATION4. COMPLY WITH ACCESSIBILITY REQUIREMENT REFERENCED IN OTHER PARTS OF THESE CONTRACT DOCUMENTS

5. FINISH: REFER TO EXTERIOR FINISH SCHEDULE IN ARCHITECTURAL DRAWINGS6. SUBMITTALS:  PRODUCT DATA, SHOP DRAWING, COORDINATE NUMBERING SEQUENCE WITH ARCHITECT.

10.2 BICYCLE RACKS: REFER TO LANDSCAPE DRAWINGS IF APPLICABLE TO PROJECT.

10.3 SIGNAGE: REFER TO SIGNAGE SCHEDULE

10.4 FIRE EXTINGUISHERS:1. COMPLY WITH PERFORMANCE REQUIREMENTS INDICATED AND PER NFPA 10.2. FIRE EXTINGUISHERS SHALL BE MULTI‐PURPOSE DRY CHEMICAL TYPE WITH UL RATING = 2A‐10BC3. LOCATE PER LOCAL JURISDICTION

10.5 LAMINATED PLASTIC TOILET PARTITIONS AND URINAL SCREENS:1.  STYLE: OVERHEAD BRACED, FLOOR SUPPORTED TOILET COMPARTMENTS AND WALL HUNG URINAL SCREENS

2.  1" FINISHED THICKNESS, PARTICLE BOARD CORE, SURFACE AND EDGES ARE LAMINATED PLASTIC, COLOR 

SELECTED FROM STANDARD COLOR RANGE.3.  HARDWARE: ALL HARDWARE TO BE THROUGH‐BOLTED WITH CHROME PLATED FINISH.A. LATCH: SLIDING DOOR LATCH WITH KEEPER AT ALL STALLS. LATCH SHALL REQUIRE LESS THAN 5‐LB FORCE TO 

OPERATEB. HINGES: PIVOT HINGESC. COAT HOOK AND BUMPER: MANUFACTURER STANDARDD. MOUNTING BRACKETS: FULL HEIGHT, HEAVY DUTYE. DOOR PULLS CONFORMING TO ACCESSIBILITY REQUIREMENTS

4. PROVIDE SOLID WOOD BLOCKING FOR ALL MOUNTING BRACKETS

DIVISION 11 ‐ EQUIPMENT

11.1 INSTALLATION:1. PROVIDE ANCHORAGE DEVICES AND MISCELLANEOUS ACCESSORIES FOR COMPLETE INSTALLATION2. COMPLY WITH MANUFACTURER'S INSTALLATION RECOMMENDATIONS

11.2 VEHICULAR SWING AND SLIDING GATES: REFER TO LANDSCAPE DRAWINGS FOR GATE AND FENCE DESCRIPTION

11.3 VEHICULAR GATE OPERATING SYSTEMS: REFER TO LANDSCAPE DRAWINGS FOR SYSTEM DESCRIPTION

17

SOLEA STONE OAK

11.4 PROXIMITY CARD READERS  AT GATES: BY ELITE ACCESS OR APPROVED SUBSTITUTION1. MODEL NO.: ECR‐485T2. PROVIDE OVERRIDE FIRE DEPARTMENT ACCESS3.  ADD ALTERNATE: MAGNETIC PROXIMITY CARD READER, MANUFACTURER AND MODEL TBD.

11.4 APPLIANCES:1. CLUBHOUSE ‐ BASIS‐OF‐DESIGN:A.  REFRIGERATOR: GE MODEL #GSHS6HGDSS WITH STAINLESS STEEL FINISHB.  ELECTRIC DOUBLE WALL OVENS: GE MODEL #JT3500SFSS WITH STAINLESS STEEL FINISHC.  BUILT‐IN ELECTRIC COOKTOP: GE MODEL #JP356SMSS WITH STAINLESS STEEL FINISH D.  BUILT‐IN DISHWASHER: GE Model #GSD3360DSS WITH STAINLESS STEEL FINISH E.  COUNTERTOP MICROWAVE OVEN: GE MODEL #PEB7226SFSSE.  DISPOSER: GE MODEL #GFC325V

2. DWELLING UNITS ‐ BASIS‐OF‐DESIGN:A.  REFRIGERATOR: GE MODEL #GTK18ICDSS WITH STAINLESS STEEL FINISHB.  ELECTRIC RANGE: GE MODEL #JB250RFSS WITH STAINLESS STEEL FINISHC.  BUILT‐IN DISHWASHER: GE MODEL #GSD3360DSS WITH STAINLESS STEEL FINISH D.  BUILT‐IN MICROWAVE OVEN/HOOD: GE MODEL #JNM3151RFSSE.  DISPOSER: GE MODEL #GFC325V

11.5 TRASH CHUTES: A.  BASIS‐OF‐DESIGN: WILKINSON HI‐RISE TRASH CHUTE, 24" DIA. ALUMINIZED STEEL, WITH INTAKE AND 

DISCHARGE DOORS, VENT, AND VENT CAP, 3/4" IPS FLUSHING HEAD AND 1/2" SPRINKLER HEAD ABOVE 

HIGHEST INTAKE, AUTOMATIC SPRINKLER SYSTEM, DISINFECTING/SANITIZING UNIT

11.6 TRASH/WASTE COMPACTORS: A.  BASIS‐OF‐DESIGN: IDS SC‐30 TRASH COMPACTOR WITH IDS .75 CONTAINER (N.I.C ‐ TO BE PROVIDED BY 

OWNER) 

DIVISION 12 ‐ FURNISHINGS

12.1 INSTALLATION:1. PROVIDE ANCHORS AND MISCELLANEOUS ACCESSORIES FOR COMPLETE INSTALLATION2. COMPLY WITH MANUFACTURER'S INSTALLATION RECOMMENDATIONS

12.2 MINI‐BLINDS:1. 1" VINYL MINI BLINDS AT ALL DWELLING UNIT WINDOWS.2. METAL HEAD, METAL BOTTOM RAIL, VALANCE AND HOLD DOWN CLIPS.

12.3 STONE COUNTERTOPS: GRANITE ‐ REFER TO FINISH SCHEDULES ON SHEETS A0.21 AND A3.23

DIVISION 13 ‐ SPECIAL CONSTRUCTION

13.1 SITE STRUCTURES: REFER TO LANDSCAPE DRAWINGS

13.2 SITE FURNISHINGS: REFER TO LANDCAPE DRAWINGS FOR BENCHES, PICNIC TABLES, FIXED EXTERIOR SEATING AND 

BBQ GRILLS

13.4 FIRE SPRINKLER SYSTEM: REFER TO FIRE SPRINKLER DRAWINGS

13.5 FIRE ALARM SYSTEM: REFER TO FIRE ALARM AND ELECTRICAL DRAWINGS

13.6 SECURITY SYSTEM: PROVIDE SECURITY SYSTEM FOR AMENITY CENTER

18

SOLEA STONE OAK

DIVISION 14 ‐ CONVEYING SYSTEMS

14.1 ELEVATORS:1. MANUFACTURER: THYSSEN KRUP, SCHINDLER, OTIS OR APPROVED SUBSTITUTION2. SUBMIT INSPECTION AND ACCEPTANCE CERTIFICATES AND OPERATING PERMITS REQUIRED BY LOCAL 

JURISDICTION.3. SUBMIT MAINTENANCE MANUALS INCLUDING PARTS LIST AND EMERGENCY CONTACT INFORMATION AND 

INSTRUCTIONS AT CLOSE OUT.4. GENERAL EQUIPMENT DESCRIPTION:   A. ILLUMINATED HALL CALL AND CAR CALL BUTTONS   B. HANDS FREE AUDIO AND TWO (2) WAY EMERGENCY COMMUNICATION SYSTEM   C. BATTERY BACKUP AS REQUIRED BY CODE   D. COMPLY WITH CURRENT TAS, ADA, UFAS AND FHA REQUIREMENTS   E. CAR POSITION INDICATOR WITH AUDIBLE SIGNAL THAT CAR IS STOPPING OR PASSING FLOOR.   F. TRAVEL DIRECTION INDICATOR ARROWS   G. DOOR SAFETY DEVICE5. INSTALL ELEVATOR PER MFR INSTRUCTIONS AND IN COMPLIANCE WITH APPLICABLE LOCAL AND STATE 

ORDINANCES, REGULATIONS AND AUTHORITIES HAVING JURISDICTION6. OPERATION: MICROPROCESSOR SINGLE CAR AUTOMATIC OPERATION

ELEVATOR TYPE1. CAPACITY: 2500 LBS2. SPEED: 150 FPM3. STOPS: 4, FRONT DOORS, NO REAR DOORS, APPROX. 32'‐0" TRAVEL DISTANCE4. MOTOR RATING: 25 HP MINIMUM5. POWER: DESIGN BASED ON 480 Volts 3 PH 60 Hz6. HOISTWAY DOORS: 60 MINUTE, B LABEL STAINLESS STEEL, SINGLE SLIDE7.  THRESHOLDS:  EXTRUDED ALUMINUM THRESHOLDS8.  RATINGS:  2‐HOUR SHAFT AND MACHINE ROOM9. CAB FLOOR: VINYL COMPOSITION TILE10. CAB WALLS: VERTICAL APPLIED PANELS, PLASTIC LAMINATE, STANDARD LAMINATE COLORS TBD.11.  RAILS: ROUND TUBULAR, STAINLESS STEEL FINISH12. CAB CEILING: MANUFACTURER STANDARD13. ACCESSORIES: PROTECTION PADS14.  MACHINE LOCATION:  BASEMENT, ADJACENT TO SHAFT15. COUNTERWEIGHT LOCATION: N/A

DIVISION 15 ‐ MECHANICAL AND PLUMBING

15.1 A. REFER TO MEP PLANS FOR ADDITIONAL INFORMATION

DIVISION 16 ‐ ELECTRICAL

16.1 A. REFER TO MEP PLANS FOR ADDITIONAL INFORMATION

19

SOLEA STONE OAK

ATTACHMENT A ‐ GEOTECHNICAL REPORT

20

Professional Service Industries, Inc. • Three Burwood Lane • San Antonio, TX 78216 • Phone 210/342-9377 • Fax 210/342-9401

August 26, 2015

Mr. Robert J. Smith Kimley-Horn 10814 Jollyville Road Avallon IV, Suite 300 Austin, Texas 78759 Re: Geotechnical Engineering Study Report

Proposed Solea Multi-Family Development Hardy Oak Boulevard & Stoneway Drive San Antonio, Texas 78258 PSI Report No.: 0312-1165-2 Dear Mr. Smith, Professional Service Industries, Inc. (PSI) is pleased to submit our Geotechnical Engineering Study for the referenced project. This report includes the results of field and laboratory testing, along with recommendations for use in the preparation of design and construction documents for this project. PSI appreciates the opportunity to perform this Geotechnical Engineering Study and looks forward to continuing participation during the design and construction phases of this project. If you have any questions pertaining to this report, or if we may be of further service, please contact our office. Respectfully submitted, Professional Service Industries, Inc. J.R. Eichelberger, III, P.E. Department Manager Geotechnical Services Copies submitted: (2 plus email) Mr. Robert Smith, P.E., [email protected] (email) Mr. Nicholas Holscher, P.E., [email protected]

TABLE OF CONTENTS Page No.

PROJECT INFORMATION ........................................................................................................... 1

PROJECT AUTHORIZATION ........................................................................................................... 1 PROJECT DESCRIPTION ............................................................................................................... 1 SITE DESCRIPTION ....................................................................................................................... 4 PURPOSE AND SCOPE OF SERVICES .......................................................................................... 10

GEOLOGY AND SUBSURFACE CONDITIONS....................................................................... 11

SITE GEOLOGY .......................................................................................................................... 11 SUBSURFACE CONDITIONS ......................................................................................................... 11 GROUNDWATER INFORMATION ................................................................................................... 14

EVALUATION AND RECOMMENDATIONS ............................................................................ 14

GEOTECHNICAL DISCUSSION ..................................................................................................... 14 POTENTIAL VERTICAL RISE ........................................................................................................ 16 GENERAL GRADING AND SITE PREPARATION ............................................................................. 17 GENERAL FILL RECOMMENDATIONS ........................................................................................... 19 SELECT FILL RECOMMENDATIONS .............................................................................................. 19 SHALLOW FOUNDATION RECOMMENDATIONS ............................................................................. 19 BELOW-GRADE FOUNDATION WALLS AND RETAINING WALLS .................................................... 22 PRELIMINARY GLOBAL SLOPE STABILITY ANALYSIS FOR A HYPOTHETICAL FILL WALL ................ 25 PLAN REVIEWS AND OBSERVATION AND TESTING DURING CONSTRUCTION ............................... 27 SEISMIC DESIGN PARAMETERS .................................................................................................. 27 SIDEWALKS AND FLATWORK ....................................................................................................... 27 UTILITY TRENCH CONSTRUCTION ............................................................................................... 28 PAVEMENT DESIGN RECOMMENDATIONS ................................................................................... 28 RIGID PAVEMENT REINFORCEMENT RECOMMENDATIONS ........................................................... 30 PAVEMENT MATERIAL SPECIFICATIONS ...................................................................................... 32

CONSTRUCTION CONSIDERATIONS ..................................................................................... 32

DRAINAGE CONCERNS ............................................................................................................... 32 MOISTURE SENSITIVE SOILS/WEATHER RELATED CONCERNS ................................................... 33 EXCAVATIONS ............................................................................................................................ 33

REPORT LIMITATIONS ............................................................................................................. 34

APPENDIX Boring Location Plan Boring Logs (B-1 thru B-16) Kimley-Horn Preliminary Grading Plan Key to Terms and Symbols Used on Logs

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 1

PROJECT INFORMATION Project Authorization Professional Service Industries, Inc. (PSI) has completed a geotechnical engineering study for the proposed Solea Multi-Family Development project to be constructed on Hardy Oak Boulevard near Stoneway Drive, in San Antonio, Texas 78258. Our services were authorized by Mr. Robert J. Smith, P.E., by signing PSI Proposal No. 148953-S1 on June 15, 2015, and by Mr. Nicholas Holscher, P.E., by signing PSI Proposal No. 148953-S2 on August 26, 2015. This study was accomplished in general accordance with both proposals. Project Description PSI’s understanding of the proposed Solea Multi-Family Development project is based on information provided by Mr. Robert Smith, P.E., and Mr. Nicholas Holscher, P.E., of Kimley-Horn, and our review of the project preliminary grading plan. The project site is located along Hardy Oak Boulevard near Stoneway Drive in San Antonio, Texas 78258. We understand that the development will consist of a single, multi-family structure partitioned into Buildings 1 through 6 with approximately 66,567 square feet total footprint area. The footprint spans the length of the site. Seven separate automobile garage structures are planned along the northern, western, and southern perimeter of the site. The development will also include associated paved drives and parking. A summary of the project information is presented in Tables 1a and 1b. Due to the sloping terrain across the site, the partitioned multi-family structure is a split level structure consisting of three (3) stories on the up-grade side and four (4) stories on the down-grade side. Information regarding the finish floor elevations (FFEs), existing site elevations across the building footprint, and anticipated cut/fill required to attain FFE is provided in Table 2. Maximum column and wall loads provided by Mr. John Coulson, P.E., of Integrity Structural Corporation, are 80 kips and 4 kips per foot, respectively, and the total settlement tolerance for the building is one (1) inch. The project layout and preliminary site grading plan is provided in Figure 1 and in the Appendix of this report. Based on a review of the site and grading plan, approximate cut and fill depths required to accommodate the finish floor elevations (FFEs) across the building range from about 1 to 16½ feet and 2 to 15 feet, respectively. Cut walls are planned along the western perimeter, southern perimeter and northeastern corner of the site and fill walls are planned along the eastern perimeter of the site. A PSI geotechnical study was recently performed to evaluate the subsurface conditions within the general areas of the proposed cut walls and is documented in PSI Report No. 0312-1165-CW, entitled, “Geotechnical Recommendations, Proposed Belle Vintage Park Cut Walls,” Hardy Oak Boulevard, San Antonio, Texas,” dated June 17, 2015.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 2

Table 1a. Project Summary – Solea Multi-Family Development

Structure Descriptions

Multi-family Structure

3-story on upgrade side of structure 4-story on downgrade side of structure

66,567 square feet footprint

Garages 7 Single-Story Garage Structures

(each with parking for approximately 7 vehicles) Design Loads

(Multi-family Structure) Max. Column and wall loads:

80 kips and 4 kips per foot, respectively

Building Construction Type

Wood -framed Structures

Primarily Stucco Walls w/ some masonry accents on ground floor

Client Preferred Foundation Type Shallow Post-Tensioned Foundations

Finish Floor Elevations (Multi-Family Structure) Elev. 1178.35 feet or Elev. 1189.00 feet

Range of Existing Grades Across Project Site

Approx. Elev. 1150 feet to 1206 feet (56 feet)

Range of Existing Grades Across Building Footprint

Approx. Elev. 1172 feet to Elev. 1200 feet (28 feet)

Improved Site Conditions 1 inch – building pad

Pavements Flexible Asphaltic (HMAC) or Rigid Concrete

Table 1b. Partitioned Multi-Family Structure

Footprint Area (ft.2)

No. of Stories

FFE (ft.)

Building 1 12,034 3 1189.00

4 1178.35

Building 2 15,937 3 1189.00

4 1178.35

Building 3 9,579 3 1189.00

4 1178.35

Building 4 10,640 3 1189.00

4 1178.35

Building 5 10,401 3 1189.00

4 1178.35

Building 6 7,976 3 1189.00

Total 66,567 -- --

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 3

A

B

C

H

E

F G

D

I

J

K

L M

P

N O

Q

R

T

S

U

V

W

X

Y

Z

AA

BB

CC

DD

EE

Building 1

Building 3

Building 4

Building 2

Building 5

Building 6

B

C

B C

A

A

SINGLE, MULTI-FAMILY STRUCTURE PARTITIONED INTO 6 BUILDINGS

Figure 1. Proposed Project Layout

The geotechnical recommendations presented in this report are based on the available project information (see Tables 1a and 1b and Figure 1), the structure’s location on the site, and the subsurface materials described in this report. If any of the noted information is incorrect, please inform PSI so that we may amend the recommendations presented in this report as necessary. PSI will not be responsible for the implementation of its recommendations when we are not notified of changes in the project. Notably, building pad preparation costs on deep fill or expansive soil sites are typically a significant portion of the overall cost of project development. Providing the Geotechnical Engineer all project information available at the time of the initial geotechnical study and keeping the Geotechnical Engineer involved with the Project Team during the design phase, especially near the time of construction, will most often result in lowering risk and the most cost effective geotechnical option.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 4

Site Description The Solea Multi-Family Development site is located on the east side of Hardy Oak Boulevard near Stoneway Drive in north San Antonio, Texas. The site is bounded on the west by Hardy Oak Boulevard, on the north by a residential subdivision, to the east by undeveloped land and to the south-southeast by property currently being developed. Discontinuities to the site perimeter occur at the northwestern corner of the project site to accommodate the existing wall-enclosed equipment area (see Photo 3a) and on the north and south ends of the eastern perimeter to preserve trees. A vicinity map showing the location of the project site is provided in Figure 2. Typical site photographs obtained during the field exploration are provided in Figured 3. At the time of the geotechnical field exploration the project site was undeveloped and vegetated with native grasses, weeds, and trees. Generally, the sloping ground surface was composed of a thin veneer of soil overlaying weathered limestone material or outcrops of weathered limestone. The “Solea Stone Oak Preliminary Grading Plan,” prepared for Stream Realty Partners by Kimley-Horn (dated 08/19/2015) and provided in Figure 1 and in the Appendix, shows that there is approximately 56 feet (Elev. 1206 feet to Elev. 1150 feet) of grade fall primarily from south to north and west to east, though localized topography within the northern portion of the site along the eastern perimeter contains a V-shaped depression orientated downward toward the east. The most pronounced grade changes generally occur along the Hardy Oak Boulevard perimeter of the site and along the eastern perimeter of the project site. The existing grades within the building footprint are generally gradual with more pronounced grade changes occurring in the areas of Points Z and J (see Figure 1 for the point locations). Information provided by Mr. Blake Colvin of Kimley-Horn regarding the topography across three (3) site cross-sections (identified as A-A, B-B and C-C in Figure 1) are shown in Figures 4a, 4b and 4c. These cross-sections extend from the opposing site boundaries to include the footprint of the multi-family structure. An evaluation of the approximate cut and fill required to attain the FFE across the proposed multi-family structure is provided in Table 2.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 5

Project Site

Photo 3a. Vicinity of Boring B-11.

Photo 3b. Vicinity of Boring B-3.

Figure 2. Project Site Location

Figure 3. Representative Site Photographs

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 6

Table 2. Overview of Approximate Site Grading Cut and Fill at Identified Building Points

Partitioned

Building * Point *

Approx. Existing Site

Elevation (feet)

FFE (feet)

Approx. cut to reach final grade (feet)

Approx. fill to reach final grade (feet)

Approx. Cut/Fill Range

(feet)

1 A 1183.5 1189 -- 5.5

Cut: 1 to 9.6

Fill: 2 to 10.5

1 B 1173 1177.4 -- 4.4

1 C 1190 1189 1 --

1 D ** 1178.5 1177.4 / 1189.0 1.1 10.5

1 E 1172 1177.4 -- 5.4

1 F ** 1187 1177.4 / 1189.0 9.6 2

1 G 1183 1177.4 5.6 --

1 H 1172 1177.4 -- 5.4

2 I 1183 1189.0 -- 6

Cut: 6.6 to 16.6

Fill:2.4 to7.5

2 J 1171 1177.4 -- 6.4

2 K 1181.5 1189.0 -- 7.5

2 L ** 1174 1177.4 / 1189.0 -- 3.4 / 15

2 M 1175 1177.4 -- 2.4

2 N 1194 1177.4 16.6 --

2 O 1187 1177.4 9.6 --

2 P 1184 1177.4 6.6 --

3 Q 1190.5 1189.0 1.5 -- Cut: .6 to 9.6

Fill: 2 to 11

3 R ** 1187 1177.4 / 1189.0 9.6 2

3 S 1172.5 1177.4 -- 4.9

3 T ** 1178 1177.4 / 1189.0 0.6 11

4 U 1183 1189.0 -- 6 Cut: 1.1

Fill: 1.4 to 10.5

4 V ** 1178.5 1177.4 / 1189.0 1.1 10.5

4 W 1174 1177.4 -- 3.4

4,5 X 1182 1189.0 -- 7

4,5 Y ** 1176 1177.4 / 1189.0 -- 1.4 / 13 Cut: 7 to 9.1

Fill: 1.4 to 13 4,5 Z 1170 1177.4 -- 7.4

5 AA 1196 1189.0 7 --

5,6 BB ** 1186.5 1177.4 / 1189.0 9.1 2.5 Cut: 7.1 to 12

Fill: 2.5 to 4.5

5,6 CC ** 1184.5 1177.4 / 1189.0 7.1 4.5

6 DD 1201 1189.0 12 --

6 EE 1200 1189.0 11 --

* See Figure 2 for partitioned Building and Point locations.

** Point located at approximately a split-level building wall.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 7

Existing Ground

Proposed Ground

Figure 4a. Approximate Subsurface Cross-Section Across the Entire Site at Section A-A (See Figure 1)

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 8

Existing Ground

Proposed Ground

Figure 4b. Approximate Subsurface Cross-Section Across the Entire Site at Section B-B

(See Figure 1)

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 9

Proposed Ground

Existing Ground

Figure 4c. Approximate Subsurface Cross-Section Across the Entire Site at Section C-C

(See Figure 1) The geotechnical recommendations presented in this report are based on the available project information, the proposed building locations, and the subsurface materials described in this report. If any of the noted information is incorrect, please inform PSI so that we may amend the recommendations presented in this report as appropriate. PSI will not be responsible for the implementation of our recommendations when we are not notified of changes in the project.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 10

Purpose and Scope of Services The purpose of this study was to evaluate the subsurface conditions at the site and develop geotechnical engineering recommendations for use in preparing design and other related construction documents for the proposed project. The preceding scope of services for this site included a field exploration to evaluate the area of the proposed cut walls. That field exploration included drilling five (5) exploratory borings to depths of approximately 15, 20 and 30 feet, performing selected laboratory tests, and preparing the geotechnical engineering report entitled, “Geotechnical Recommendations, Proposed Belle Vintage Park Cut Walls, Hardy Oak Boulevard, San Antonio, Texas,” PSI Project No. 0312-1165-CW and dated June 17, 2015. The field exploration conducted for this study included drilling sixteen (16) exploratory borings to depths of 15, 20 and 25 feet within the areas of the proposed Multi-Family Building, Garages, fill wall and pavements. This report briefly outlines the available project information, describes the site and subsurface conditions encountered, and presents our recommendations regarding the following:

Site development and subgrade preparation; Selection and placement of fill and backfill within the construction limits; Soil parameters for use in the design of the building shallow foundation system; Soil parameter recommendations for retaining walls to include backfill soil

parameters and lateral earth pressures; Minimum flexible and rigid pavement section thicknesses and construction

considerations; General comments regarding observed factors that may impact construction

and/or performance of the proposed construction. The geotechnical recommendations provided in this report are specifically defined for the layout of the Multi-Family structure (partitioned into 6 buildings) as shown in the attached site and grading plan, the anticipated topographic modifications required across the site (to accommodate anticipated finished floor elevations), structural tolerances of buildings to movement, and the type and placement of cut and fill retaining walls required to integrate the project elements within the significant topography of the existing site. Throughout the site work and mass grading operations, PSI recommends close coordination with the project team in order to confirm, and if necessary, refine the geotechnical recommendations provided in this report. The scope of services for this project did not include an environmental assessment for determining the presence or absence of wetlands, or corrosive, hazardous or toxic materials in the soil, bedrock, surface water, groundwater, or air on or below, or around this site. Any statements in this report or on the boring logs regarding odors, colors, and unusual or suspicious items or conditions are strictly for informational purposes. PSI did not provide any service to investigate or detect the presence of moisture, mold or other biological contaminants in or around any structure, or any service that was designed or intended

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 11

to prevent or lower the risk of the occurrence of the amplification of the same. Mold is abundant to the environment with mold amplification occurring when building materials are impacted by moisture.

GEOLOGY AND SUBSURFACE CONDITIONS Site Geology We reviewed the San Antonio Sheet of the Geologic Atlas of Texas1 in an effort to determine the geologic setting of the project site and surrounding areas. The Geologic Atlas of Texas was developed by the Bureau of Economic Geology at The University of Texas using aerial photography, data from various oil and gas exploration companies, and very limited ground reconnaissance. Our review indicates that the project site is mapped as being located in the Edwards Limestone Formation (Ked). The Edwards Limestone is interpreted to have been deposited on a shallow carbonate shelf, usually with restricted access of open-marine water leading to hypersaline waters and local deposition of sulfate minerals. The Edwards Group lies within the complexly faulted Balcones Fault Zone, extending eastward from the Devils’ River Limestone. It has been pervasively recrystallized and altered by percolating fresh water and is fine to course grained with abundant chert nodules. This formation is about 300 to 500 feet thick. Subsurface conditions are typically more erratic at or near geologic contacts and may result in distinct variations over short horizontal or vertical distances within, intermediate and away from the boring locations. Karst features are formed in limestone, dolomite, or gypsum by dissolution. Our study did not include identification of any potential caves on the site. PSI is not aware of any significant Karst features in the general vicinity of the project site. However it is possible that caves and significant cavities can also exist on this building site which could cause construction delays and possibly future adverse building performance. A geophysical study of this site could indicate the presence and potential impact of these features. Subsurface Conditions The site subsurface conditions were evaluated by drilling a total of sixteen (16) soil and rock borings to depths of approximately fifteen (15), twenty (20) or twenty-five (25) feet within the areas of the multi-family structure footprint and fill walls, as presented in the Appendix of this report. The borings were located in the field by PSI personnel who measured or approximated distances based on GPS coordinates and from known site reference points to each boring location. The boring locations should therefore be considered approximate. The building numbering corresponds to the numbering presented on the attached site plan and indicated in Figure 1. The corresponding boring and structure locations and borehole depths are summarized in Table 3.

1 Geologic Atlas of Texas – San Antonio Sheet, Bureau of Economic Geology, University of Texas at Austin, 1974 (Revised 1992).

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 12

Table 3. Summary of the Geotechnical Exploration Boring Locations

Project Structure Boring Label Approximate Boring Depth

(ft.)

Building 1 B-1 15

Building 2 B-2 15

Building 2 B-3 25

Building 3 B-4 15

Building 3 B-5 15

Building 4 B-6 15

Building 5 B-7 15

Building 5 B-8 15

Building 6 B-9 15

Garage and Pavement B-10 15

Pavement B-11 20

Garage and Pavement B-12 20

Garage and Pavement B-13 15

Fill Wall area B-14 15

Fill Wall area B-15 15

Fill Wall area B-16 15

Cut Wall areas § 5 borings performed to depths of approximately 15, 20, or 30 feet.

§ The geotechnical engineering study performed for the proposed cut walls is documented in PSI Report No. 0312-1165-CW, “Geotechnical Recommendations, Proposed Belle Vintage Park Cut-Walls, Hardy Oak Boulevard, San Antonio, Texas,” dated June 17, 2015.

The borings were advanced with a truck-mounted drill rig utilizing solid flight auger or air rotary drilling methods. Selected soil and milled rock samples obtained during the field exploration were transported to our San Antonio Laboratory where they were reviewed by geotechnical engineering personnel. Representative samples were tested to determine selected engineering properties and characteristics for use in our evaluation of the project site. Drilling and sampling, laboratory testing and soil-rock classification were accomplished in general accordance with ASTM procedures.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 13

CLAY (CH-CL) with a LIMESTONE Gravel component Plasticity Index 20 to 50 HARD LIMESTONE, weathered, VERY HARD

Based on the field and laboratory data, the general stratigraphy at the explored locations consists primarily of a surface veneer of moderately-to-high plasticity CLAY (CH-CL) with a gravel component in a hard condition overlying very hard, weathered LIMESTONE. The thickness of the clayey layer varied across the site with the greatest thickness observed to be approximately two (2) feet. Notably, voids or clay-filled zones were not observed in the limestone material at the borings conducted for this study. However, voids of undetermined thickness and orientation were observed in 2 of the 5 borings conducted for the previously referenced cut-wall geotechnical study (PSI Report No. 0312-11654-CW). Zones of clay-filled voids were also observed in the previous study. The general stratigraphy observed at the boring locations for this study is summarized in Figure 5a.

Figure 5. General Site Stratigraphy for the Multi-Family Development

The subsurface descriptions are of a generalized nature to highlight the major subsurface stratification features and material characteristics. The boring logs included in the Appendix should be reviewed for specific information such as soil and rock descriptions, stratifications, penetration resistances, locations of the samples, and laboratory test data. The stratifications

Dep

th (

feet

)

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 14

shown on each boring log only represent the conditions at that actual boring location and represent the approximate boundaries between subsurface materials. The actual transitions between strata may be gradual. Variations will occur and should be expected at locations away from the boring locations. Portions of any samples that are not altered or consumed by laboratory testing will be retained for 60 days from the date shown on this report and will then be discarded. Groundwater Information The borings were advanced using dry drilling techniques to their full depths which facilitates groundwater detection during drilling operations. Groundwater seepage was not detected at the boring locations either during or upon completion of drilling operations. Upon completion of groundwater observations, the boreholes were backfilled with cuttings. Groundwater levels are influenced by seasonal and climatic conditions which generally result in fluctuations in the elevation of the groundwater level over time. In addition, transient ‘perched’ water can perch within granular layers, above relatively impermeable layers within the subsurface at the bedrock interface or within the solution channels within the limestone. Therefore, the foundation contractor should check groundwater conditions just prior to foundation excavation activities. Information concerning groundwater at the boring locations is noted on the appended boring logs.

EVALUATION AND RECOMMENDATIONS

Geotechnical Discussion

The foundation being considered to provide support for any structure must satisfy three independent engineering criteria with respect to the stratigraphy at the site. One criterion is that the foundation system must be designed with an appropriate factor of safety to reduce the possibility of a bearing capacity failure of the soils (to include fill materials) underlying the foundation. The second criterion is that movement beneath the foundation system due to compression (consolidation), expansion (swell) or shrinkage of the underlying soils must be within tolerable limits for the structure. The third criterion is the differential movement should be within tolerable limits for the structure. The information presented in this report has been developed for use by the project design team for the purpose of accomplishing these criteria. The specific site features that impact the geotechnical recommendations provided in this report include the topography and the associated amount of cut and fill anticipated at the site to attain desired finished site grades and finished floor elevations (FFEs). Foundation Selection There are several considerations to be made when selecting the optimal foundation system for a given project. Assuming that the selected foundation system is properly designed to accept the design loads, its ultimate performance is often times predicated on the

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 15

site/earthwork measures implemented before its construction. For a shallow foundation system consisting of either a stiffened-beam and slab-on-grade or a post-tensioned slab-on-grade, the site preparations generally are specified to mitigate expansive site soil behavior, address settlement/consolidation of the soils beneath the foundation, and direct the movement of surface water away from the foundation. For a deep foundation system consisting of drilled piers, the site preparations address the same issues if the floor slab is soil supported. However, if the floor slab is suspended on the pier foundations, then the site/earthwork measures are generally less rigorous and basically address drainage issues around the structure and within the space between the ground and the suspended floor. The foundation types applicable for the proposed Solea Multi-Family Structure and the Garage Buildings are a shallow foundation consisting of a structural slab-on-grade or deep foundation consisting of drilled piers. The primary issue influencing the selection of the optimal foundation type at the Solea site is the significant fill pad thickness required across a large portion of the site to achieve the finished floor elevations. For example, the thickness of the select fill pad at the general interface of partitioned Buildings 4 and 5 is approximately 13 feet (see Table 2). The estimated settlement of the fill pad in this area ranges from approximately 1 inch for a crushed limestone select fill to approximately 3¼ inches for a low-expansive clayey select fill. Measures that may be implemented to mitigate the effects of the anticipated settlement entail constructing the fill pad using a crushed limestone select fill rather than a clayey select fill and constructing the foundation slab after the settlement approaches an acceptable rate or the pad stabilizes. A deep pier foundation system with a suspended floor slab is an alternative foundation type for the Solea project site. For this option the slab is isolated from the ground surface and, therefore, not significantly affected by the settlement of the fill pad used to achieve grade beneath it. (The pier foundations, however, would be sized to accept the anticipated downdrag force, also called negative skin friction, imparted to the piers as the fill pad settles.) While this foundation/fill-pad configuration would significantly mitigate the settlement effect of the fill on the floor slab, it would be anticipated that it could create an elevation disparity between the building and the surrounding flatwork/pavement. Specifically, though the building would experience minimal settlement, the surrounding flatwork/pavement would experience the full magnitude of the fill pad’s settlement. The disparities would be magnified if a general fill or clayey select fill was used in the non-building pad areas rather than crushed limestone select fill. Based on the advantages and disadvantages of the two foundation types, our recommendations for the proposed Multi-Family Structure and Garage Buildings are as follows:

Based on the geotechnical data obtained during this exploration and considering the planned structures at the site, shallow foundations bearing completely on either select fill or completely on LIMESTONE are assessed to be appropriate for the project. All foundation elements of each of the six (6) building partitions of the Multi-Family

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 16

Structure and each Garage Building are to bear in the same subsurface material type.

All building pads should be constructed of a high quality crushed limestone select fill. As mentioned, substantial grading is proposed for the subject multi-family development site. The anticipated limestone rock cuts at the site will likely expose some materials subject to raveling and local collapse in certain segments. Appropriate flexibility in construction planning and budgeting is recommended to be able to implement earth retaining measures in areas where heavily fractured, or otherwise adverse geologic exposures are encountered, or alternately to provide mitigating grading to flatten or otherwise increase stability of these areas. This will be important to protect people and property from falling rocks, as well as to reduce the maintenance associated with falling rocks. Rock cuts for this project have been proposed closely adjacent to the proposed walled equipment site at the northwestern corner of the site (see Photo 3a and Figure 1) and along the existing Hardy Oak Boulevard roadway. Difficult excavation should be anticipated at this site in areas of floor slabs or foundations, underground utilities, or other areas of excavation. Due to sloping site conditions and the presence of hard LIMESTONE, appropriate measures should be taken in the design to redirect surface water away from foundation areas. Drainage systems should be installed to remove infiltrating water or groundwater from becoming perched atop the LIMESTONE, travelling down-gradient toward the lower-level areas and ponding behind or penetrating lower-level building or wall areas. The following design recommendations have been developed based on the previously described project characteristics and subsurface conditions encountered. If there are any changes in the project criteria, including the planned layout of the site, a review must be made by PSI to determine if any modifications in the recommendations will be required. The findings of such a review should be presented in a supplemental report. Once final design plans and specifications are available, a general review by PSI is strongly recommended as a means to check that the conditions assumed in the project description are correct and that the earthwork and foundation recommendations are properly interpreted and implemented. Potential Vertical Rise Based on the field and laboratory data, it appears that the clayey materials observed within the borings at this site exhibits a low potential to experience volumetric changes as a result of fluctuations in soil moisture content. The amount of potential movement to shrink and swell with soil moisture variations is represented or indicated by Potential Vertical Rise (PVR). In designing the slab-on-grade structures or foundation systems, the structural engineer should take movements associated with shrinking-swelling soils into account. The surficial soils within planned building areas should be excavated during preparation for grading or construction activities. Therefore, we anticipate the building structures will be constructed on shallow foundations atop select fill or be placed directly on top of the LIMESTONE stratum where

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 17

appropriate to achieve construction grades. Since the existing soils will be removed from building areas, the PVR for building structures is assessed to be less than one (1) inch. General Grading and Site Preparation Mass Grading Discussion The topography across the site is anticipated to present a challenge to the grading operations. Successful mass grading operations to achieve the final grades are anticipated to require the partitioning of the clearing, cutting and filling operations into sequential phases. It is anticipated that the phases will include the following:

Clearing of the site of the existing topsoils and any loose dumped fills; Construction of the cut walls along Hardy Oak Boulevard and along the southern

perimeter and a portion of the wrap-around along the northeast corner of the site; Processing of cut materials for potential re-use in select fill areas; Construction of the fill walls along the eastern perimeter; Placement of the select fills.

Mass Grading Recommendations The project site should be stripped of existing structures, pavements, vegetation, organic laden soils, loose or soft soils, previously dumped fill, abandoned underground utilities, and any other deleterious materials. The stripped materials should be removed from the site and properly disposed. Excavations resulting from the removals should be cleaned down to the LIMESTONE bedrock. Excavations should proceed to achieve the desired design grades. The excavation operations must adhere to OSHA excavation and shoring guidelines. Excavations beyond desired design grades may be necessary in some areas. For example, deeper excavation depths may be required to assure that the differential select fill thickness across individual building pads does not exceed eight (8) feet. Additionally, deeper excavations may be required to key retaining wall components into the LIMESTONE material. The excavation operations should be phased across the site to prevent excavations from being left open for extended periods of time. The excavated/milled LIMESTONE should be stockpiled for possible re-use as select fill. Proper processing of the milled materials will be required to meet the criteria for select fill. After site stripping and any necessary excavation, and prior to placement of any fill materials, the exposed subgrade should be proof-rolled with appropriate construction equipment weighing at least 20 tons. Weak or soft areas within the LIMESTONE should be removed to expose non-yielding LIMESTONE, then replaced with properly compacted select fill material. The proof rolling and undercutting activities should be observed by a representative of PSI and performed during periods of dry weather.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 18

Pavement and General Site Areas Grade adjustments outside of the building pads can be made using select or general fill materials. The fill materials should be placed on properly moisture conditioned and compacted subgrade surfaces in lifts not to exceed eight (8) inches loose measure, or six (6) inches compacted measure. Fill materials should be moisture conditioned to between optimum and plus three (+3) percentage points of the optimum moisture content and compacted to at least 95 percent of the maximum laboratory dry density as determined by ASTM D1557. Building Pad Preparation As previously noted, the estimated PVR within the area of the proposed building pads is less than one (1) inch due to the removal of the surficial soils prior to select fill placement. Approximately 1 to 16.6 feet of cut is anticipated within the Multi-Family Buildings 1 through 6. In order to avoid cut/fill transitions, foundation elements should be underlain by a minimum of 12 inches of compacted select fill. As previously stated, select fills under each building pad should not have a differential fill thickness that exceeds eight (8) feet from one end of the pad to the other. Limiting the differential select fill thicknesses across individual building pads will also reduce the risk of differential settlement in areas that change from thinner layers of select fill over the LIMESTONE to areas with much greater thicknesses of select fill. After confirmation and observation of the proof rolling operations have been completed, select fill placement may begin as necessary to reach planned construction grades. Each layer of select fill should be placed in relatively uniform horizontal lifts with maximum loose lift thickness of eight (8) inches. The thickness of each compacted lift should not exceed six (6) inches. Select fill should be moisture conditioned between minus one (-1) and plus three (+3) percentage points of optimum moisture content and compacted to at least 95 percent of the Modified Proctor maximum laboratory dry density as determined by ASTM D 1557. Each lift of the compacted select fill should be tested by a representative of the Geotechnical Engineer prior to placement of subsequent lifts. Care should be taken to apply consistent compactive effort throughout the fill. Differential fill thickness from one end of the building pad to the other end should not exceed eight (8) feet and this should be properly planned for when determining proper subgrade undercut elevations. Subgrade preparation and fill placement should extend beyond the perimeter of the structure’s foundation on all sides, including covered walkways and other improvements adjacent to the structure(s), for a distance that is equal to or exceeds, the total fill thickness at the respective location. Asphalt or concrete pavement that extends to the edge of the structure foundation or improvements and is properly sealed at the pavement/building interface is recommended. However, where this interface is not constructed, the upper at least 12 inches of fill outside the structure(s) should consist of a properly compacted cohesive lean clay (CL) layer of soil to reduce infiltration of moisture into the fill materials comprising the building pads. To observe and document the construction of the building pads as recommended, we recommend that PSI personnel working under the direction of the Geotechnical Engineer be present during earthwork activities for the building pads’ construction.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 19

General Fill Recommendations General fill materials may be used outside of structure areas where necessary to complete the mass grading operations. The purpose of a general fill is to provide a soil material with good compaction characteristics that will provide suitable, uniform support for pavements and other facilities that are not extremely sensitive to movements. Such materials may also be used in open areas where such facilities will not be constructed. General fill material should be clean and free of any vegetation, roots, organic materials, trash or garbage, construction debris, or other deleterious materials and should contain stones no larger than four (4) inches in maximum dimension. The Plasticity Index of imported general fill material should be limited to a maximum of thirty (30). It should be understood that it is not the intent of this recommendation to control differential soil movements due to expansive soils through the use of general fill. If differential soil movements arising from the use of general fill cannot be tolerated, select fill material should be used and should conform to the recommendations made in the following report section. Consideration of the use of general fill in areas adjacent to thick select fill pads should include the potential for differential settlement between the two areas and the impact of this potential differential movement on the performance of abutting project elements. Select Fill Recommendations Criteria for select fill are provided for a crushed limestone-type select fill and for a high-quality multi-compositional select fill. Both types of select fill should be clean and free of any vegetation, roots, organic materials, trash or garbage, construction debris, or other deleterious materials and should contain stones no larger than three (3) inches in maximum dimension. The crushed limestone-type select fill should meet the TxDOT Item 247, Type B, Grade 2 or better specification. On-site excavated LIMESTONE that meets the crushed limestone-type select fill requirements and the maximum particle criterion may be used. Adequate testing of this material is required before use its use as a crushed limestone-type select fill to verify that the specifications are met. Shallow Foundation Recommendations Provided that some magnitudes of soil-related movements as discussed herein are acceptable and are taken into account in the design and construction, and the site preparation recommendations are followed, a monolithic slab stiffened with grade beam foundations or post-tensioned slab-on-grade foundations may be used to support the proposed structures at this site. Foundations within each structure should bear either entirely on competent LIMESTONE or entirely on select fill to reduce differential settlement across the building pad. Grade beams bearing on competent LIMESTONE with the site prepared as previously recommended can be designed for a net allowable bearing capacity of up to 5,000 psf. Grade beams bearing on select fill may be designed for a net allowable soil bearing capacity of up to 2,800 psf. PSI should be

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 20

contacted prior to the design and construction of building foundations that are not bearing directly on the LIMESTONE. These values include a design safety factor of approximately three (3). Grade beams should be a minimum of 12 inches wide to prevent local shear failure and exterior beams should penetrate at least 18 inches below the final exterior grade. The minimum grade beam widths and depths are based on considerations for development of proper bearing capacity for the beams of the foundation system and are not based on structural considerations. Therefore, the required grade beam widths and depths may be greater than recommended herein for structural considerations and should be properly evaluated and designed by the structural engineer. A vapor barrier should be placed beneath the floor slabs in order to break the rise of capillary moisture. The design approach described in the Wire Reinforcement Institute (WRI) “Design of Slab-on-Ground Foundations” manual, 1981, may be used to design slab and grade beam foundations for this project. We have developed soil parameters for use in the WRI design method as shown in Table 4. It should be understood that the WRI design method is empirical in nature. Furthermore, recommended design parameters shown below are based on our understanding of the proposed project, our interpretation of the information and data collected as a part of this study, our experience in the project area and the criteria published in the above referenced publication.

Table 4. WRI Design Method Parameters

PVR of less than one (1) inch

Climatic Rating, Cw 17

Effective Plasticity Index 25

Soil/Climatic Rating Factor, (1 – C) 0.11

Post-Tensioning Institute (PTI) design parameters at this site are provided in Table 5. The values were derived considering the observed site conditions, the recommended building pad construction [to include a building pad subgrade consisting of properly placed and compacted select fill or the LIMESTONE and a PVR of less than one (1) inch. The Third Edition of “Design of Post-Tensioned Slabs-on-Ground” and the Volflo 1.5 design software were used to obtain the values.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 21

Table 5. Post Tensioning Institute Parameters

Post Tensioning Institute (PTI) PTI Parameter

Edge Moisture Penetration Distance (Em) (center lift) (ft.): 9.0

Estimated Ym values for Center Lift (shrink) Conditions (in.): -0.73

Edge Moisture Penetration Distance (Em) (edge lift) (ft.): 4.9

Estimated Ym values for Edge Lift (swell) Conditions (in.): 1.04

Soil supported floor slabs are subject to vertical movements as discussed earlier in this report. Differential vertical movements may be amplified where portions of the floor slab are supported on the LIMESTONE and other portions supported by soil. This movement can cause distress to interior wall partitions supported by these slabs. This should be understood and addressed in the design phase of this project. To reduce the potential for excessive differential movement, at-grade slabs and shallow foundations should bear completely on either properly compacted select fill or LIMESTONE. Transitions between LIMESTONE bearing and select fill bearing should be avoided. In addition, a maximum differential select fill thickness beneath a single building should be limited to eight (8) feet. Utilities that project through slab-on-grade floors should be designed with either some degree of flexibility or with sleeves in order to prevent damage to these lines should vertical movement occur. Contraction, control or expansion joints should be designed and placed in various portions of the structure. Properly planned placement of these joints will assist in controlling the degree and location of material cracking which normally occurs due to material shrinkage, thermal affects, soil movements and other related structural conditions. The foundation excavations should be observed by a representative of PSI prior to reinforcing steel or concrete placement to assess that the foundation materials are capable of supporting the design loads and are consistent with the materials discussed in this report. This is especially important to identify the condition and acceptability of the fill material under any footings. Soft or loose soil zones encountered at the bottom of the footing or beam excavations should be removed to the level of competent soils as directed by the Geotechnical Engineer. Cavities formed as a result of excavation of soft or loose soil zones should be backfilled with compacted select fill. After opening, footing and beam excavations should be observed and concrete placed as quickly as possible to avoid exposure to wetting and drying. Surface run-off water should be drained away from the excavations and not be allowed to pond. If footing excavations must be left open for an extended period, they should be protected to reduce evaporation or entry of moisture. Where footing excavations or subgrades are disturbed prior to concrete placement, PSI should be notified to re-evaluate the area before the continuation of foundation construction.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 22

Consolidation and/or compression of the overburden resulting from the foundation loads will result in measurable increments of soil settlements. Based on results of the field tests and the anticipated foundation loads, we estimate that the foundation settlement will approximate one (1) percent of the fill thickness. Differential settlement across a single building footprint should be limited to one (1) inch or less. While settlement of this magnitude may be considered tolerable for small structures, the design of masonry walls should include provisions for adequately spaced, vertical control joints to minimize the effects of cosmetic "cracking". Where site retaining walls are located within close vicinity of proposal building foundations, additional movement may occur as most site retaining walls require and are designed to deflect by some magnitude to develop the active wedge behind the wall. Below-Grade Foundation Walls and Retaining Walls Recommendations within this section are applicable for below grade foundation walls that are planned to accommodate grade differences within the building pad(s) and for the proposed retaining walls along the perimeter of the site. In consideration of the existing grades at the site and the split-level design of the Multi-Family Structure, below-grade foundation walls are required. Recommendations within this section are also applicable for site retaining walls; however, some types of walls are often proprietary in design and require specific structural details for assessment. For Mechanically Stabilized Earthen (MSE) Walls, the Design Engineer should select parameters appropriate to the project and evaluate wall movement or deflection relative to any adjacent structures. The previously provided foundation recommendations do not account for site retaining wall deflection/settlement that may occur. Additionally, the City of San Antonio requires a Global Stability Analysis (GSA) be performed for walls over 4 feet high or walls with surcharge loading. A GSA was provided for the proposed cut walls and documented in the referenced cut-wall report (PSI Report No. 0312-1165-CW). A preliminary GSA is provided in this report for the proposed fill walls in a subsequent report section. However, further evaluation COSA requires a retaining wall analysis be performed. This can be done when the type of fill walls, their dimensions and final configurations/locations have been specified. Foundation wall footings should bear in the LIMESTONE to utilize the previously recommended allowable net soil bearing pressure of 5,000 psf. Where foundations bear on materials other than LIMESTONE, an allowable bearing pressure of 2,800 psf may be used; however, PSI must be consulted prior to the final design and construction where this condition may exist so that our recommendations can be reviewed and revised, as appropriate. Additional borings may be required at a later date as previously discussed to supplement these engineering evaluations contained in this report for retaining wall analyses.

Equivalent fluid pressures for a horizontal backfill surface for various backfill materials as outlined in this section may be used as the horizontal components of the active earth pressure, or at-rest earth pressure on the retaining walls, as appropriate, dependent on the amount of horizontal movement that can occur along the vertical wall height. The decision as to whether

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 23

the active or at-rest case should be used for design will depend on the rigidity of the retaining walls. The active earth pressures should be used where the wall can experience some degree of lateral movement. The at-rest earth pressures may be used for foundation walls where the top of the wall is rigidly restrained such as when it is part of a building or building foundations (i.e. basement walls).

The parameters in Table 6 may be used to design below grade foundation retaining wall structures provided that the indicated backfill occupies the entire active zone. The “active zone” consists of the area behind the retaining structure within a boundary created by a 45 degree angle drawn from the heel of the structure and extending upward to the ground surface. The equivalent fluid densities shown in the table do not include any safety factors.

It is important to note that the fluid pressures only represent drained backfill or using total unit weight of the soil. If there is a possibility of submergence or accumulation of water within the backfill area, then buoyant unit weights of the soil should be multiplied by the earth pressure coefficient to arrive at buoyant equivalent fluid pressures in addition to hydrostatic pressures of 62.4 pcf per foot of depth. Other buildings, slopes or structures should be spaced at sufficient distances such that they do not impose any additional loads on the walls. Otherwise any additional lateral loads due to surcharge must also be included in the design.

Table 6. Summary of Retaining Wall/Split-Level Foundation Wall Parameters

Compacted Backfill Material

Total Unit

Weight, pcf

Active Condition* At-Rest Condition*

Earth Pressure

Coefficient

Equivalent Fluid Pressure,

psf per foot depth

Earth Pressure

Coefficient

Equivalent Fluid Pressure, psf per foot depth

On-site Clayey Materials 125 0.49 61 0.66 82

Imported, Clean Sand 125 0.33 42 0.50 63

Crushed Limestone Select Fill Or

Imported, Clean Gravel 130 0.27 35 0.43 56

* - Parameters provided consider “drained” conditions

For sliding resistance, a coefficient of friction of 0.35 between the base of the foundation elements and underlying material is recommended. In addition, a passive resistance equal to an equivalent fluid weighing 250 pcf acting against the foundation may be used to resist lateral forces. The upper 18 inches of passive resistance should be neglected unless the ground immediately in front of the retaining wall is covered with concrete or pavement. The above values are ultimate values, and an appropriate safety factor shall be used in design.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 24

Drainage Drainage systems should be installed behind and along the base of the walls to collect and remove groundwater to prevent a buildup of hydrostatic pressure on the walls. A subdrain system should consist of a minimum four (4)-inch perforated pipe placed at the base of the retaining wall and surrounded by ASTM C33 Size #57 stone completely wrapped in Mirifi 140N or 160N filter fabric, or equivalent as approved by the geotechnical engineer. The drainrock wrapped in fabric should be at least twelve (12) inches wide and extend from the base of the wall to within two feet of the ground surface. The upper two feet of backfill should consist of compacted native soil or other impervious pavement. The retaining wall drainage system should be sloped to outlet pipes draining away from the foundations or pumped to the surface as grades require. The subdrain system should be inspected periodically to ensure functionality as failure of the subdrain system will affect the design lateral earth pressures and the retaining wall stability. As an alternative to the drainrock and fabric, a prefabricated drainage composite (drainboard) such as MiraDRAIN 2000, or approved equivalent, may be used behind the retaining wall. The drainboard should extend from the base of the wall to within two feet of the ground surface. The permeable side of the drainboard composite should be in direct contact with the perforated drainpipe, and should be wrapped around the pipe to prevent soil intrusion into the pipe, or otherwise a filter fabric sock can be used. The drainboard should be installed in accordance with the manufacturer’s specifications. If provisions to prevent accumulations of water behind the walls are not provided, the walls should be designed to resist the full hydrostatic head in addition to the lateral earth pressures based on buoyant unit weights. In addition, prior to backfilling if a granular backfill is used, the excavated area should be lined with a geotextile filter-fabric capable of preventing the migration of soil fines. This will reduce the potential for soil to be transported into the coarse backfill which could plug the drain system and create hydrostatic forces on the wall and saturate the footing bearing soils. Soil migration may also lead to soil support loss or the formation/acceleration of subsidence. It should be noted that the relatively deep cuts proposed at the site for the retaining walls and buildings could expose fractures or gravel zones where groundwater seepage may occur. PSI can provide recommendations for a system to capture and divert these seepage waters upon exposure and upon request. Any seepage noted during construction should be reported to PSI. Material Strength Considerations The LIMESTONE foundation material for fill slopes is generally anticipated to be adequate; however, appropriate benching and keying should be performed to reduce the probability for fills placed on sloping ground to slide downhill. Generally the provisions of Appendix J of the International Building Code are considered to be good guidelines for the benching of fills into hillsides. It should be noted that the integrity of cut-exposed materials may degrade over time.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 25

Weathering and wetting may result in reduced strength properties on the cut surface of the LIMESTONE. The potential for softening of clayey pockets and seams within the LIMESTONE matrix and exposed from cut operations should be considered during excavation operations and in the design and construction of the retaining walls. PSI should be consulted during the design of any retaining walls, and detailed drawings of retaining walls should be provided for evaluation and confirmation of the recommendations provided herein. PSI should be present to document the construction of any retaining walls and to perform conformance testing on associated foundation, backfill and retaining wall materials. Preliminary Global Slope Stability Analysis for a Hypothetical Fill Wall Based on a review of the Kimley-Horn preliminary site plan (see Figures 1 and 4a, 4b and 4c), the proposed fill wall along the eastern perimeter of the site is anticipated to reach a height of approximately 20 feet. At this time the type of fill wall(s) to be constructed has not been finalized and so for this global slope stability analysis an MSE-type wall with an approximate thickness of six (6) feet, a height of 20 feet, and a surcharge load behind the wall of 250 psf (associated with typical traffic loads) was modeled. The site conditions chosen represent a fill-wall bearing on a heavily-fracture limestone material and backfilled with a crushed limestone material. The model should be updated and the analysis performed again when the actual design parameters of the fill-wall(s) and the surcharge loads are determined in order meet the San Antonio requirements for retaining wall design. Loads imposed on or by adjacent structures or roadways should be adequately accounted for in the final design. The preliminary global slope stability analyses for the single geometry were conducted using the RocScience computer program, Slide. We performed the preliminary analyses considering short term (undrained) and long-term (drained) strength conditions. The strength values assigned to the fractured limestone were estimated from experience with similar materials from previous studies performed in this area. The assumptions considered are summarized in Table 7. Figures 6a and 6b show the calculated slip surface and factor of safety for the short-term and long-term analysis conditions. The calculated factors of safety are 1.7 and 1.4, respectively.

Table 7. Estimated Material Strength Parameters

Material Type Soil Unit WeightShort Term (Undrained) Parameters

Long-Term (Drained)

Parameters

A General Fill behind the Fill-Wall

ɣ = 120 pcf c=1,000 psf

ɸ = 0° c'=200 psf ɸ' = 27°

Heavily-Fractured LIMESTONE/GRAVEL

ɣ = 120 pcf c=0 psf ɸ = 35°

c'=0 psf ɸ' = 35°

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 26

Figure 6a. Calculated Global Factor of Safety for a 20-foot MSE Fill-Wall – Short Term Condition

Figure 6b. Calculated Global Factor of Safety for 20-foot MSE Fill-Wall – Long-Term Condition

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 27

Plan Reviews and Observation and Testing During Construction As design plans are preliminary PSI should be included in the evolving design process such that more specific analyses and recommendations, including global stability analyses considering the selected wall type(s), heights and locations can be performed as plans progress. It is considered necessary that PSI be provided the opportunity to review the structural foundation, civil grading and retaining walls plans prior to their issuance for construction. The purpose of this review is to assess the general compliance of the plans with the geotechnical recommendations provided by this firm and the incorporation of these recommendations into the project plans and specifications. Prior to the commencement of grading, a meeting should be held at the site with the developer, grading contractor, retaining wall contractor, civil engineer and the geotechnical consultant to discuss the work schedule and geotechnical aspects of the grading. All cut slopes and cut walls are recommended to be observed by an engineer with PSI. Seismic Design Parameters For the purposes of seismic design, based on the encountered site conditions and local geology, we interpreted the subsurface conditions to satisfy the Site Class B (rock) criteria for use at this site as defined by the International Building Code (IBC). The site class is based on the subsurface conditions encountered at our borings, the results of field and laboratory testing, our experience with similar projects in this area, and considering the site prepared as recommended herein. Table 8 provides recommended seismic parameters for the project based on the 2012 edition of the IBC.

Table 8. Recommended Design Seismic Parameters (Site Class B)

Seismic Parameter IBC 2012

0.2 sec (SS) 0.073 g

1.0 sec (S1) 0.030 g

Site Coefficient 0.2sec, Fa 1.0

Site Coefficient 1.0 sec, Fv 1.0

0.2 sec (SDS) 0.049 g

1.0 sec (SD1) 0.020 g

Sidewalks and Flatwork Potential differential settlement may occur at the interface of fill pads with differing material specifications and thickness. The magnitude of the differential settlement will generally be more pronounced where select fill and general fill pads abut. Therefore, where movement-sensitive

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 28

flatwork will be constructed adjacent to the buildings, consideration should be given to preparing the adjacent flatwork areas similarly to the building pad for more uniform settlement behavior. Doweling the flatwork to the building foundation at common openings will further help to reduce the potential for differential movements and trip hazards. However, when doweling grade supported flatwork to more stable structures, movements of the flatwork can cause cracking in the flatwork itself. We recommend that if grade supported flatwork are dowelled to more stable foundations, the connections be designed such that they are flexible to rotate. Utility Trench Construction Utility trenches can be backfilled above the utility bedding and shading materials with general fill material. The backfill materials should be placed in lifts not to exceed eight (8) inches loose measure, or six (6) inches compacted measure. Backfill materials should be moisture conditioned to between optimum and plus three (+3) percentage points of the optimum moisture content and compacted to at least 95 percent of the maximum dry density as determined by ASTM D698. Utility trenches should be sealed with lean concrete, lean clayey soil, controlled low-strength material or flowable fill beneath and adjacent to where the utility passes beneath the building perimeter. This would reduce the potential for migration of water beneath the building through the bedding and shading materials in the utility trench. Flexible connections should be considered where utilities connect to buildings or pass through building foundations/slabs to allow for the anticipated Potential Vertical Rise differential. This could be provided by special flexible connections, pipe sleeving with appropriate waterproofing, or other methods. Pavement Design Recommendations We have prepared the following recommendations for the design and construction of both flexible and rigid pavement systems for use on the subject project. The “AASHTO Guide for Design of Pavement Structures” published by the American Association of State Highway and Transportation Officials was used to develop the pavement thickness recommendations in this report. This method of design considers pavement performance, traffic, roadbed soil, pavement materials, environment, drainage and reliability. Each of these items is incorporated into the design methodology. We have based our analysis on the following ESAL information and pavement-related subgrade design parameters, which are considered to be typical for the area but should be verified by the project designer. We have estimated a minimum CBR value of ten (10) and a modulus of subgrade reaction of 200 pci for a LIMESTONE/crushed limestone select-fill subgrade. We have also utilized the following pavement design parameters:

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 29

Table 9. Pavement Design Parameters

Assumed Design CBR, percent 10

Reliability 70

Initial Serviceability Index, Flexible Pavements

4.2

Initial Serviceability Index, Rigid Pavements

4.5

Terminal Serviceability Index, All Pavements

2.0

Standard Deviation, Flexible Pavements

0.45

Standard Deviation, Rigid Pavements

0.35

Based on the design parameters listed above, we developed recommendations for “light duty,” “moderate duty” and “heavy duty” pavement sections. “Light duty” pavements are intended for general parking areas with passenger vehicles only and have an approximate capacity of at least 25,000 ESAL. “Moderate duty” pavements are intended for areas subject to channelized traffic and delivery areas and have an approximate ESAL capacity of at least 100,000. “Heavy duty” pavements are intended for areas subject to heavier vehicles with extensive turning, starting and stopping, such as the pavement aprons associated with trash enclosures, and have an approximate ESAL capacity of at least 250,000. The project Civil Engineer should verify that the ESAL values for the respective pavement areas are appropriate.

Table 10a. Flexible Pavement System

Recommended Minimum Thicknesses (Inches)

Light Duty Moderate Duty

Pavement Materials ESALs=25,000 ESALs=100,000

TxDOT Item 340, Type D Hot Mix Asphaltic Concrete

2 4

Flexible Base Material 6 6

Compacted select fill * 6 6

*Not required if subgrade consists of exposed competent limestone.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 30

Table 10b. Rigid Pavement System

Recommended Minimum Thicknesses (Inches)

Pavement Materials Light Duty Moderate Duty Heavy Duty

Reinforced Concrete 5 6 7

Compacted select fill * 6 6 6

*Not required if subgrade consists of exposed competent limestone. We recommend that proper perimeter drainage be provided and maintained to reduce the infiltration of surface water into the pavement section from surrounding unpaved areas. Landscape beds or islands in paved areas provide avenues for water to infiltrate the pavement section; and if used, should incorporate vertical moisture barriers to prevent the migration of water beneath the pavement surface. The infiltration of water into the pavement section typically results in the degradation of the section with time as vehicular traffic traverses the affected area. Vertical curbs separating pavement and landscape areas should extend at least three (3) inches below the bottom of the base materials to help reduce the potential for water infiltration into the pavement section. Surface and subdrains should be installed behind the curbs adjacent to ascending slopes to intercept and remove water from the pavement perimeter before the water infiltrates the pavement section. Furthermore, all concrete/asphalt interfaces should be sealed using a sealant that is compatible with both asphalt and concrete. In areas of pavement that are subject to heavy wheel loads, substantial amounts of vehicle maneuvering, or high traffic volumes, we recommend that concrete pavements be used. The concrete pavements should be large enough to properly accommodate all vehicular traffic and loads. In areas where waste bins or trash enclosures are located, the concrete pavement apron should be large enough to hold both the dumpster and the wheels of the garbage collection vehicle. The concrete paving should extend beyond areas that undergo extensive turning, stopping, or maneuvering. The pavement design engineer should consider these and other similar situations when planning and designing pavement areas. Rigid Pavement Reinforcement Recommendations Joints are typically placed in rigid pavements to control cracking, to facilitate construction, and to isolate a section of pavement from a structure or an adjacent pavement section. Joints used to control cracking are typically known as contraction or control joints as they are intended to control cracking that arises out of the shrinkage of concrete as it cures. Construction joints are used to provide clean breaks between pavement sections that result from the construction process. Isolation joints (or expansion joints) are used to separate the pavement from other structures or pavements and typically include the use of compressible materials in the joint as opposed to contraction or construction joints. Contraction joints should be spaced no greater than 15 feet between the nearest parallel joints with joint depths of at least one-quarter (¼) of the slab thickness. Contraction and construction joints should be no wider than one-eighth (⅛) of an inch whereas isolation joints may be up to one (1) inch wide.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 31

Steel reinforcement of concrete is typically not necessary for concrete pavements with construction or isolation (expansion) joint spacing closer than 15 feet. When these joints are spaced greater than 15 feet, steel reinforcement can be used to control the widths of cracks that form between these joints such that the fracture faces that form in the concrete are held together. Steel reinforcement is also used where subgrade conditions are not likely to provide uniform support to the concrete pavement. Generally, sites with expansive soils present are often unable to provide such support to rigid pavement sections. Therefore, reinforcing steel should be used to span between construction and isolation (expansion) joints and should consist of the following:

Rebar may be used as reinforcement and should consist of at-minimum No. 3 bars spaced 18 inches on-centers each way. The rebar should be Grade 60 steel.

Flat sheets of welded wire fabric, including either 6 X 6 – W2.9 X W2.9 or 4 X 4 – W1.4 X W1.4 may be used with a minimum wire tensile strength of at least 60 ksi.

As with steel reinforcement, load transfer devices such as dowels are not typically necessary for most parking lots. However, in situations were heavy traffic loads are present or where the subgrade may not provide uniform support to the pavement, dowels should be used to transfer loads across joints. Smooth dowels may be used for this purpose and should be utilized as recommended in Table 11.

Table 11. Dowel Design Information

Slab

Thickness, in.

Dowel Diameter,

in.

Dowel Embedment

Each side, in.

Dowel

Length, in.

Dowel Spacing On-Centers, in.

5 ⅝ 5 12 12

5-½ ¾ 6 14 12

6-½ 7/8 7 16 12

The joint and reinforcing design of a rigid pavement system is largely a function of geometry for the pavement area. The proper length of concrete panels (defined as the distance between discontinuous pavement sections; e.g. between construction or isolation joints, or a combination of the two) and the location of contraction, construction, and isolation (expansion) joints are not included as a function of the above concrete pavement guidelines. Rather, these features should be determined based on the geometry and construction sequencing of the pavement. Actual joint spacing should be based on actual pavement areas and final panel lengths so that joints are evenly spaced. Joints should be designed to form approximately square panels where geometrically feasible. The values provided herein are guidelines and the recommendations selected by the project civil engineer and any guidelines not provided or mentioned herein should not exceed the American Concrete Institute (ACI) 330R recommendations.

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 32

Pavement Material Specifications The following guidelines have been prepared for use in the selection and preparation of various materials that may be used to construct the pavement sections. Submittals should be made for each pavement material and should be reviewed by the Geotechnical Engineer and other appropriate members of the design team. The submittals should provide the test information necessary to verify full compliance of the materials with the recommended or specified material properties. Hot-Mix Asphaltic Surface Course - The asphaltic concrete should be plant mixed, hot laid, Type D meeting the 2004 TxDOT Standard Specification Item 340. The mix should be compacted to between 92 and 97 percent of the maximum theoretical density as determined by TEX-227-F. Concrete – Concrete used for paving should have a minimum compressive strength of 4,000 psi at 28 days. The air content at the point of placement should range from two (2) to four (4) percent. The concrete pavements should be reinforced and jointed per current ACI recommendations. Flexible Base Course - Flexible base materials should be placed in maximum six (6) inch compacted lifts. The base materials should be compacted to at least 95 percent of the maximum dry density as determined by ASTM D1557. Flexible base materials should be moisture conditioned to between optimum and plus three (+3) percentage points of the optimum moisture content during compaction. Flexible base materials should meet all requirements specified in 2004 TxDOT Standard Specification Item 247, Type A, Grade 1 or 2.

CONSTRUCTION CONSIDERATIONS

PSI should be retained to provide observation and testing of construction activities involved in the foundations, earthwork, and related activities of this project. PSI cannot accept any responsibility for any conditions which deviate from those described in this report, nor for the performance of the foundations if not engaged to also provide construction observation and testing for this project. Drainage Concerns Water should not be allowed to collect in the foundation excavations, on foundation surfaces, or on prepared subgrades within the construction area either during or after construction. Undercut or excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater, groundwater, or surface runoff. Final grading should be designed to promote positive drainage away from the structures and pavements. Soil areas within ten (10) feet of the structure should slope at a minimum of five (5) percent away from the building. Patios and concrete hardscape should slope at two (2) percent away from the building. Roof leaders and downspouts

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 33

should discharge onto paved surfaces sloping away from the structure or into a closed pipe system which outfalls to the street gutter pan or directly to the storm drain system. Adjacent pavements and hardscape should slope away from the building. Roof leaders and downspouts should discharge onto paved surfaces sloping away from the structure or into a closed pipe system which outfalls to the street gutter pan or directly to the storm drain system. Moisture Sensitive Soils/Weather Related Concerns Soils are sensitive to disturbances caused by construction traffic and changes in moisture content. During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support capabilities. In addition, soils which become wet may be slow to dry and thus significantly retard the progress of grading and compaction activities. It will, therefore, be advantageous to perform earthwork and foundation construction activities during dry weather. Excavations Typically, soils and weathered rock penetrated by geotechnical augers can be removed with conventional earthmoving equipment. However, excavation equipment varies, and field refusal conditions may vary. Generally, the geologic process is erratic and variations can occur. The Edwards Limestone Formation in the project area is present at or near the existing ground surface. Variability in the competency of the bedrock encountered at the site should be anticipated during excavation activities and may be more pronounced in areas not explored by our borings. Difficult excavation conditions requiring heavy duty rock ripping equipment should be anticipated in the project budget and schedule for this site. The contractors should select equipment appropriate for excavation of the soils/rock present at this site. It should be noted that excavation equipment varies and field conditions may vary. Generally, geologic processes (such as alluvial deposition, faulting, weathering, etc.) are erratic and large variations can occur in small lateral distances. Details regarding “means and methods” to accomplish the work (such as excavation equipment and technique selection) are the sole responsibility of the project contractor. The comments contained in this report are based on the observations of small diameter boreholes excavated by continuous flight auger drilling methods. The foundation drilling contractor at this site should be prepared for hard drilling conditions with high torque drilling equipment and tooling. The Occupational Safety and Health Administration (OSHA) Safety and Health Standards (29 CFR Part 1926, Revised October 1989), require that excavations be constructed in accordance with the current OSHA guidelines. Furthermore, the State of Texas requires that detailed plans and specifications meeting OSHA standards be prepared for trench and excavation retention systems used during construction. We understand that these regulations are being strictly enforced, and if they are not closely followed, the owner and the contractor could be liable for

PROPOSED SOLEA MULTI-FAMILY DEVELOPMENT PSI PROJECT NO.: 0312-1165-2 HARDY OAK BOULEVARD & STONEWAY DRIVE AUGUST 26, 2015 SAN ANTONIO, TEXAS

PROFESSIONAL SERVICE INDUSTRIES, INC. PAGE 34

substantial penalties. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and Federal safety regulations. We are providing this information solely as a service to our client. PSI does not assume responsibility for construction site safety or the contractor's or other parties’ compliance with local, state, and Federal safety or other regulations.

REPORT LIMITATIONS The recommendations submitted in this report are based on the available subsurface information obtained by PSI and design details furnished by the client for the proposed project. If there are any revisions to the plans for this project, or if deviations from the subsurface conditions noted in this report are encountered during construction, PSI should be notified immediately to determine if changes in the recommendations presented in this report are required. If PSI is not notified of such changes, PSI will not be responsible for the impact of those changes on the project. The Geotechnical Engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional Geotechnical Engineering practices in the local area. No other warranties are implied or expressed. This report should not be copied, except in its entirety, without the written consent of PSI. The Geotechnical Engineer should be included in this project as the project plans progress. As noted previously, addition field exploration (to include observations and borings) within the retaining wall areas is needed to refine the retaining wall geotechnical parameters provided in this report and to analyze the global stability of the new slopes. Furthermore, the Geotechnical Engineer should be retained and provided the opportunity to review the final design plans and specifications to check that our engineering recommendations have been properly incorporated into the design documents. At that time, it may be necessary to submit supplemental recommendations. If PSI is not retained to perform these functions, PSI will not be responsible for the impact of those conditions on the project. This report has been prepared for the exclusive use of Mr. Robert Smith, P.E., of Kimley-Horn, and his design team, for the specific application of the subject site development with the proposed Solea Multi-family Development described in this report.

APPENDIX

SO

LEA

STO

NE

OAK

PR

EPAR

ED

FOR

STR

EA

MR

EA

LTY

PAR

TNER

NORTH

PR

ELI

MIN

AR

YG

RAD

ING

PLA

N

1

August 26, 2015

DateProject Name and LocationProposed Solea Multi-family Development

Hardy Oak Boulevard

Professional Service Industries, Inc.

BORING LOCATION PLAN

PSI Project No.

(Boring Locations are Approximate)

Not to Scale 0312-1165-2

San Antonio, Texas 78258

B-13

B-1

B-14

B-15

B-4 B-6B--7 B-9

B-8

B-12

B-5

B-3

B-2

B-10

B-11

4

2

2

LIMESTONE, light tan, VERY HARD - trace dark gray-brown Clay

- light grayish-white

Boring terminated at a depth ofapproximately 15 feet.

50/4"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-1

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

LIMESTONE, light grayish-white,VERY HARD

- light gray

Boring terminated at a depth ofapproximately 15 feet.

50/3"

50/1"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-2

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

1LIMESTONE, light gray, VERY HARD

- white

Boring terminated at a depth ofapproximately 25 feet.

50/1"

50/1"

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 25.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-3

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

7411

3

2

34CLAY (CH), with LIMESTONE Gravel,dark gray-brown, HARD

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 25 feet.

4050/1"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-4

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

8815

3

3

38Sandy CLAY (CH), with LIMESTONEGravel, dark gray-brown, HARD - trace organics immediately belowground surfaceLIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 25 feet.

5050/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-5

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

>>

14

5

3

CLAY (CH), trace LIMESTONEGravel, dark gray-brown, HARD

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/1"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-6

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

6

4

4

LIMESTONE, tlight grayish-white,VERY HARD - trace dark gray-brown Clay atground surface

Boring terminated at a depth ofapproximately 15 feet.

50/1"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-7

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-8

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

LIMESTONE, light grayish-white,VERY HARD - trace dark gray-brown Clay nearground surface

Boring terminated at a depth ofapproximately 15 feet.

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-9

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

2

1

1

CLAY (CH), trace LIMESTONEGravel, dark gray-brown, HARD

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/1"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-10

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

2 453

1

1

24LEAN CLAY (CL), trace LIMESTONEGravel, dark gray-brown, HARD

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

2050/2"

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

56

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 20.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-11

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

1

2

1

CLAY (CH), trace LIMESTONEGravel, dark gray-brown, HARD

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 20 feet.

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 20.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-12

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

2

1

1

LIMESTONE, light tan, VERY HARD - trace dark gray-brown Clay nearground surface

Boring terminated at a depth ofapproximately 15 feet.

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-13

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/5/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

2

2

1

LIMESTONE, light grayish-white,VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/0"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-14

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

4

1

1

CLAY (CH), trace LIMESTONEGravel, dark gray-brown, HARD

LIMESTONE, light tan, VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/2"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-15

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

1

1

2

LIMESTONE, light tan, VERY HARD

Boring terminated at a depth ofapproximately 15 feet.

50/2"

50/0"

50/0"

50/0"

50/0"

50/0"

DEPTH TO GROUND WATER

WC

PLA

ST

IC L

IMIT

COMPLETION DEPTH: 15.0 Feet

20 40 60PLA

ST

ICIT

YIN

DE

X

%R

QD

%R

QD

%R

QD

BORING B-16

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation:

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE: 8/4/15

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H,

FT

.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Solea Multi-Family DevelopmentHardy Oak Boulevard & Stoneway Drive; San Antonio, Texas 78258

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

ALU

ES

SP

T (

N)

&T

CP

(T

)V

ALU

ES

UN

CO

NF

. CO

MP

.(T

SF

)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

031

2-1

165

-2.G

PJ

RB

EN

NE

TT

GW

.GD

T 8

/22/

15

Professional Service Industries, Inc. • Three Burwood Lane • San Antonio, TX 78216 • Phone 210/342-9377 • Fax 210/342-9401

Dear Mr. Smith: Professional Service Industries, Inc. (PSI) has completed a geotechnical engineering study for the proposed Belle Vintage Park Cut Walls project to be constructed within the proposed Belle Vintage Park Multi-Family Development on Hardy Oak Boulevard in San Antonio, Texas 78258. Mr. Robert Smith of Kimley-Horn, authorized our services on June 11, 2015, by signing PSI Proposal No. 148953-R1, dated May 28, 2015. This study was accomplished in general accordance with that proposal. The purpose of this study was to evaluate the subsurface conditions within the areas of the proposed cut-walls and develop geotechnical engineering recommendations for use in preparing design and other related construction documents for the proposed cut-walls.

PROJECT DESCRIPTION

We understand that the proposed Belle Vintage Park Multi-Family Development will be constructed on the eastern side of Hardy Oak Boulevard generally between Crescent Oaks and Mesa Loop in north San Antonio, Texas 78258. The proposed project includes multi-story buildings, perimeter cut walls, perimeter fill walls and parking as identified on the Figure 1 site plan. A geotechnical evaluation of the proposed cut walls is desired for this phase of the project design. We understand mass grading to level the project site will require cut and fill walls situated along the perimeter of the site. As indicated in Figure 1, the proposed cut walls extend along the northern bounds of the site, along the alignment of Hardy Oak Boulevard and along the southern bounds of the site. The cut walls will total approximately 1,900 linear feet. Cut depths vary from approximately 2.7 feet to 13.5 feet as indicated in Figure 1. The deepest cut of 13.5 feet is within the southern perimeter of the site. We understand that ideally near-vertical cuts within the limestone formation at the site are desired. However, options to maintain the long-term stability of the cut faces, to include batter, protective façade, and/or retaining walls are also desired. The geotechnical recommendations presented in this report are based on the available project information, the proposed cut-wall depths and locations, and the subsurface materials

June 17, 2015

Mr. Robert Smith, P.E. Kimley-Horn 10814 Jollyville Road Avallon IV, Suite 300 Austin, Texas 78759

Re: Geotechnical Recommendations Proposed Belle Vintage Park Cut-Walls Hardy Oak Boulevard San Antonio, Texas 78258 PSI Project No.: 0312-1165-CW

PSI Project No.: 0312-1165-CW Geotechnical Study 2

described in this report. If any of the noted information is incorrect, please inform PSI so that we may amend the recommendations presented in this report as appropriate. PSI will not be responsible for the implementation of our recommendations when we are not notified of changes in the project. Site Description The proposed Belle Vintage Park Multi-Family Development is located on the eastern side of Hardy Oak Boulevard between Crescent Oaks Drive and Mesa Loop in San Antonio, Texas 78258 (see Figure 2). At the time of the geotechnical field exploration the site was covered with natural brush, trees and grasses. Based upon the site plan shown in Figure 1, the project site has approximately 52 feet of negative grade difference from west to east.

SUBSURFACE CONDITIONS

Field Exploration The site subsurface conditions were evaluated by drilling a total of five (5) soil and rock borings to depths of approximately fifteen (15), twenty (20) and thirty (30) feet within the areas of the proposed cut walls. The borings were located in the field by PSI personnel who measured or approximated distances from known site reference points to each boring location. The boring locations should therefore be considered approximate. The approximate locations of the borings are indicated in Figure 1. The borings were advanced with a truck-mounted drill rig utilizing solid flight auger and rock coring drilling methods. Selected soil and rock core samples obtained during the field exploration were transported to our San Antonio Laboratory where they were reviewed by geotechnical engineering personnel. Representative samples were tested to determine selected engineering properties and characteristics for use in our evaluation of the project site. Drilling and sampling, laboratory testing and soil-rock classification were accomplished in general accordance with ASTM procedures.

Figure 1. Proposed Belle Vintage Park Multi-Family Development

B-1 (15ft.)

B-2 (20ft.) B-3 (30ft.)

B-4 (15ft.)

B-5 (20ft.)

PSI Project No.: 0312-1165-CW Geotechnical Study 3

Figure 2. Project Site Location – Hardy Oak Boulevard between Crescent Oaks and Mesa Loop, San Antonio, Texas 78258

Site Geology We reviewed the San Antonio Sheet of the Geologic Atlas of Texas1 to determine the geologic setting of the project site and surrounding areas. The Geologic Atlas of Texas was developed by the Bureau of Economic Geology at The University of Texas using aerial photography, data from various oil and gas exploration companies, and very limited ground reconnaissance. Our review indicates that the proposed site area is mapped within the Edwards Limestone, (Ked) of Lower Cretaceous Geologic Age. The Edwards Limestone is interpreted to have been deposited on a shallow carbonate shelf, usually with restricted access of open-marine water leading to hypersaline waters and local deposition of sulfate minerals. The Edwards Group lies within the complexly faulted Balcones Fault Zone, extending eastward from the Devils’ River Limestone. It has been pervasively recrystallized and altered by percolating fresh water and is fine to course grained with abundant chert nodules. This formation is about 300 to 500 feet thick. Subsurface conditions are typically more erratic at or near geologic contacts and may result in distinct variations over short horizontal or vertical distances within, intermediate and away from the boring locations. These formations are known to include highly expansive soils in this region. Karst features are formed in limestone, dolomite, or gypsum by dissolution. Our study did not include identification of any potential caves on the site. PSI is not aware of any significant Karst features in the general vicinity of the project site. However it is possible that caves and significant cavities can also exist on this site which could cause construction delays and possibly future adverse building performance. A geophysical study of this site could indicate the presence and potential impact of these features.

1 Geologic Atlas of Texas – San Antonio Sheet, Bureau of Economic Geology, University of Texas at Austin, 1974 (Revised 1983)

General Project Site Perimeter

PSI Project No.: 0312-1165-CW Geotechnical Study 4

FAT CLAY (CH) Clayey SAND (SC) w/Gravel

Subsurface Conditions Based on the field and laboratory data, the general stratigraphy at the explored locations consists primarily of a surface veneer of FAT CLAY (CH) in a hard condition and Clayey GRAVEL (GC). These materials overlying very hard LIMESTONE. The rock cores of LIMESTONE material retrieved during the field exploration indicate that the rock mass is heavily fractured and permeated with clay seams, clay pockets and voids. The 5-foot core recovery rates varied from 12 to 88 percent. Clay-filled voids are present as indicated at boring B-3 between the approximate depths of 6 to 8 feet. The Rock Quality Designation (RQD) ranged from 0 to 22 percent, indicative of very poor rock quality. A stratigraphic profile for this site is presented in Figure 3 and is based upon the five test borings conducted during the field exploration. Also shown in Figure 3 is the approximate elevation of the borings as estimated from the provided site plan (Figure 1) with notations of the approximate range of anticipated cuts for the proposed cut-walls.

Figure 3. General Stratigraphy at the Approximate Cut-Wall Boring Locations with the Approximate Cut Depth(s)

Ap

pro

x. 5

.8 t

o 7

.1 f

eet

of

cut

Ap

pro

x. 9

.7 t

o 1

1.2

feet

of

cut

App

rox.

Ele

vatio

n (f

t.)

Ap

pro

x. 1

3.5

feet

of

cut

Ap

pro

x. 1

0.8

to 1

1.5

feet

of

cut

Ap

pro

x. 7

.8 t

o 9

.7 f

eet

of

cut

Weathered LIMESTONE

VOID LEAN CLAY (CL)

PSI Project No.: 0312-1165-CW Geotechnical Study 5

Groundwater Information The borings were advanced using dry drilling techniques to their full depths which facilitates groundwater detection during drilling operations. Groundwater was not detected within the evaluated boring depths during the drilling operations or upon completion of the drilling operations. Upon completion of field exploration, the boreholes were backfilled with cuttings. Groundwater levels are influenced by seasonal and climatic conditions which generally result in fluctuations in the elevation of the groundwater level over time. In addition, transient ‘perched’ water can perch within granular layers, above relatively impermeable layers within the subsurface at the bedrock interface or within the solution channels within the limestone. Therefore, the foundation contractor should check groundwater conditions just prior to foundation excavation activities. Information concerning groundwater at the boring locations is noted on the appended boring logs.

EVALUATION AND RECOMMENDATIONS

Geotechnical Discussion Based upon the information gathered from our soil/rock borings located at the proposed cut perimeter of the site, laboratory testing of retrieved field soil and rock core samples, and observation of recent rock cuts at adjacent and nearby sites, the following observations are made:

Limestone is present within approximately two (2) feet of the existing ground surface at the boring locations.

The upper 2 to 5 feet of limestone is heavily weathered and contain significant gravel pieces of material. The gravelly characteristic within the rock mass generally indicates a heavily-fractured bedrock condition.

The deeper (> 5 feet) of limestone is weathered, contains clay seams and clay-filled voids, and is highly-jointed/fractured.

The rock quality designation (RQD) within the upper ~30 feet of limestone is ‘very poor’ which is generally indicative of a heavily fractured/jointed rock mass.

We anticipate that vertical rock cuts may be made within the general locations of our test borings; however, spall from the face of the rock cut may be expected depending upon the localized fracturing of the rock mass. As the exposed rock cut weathers further spall may be anticipated as rain and drought erode exposed clay-filled voids and seams and potentially loosen rock joints. Appropriate mitigation techniques implemented during design and construction could include the installation of rockfall netting, the design/construction of conventional or tie-back type retaining walls, benching and sloping the vertical cuts into more stable configurations and/or grouting the face of the cuts with materials less susceptible to raveling. Tiered walls, if incorporated into the site, should be reviewed by PSI. The option(s) selected will be a function of the height of the cut and the infrastructure in front of the cut. It is noted that more expensive options, such as the placement of retaining walls and/or tiered walls in front of the cut, may be considered only for finite sections identified by the Client as ‘high-value/hazard’ sections. Therefore, the required length of such options would not necessarily extend the entire length of the cut. Recommendations for retaining walls placed in front of the cuts are provided in the subsequent sections of this report. Based on our visual observations at and nearby the site and a review of the results of the rock cores, it is our opinion that the determination as to the required protection for the cut rock faces would be best made after the walls are cut. The walls should remain vertical for the maximum 13 foot high cuts, but the degree of protection required from falling rocks or

PSI Project No.: 0312-1165-CW Geotechnical Study 6

sloughing over time would be a function of the cut height, the competency of the rock at a particular location, and the relative risk of falling rocks at a particular location on the site. Based on observations of nearby cuts, cut faces could consist of solid competent limestone, highly fractured weathered limestone or potentially a hard gravelly clay. Difficult excavation should be anticipated at this site in areas of the project elements including cut walls, floor slabs or foundations, underground utilities, or other areas of excavation. Due to sloping site conditions and the presence of very hard limestone, appropriate measures should be taken in the design to redirect surface water away from foundation areas. Drainage systems should be installed to remove infiltrating water or groundwater from becoming perched atop the limestone, travelling down-gradient toward the lower-level areas and ponding behind or penetrating lower-level building areas. The following design recommendations have been developed based on the previously described project characteristics and subsurface conditions encountered. If there are any changes in the project criteria, including the planned layout of the site, a review must be made by PSI to determine if any modifications in the recommendations will be required. The findings of such a review should be presented in a supplemental report. Once final design plans and specifications are available, a general review by PSI is strongly recommended as a means to check that the conditions assumed in the project description are correct and that the earthwork and foundation recommendations are properly interpreted and implemented. Retaining Wall Recommendations Placement of a retaining wall in front of a proposed cut or in front of ‘high-value/hazard’ section of a cut should utilize the following design recommendations. Foundation wall footings bearing in competent limestone may utilize an allowable net soil bearing pressure of 4,000 psf. Where foundations bear on materials other than competent limestone, such as compacted clay subgrade, compacted select fill or compacted general fill, an allowable bearing pressure of 2,000 psf may be used; however, PSI must be consulted prior to the final design and construction where this condition may exist so that our recommendations can be reviewed and revised, as appropriate. Additional borings may be required at a later date to supplement the engineering evaluations contained in this report.

Equivalent fluid pressures for a horizontal backfill surface for various backfill materials as outlined in this section may be used as the horizontal components of the active earth pressure, or at-rest earth pressure on the retaining walls, as appropriate, dependent on the amount of horizontal movement that can occur along the vertical wall height. The decision as to whether the active or at-rest case should be used for design will depend on the rigidity of the retaining walls. The active earth pressures should be used where the wall can experience some degree of lateral movement. The at-rest earth pressures may be used for foundation walls where the top of the wall is rigidly restrained such as when it is part of a building or building foundations (i.e. basement walls).

The parameters in Table 1 may be used to design below grade foundation retaining wall structures provided that the indicated backfill occupies the entire active zone. The “active zone” consists of the area behind the retaining structure within a boundary created by a 45 degree angle drawn from the heel of the structure and extending upward to the ground surface. The equivalent fluid densities shown in the table do not include any safety factors.

It is important to note that the fluid pressures only represent drained backfill or using total unit

PSI Project No.: 0312-1165-CW Geotechnical Study 7

weight of the soil. If there is a possibility of submergence or accumulation of water within the backfill area, then buoyant unit weights of the soil should be multiplied by the earth pressure coefficient to arrive at buoyant equivalent fluid pressures in addition to hydrostatic pressures of 62.4 pcf per foot of depth. Other buildings, slopes or structures should be spaced at sufficient distances such that they do not impose any additional loads on the walls, or that any additional lateral loads due to surcharge also be included in the design.

Table 1. Summary of Retaining Wall Parameters

Compacted Backfill Material

Total Unit

Weight, pcf

Active Condition* At-Rest Condition*

Earth Pressure

Coefficient

Equivalent Fluid Pressure,

psf per foot depth

Earth Pressure

Coefficient

Equivalent Fluid Pressure,

psf per foot depth

On-site Clayey Materials 125 0.49 61 0.66 82

Imported, Clean Sand 125 0.33 42 0.50 63

Crushed Limestone Select Fill Or

Imported, Clean Gravel 130 0.27 35 0.43 56

* - Parameters provided consider “drained” conditions

For sliding resistance, a coefficient of friction of 0.35 between the base of the foundation elements and underlying material is recommended. In addition, a passive resistance equal to an equivalent fluid weighing 250 pcf acting against the foundation may be used to resist lateral forces. The upper 18 inches of passive resistance should be neglected unless the ground immediately in front of the retaining wall is covered with concrete or pavement. The above values are ultimate values, and an appropriate safety factor shall be used in design.

Global Slope Stability Analyses Based on a review of the Kimley-Horn site plan (see Figure 1), the proposed cut wall at the south-southeastern corner of the site will require the deepest cut. The anticipated cut in this area will be approximately 13½ feet. The global slope stability analysis was conducted for this deepest-cut geometry and for extreme strength conditions for the cut materials. Specifically, the slope stability was evaluated for an infinitely-strong limestone material overlain by a 2-foot thick veneer of fat clay (Condition 1) and for a heavily-fractured limestone/gravel material overlain by a 2-foot thick veneer of fat clay (Condition 2). The global slope stability analyses for the single geometry evaluated for the two material strength conditions (i.e., Conditions 1 and 2) were conducted using the RocScience computer program, Slide. We performed the analyses considering short term (undrained) strength conditions. The undrained strength values assigned to the clay and fracture limestone/gravel were estimated from experience with similar materials from previous studies performed in this area. The assumptions considered are summarized in Table 2. Figure 4a shows the calculated slip surface and factor of safety for an infinitely-strong limestone material overlain by a 2-foot thick veneer of fat clay. Figure 4b shows the calculated slip surface and factor of safety for a heavily-fractured limestone/gravel material overlain by a 2-foot thick veneer of fat clay. The calculated factors of safety for the two extreme conditions are greater than 10 and 1.4, respectively.

PSI Project No.: 0312-1165-CW Geotechnical Study 8

Table 2. Estimated Material Strength Parameters

Material Type Short Term (Undrained) Parameters

Soil Unit Weight

FAT CLAY c=1,500 psf, ɸ = 0° ɣ = 120 pcf

Heavily-Fractured LIMESTONE/GRAVEL

c=0 psf, ɸ = 35° ɣ = 120 pcf

Intact LIMESTONE Infinite strength ɣ = 120 pcf

The calculated factors of safety against slope failure are summarized in Table 3. No surcharge load was assumed above the cut. The calculated failure slip surface for the short-term (undrained) soil/rock strength conditions are provided in Figures 4a and 4b, respectively.

Table 3. Calculated Factors of Safety against Slope Failure - Exhibit B and C Sites

Embankment Cross-section Short-term Undrained Analysis

Vertical 13½ foot cut

2-feet Fat CLAY (CH) overlying intact LIMESTONE

>>10

2-feet Fat CLAY (CH) overlying heavily-fractured

LIMESTONE/GRAVEL 1.4

Figure 4a. Calculated Global Factor of Safety for a 13 ½ cut into Intact LIMESTONE

PSI Project No.: 0312-1165-CW Geotechnical Study 9

Figure 4B. Calculated Global Factor of Safety for a 13 ½ cut into Heavily-Fractured

LIMESTONE/GRAVEL

CONSTRUCTION CONSIDERATIONS Drainage Drainage systems should be installed behind and along the base of retaining walls to collect and remove groundwater to prevent a buildup of hydrostatic pressure on the walls. A subdrain system should consist of a minimum four (4)-inch perforated pipe placed at the base of the retaining wall and surrounded by ASTM C33 Size #57 stone completely wrapped in Mirafi 140N or 160N filter fabric, or equivalent as approved by the geotechnical engineer. The drainrock wrapped in fabric should be at least twelve (12) inches wide and extend from the base of the wall to within two feet of the ground surface. The upper two feet of backfill should consist of compacted native soil or other impervious pavement. The retaining wall drainage system should be sloped to outlet pipes draining away from the foundations or pumped to the surface as grades require. The subdrain system should be inspected periodically to ensure functionality as failure of the subdrain system will affect the design lateral earth pressures and the retaining wall stability. As an alternative to the drainrock and fabric, a prefabricated drainage composite (drainboard) such as MiraDRAIN 2000, or approved equivalent, may be used behind the retaining wall. The drainboard should extend from the base of the wall to within two feet of the ground surface. The permeable side of the drainboard composite should be in direct contact with the perforated drainpipe, and should be wrapped around the pipe to prevent soil intrusion into the pipe, or otherwise a filter fabric sock can be used. The drainboard should be installed in accordance with the manufacturer’s specifications. If provisions to prevent accumulations of water behind the walls are not provided, the walls should be designed to resist the full hydrostatic head in addition to the lateral earth pressures based on buoyant unit weights. In addition, prior to backfilling if a granular backfill is used, the excavated area should be lined with a geotextile filter-fabric capable of preventing the

PSI Project No.: 0312-1165-CW Geotechnical Study 10

migration of soil fines. This will reduce the potential for soil to be transported into the coarse backfill which could plug the drain system and create hydrostatic forces on the wall and saturate the footing bearing soils. Soil migration may also lead to soil support loss or the formation/acceleration of subsidence. It should be noted that the relatively deep cuts proposed at the site for the retaining walls (and buildings) could expose fractures or gravel zones where groundwater seepage may occur. PSI can provide recommendations for a system to capture and divert these seepage waters upon exposure and upon request. Any seepage noted during construction should be reported to PSI. Material Strength Considerations Appropriate benching and keying should be performed to reduce the probability for fills placed on sloping ground to slide downhill. Generally the provisions of Appendix J of the International Building Code are considered to be good guidelines for the benching of fills into hillsides. It should be noted that the integrity of cut-exposed materials (to include the site limestone material) may degrade over time. Weathering and wetting may result in reduced strength properties. The potential for softening of clayey materials exposed from cut operations should be considered during excavation operations and in the design and construction of the retaining walls. PSI should be consulted during the design of any retaining walls, and detailed drawings of retaining walls should be provided for evaluation and confirmation of the recommendations provided herein. PSI should be present to document the construction of any retaining walls and to perform conformance testing on associated foundation, backfill and retaining wall materials. Rock Cut Wall Discussion The vertical rock cuts proposed at the site are generally anticipated to be stable in the short term provided that PSI’s recommendations are implemented during construction. Based on the geotechnical exploration conducted to date and our observations on the site, it is anticipated that certain rock cuts may be susceptible to raveling and rockfall through various segments of the walls. This is based on the observed clay-filled seams and voids within the limestone which may weather and exhibit lower strength characteristics upon increases in moisture content, the observed low rock coring Rock Quality Designation (RQD) determined through our core run of the limestone encountered in all of the borings and visual observations of nearby rock cuts. The following outlines various measures that have been used successfully for this purpose:

Concrete Catchment Wall – This is usually a tall concrete curb placed about 5 to 8 feet from the rock face used to catch falling rocks and provide a barrier to pedestrians to the bottom the rock face – This is commonly used for this situation and is economical.

Gunite the Wall – This has been used successfully in this area. Downside is aesthetics and hydrostatic pressure resistance.

Wire Netting – Would hold the rock face intact if connected properly and corrosion resistant wire of sufficient strength is utilized. Not used often in this area.

Retaining Wall – Most expensive option to be used in high risk areas. Could be conventional cantilever retaining wall or an MSE wall. The wall could also be tied back into the rock face.

PSI Project No.: 0312-1165-CW Geotechnical Study 11

Gabion Walls - Historically used to protect slopes on waterways, gabion walls can also be used to protect cut weathered rock faces. This method is being utilized in this area. These are wire baskets that contain limestone cobbles stacked at a slight batter. They can also be connected to the slope. They would protect the rock face from deterioration from rain and provide confinement.

As previously mentioned, the optimal system for a particular location depends on the cut wall height, the quality of the rock face and the risk of falling rocks in a particular location. This will best be determined once the cut is exposed. Plan Reviews and Observation and Testing During Construction As design plans are believed to be still largely conceptual, and final design plans may change, PSI should be included in the evolving design process such that more specific analyses and recommendations, including global stability analyses, can be performed as plans progress. It is considered necessary that PSI be provided the opportunity to review the structural foundation, civil grading and retaining walls plans prior to their issuance for construction. The purpose of this review is to assess the general compliance of the plans with the geotechnical recommendations provided by this firm and the incorporation of these recommendations into the project plans and specifications. Prior to the commencement of grading, a meeting should be held at the site with the developer, grading contractor, retaining wall contractor, civil engineer and the geotechnical consultant to discuss the work schedule and geotechnical aspects of the grading. Based on our completed explorations and understood geology of the site, it is critical for an engineer with PSI to observe cut slopes and prepared subgrades during construction. All cut slopes and cut walls are recommended to be observed by an engineer with PSI. Should the exposed soil conditions during construction indicate that borings will be required; such as if a deep soil profile were encountered on site, PSI can provide recommendations for borings at that time. Seismic Design Parameters For the purposes of seismic design, based on the encountered site conditions and local geology, we interpreted the subsurface conditions to satisfy the Site Class B (rock) criteria for use at this site as defined by the International Building Code (IBC). The site class is based on the subsurface conditions encountered at our soil borings, the results of field and laboratory testing, our experience with similar projects in this area, and considering the site prepared as recommended herein. Table 4 provides recommended seismic parameters for the project based on the 2012 edition of the IBC.

Table 4. Recommended Design Seismic Parameters (Site Class B)

Seismic Parameter IBC 2012

0.2 sec (SS) 0.073 g

1.0 sec (S1) 0.030 g

Site Coefficient 0.2sec, Fa 1.0

Site Coefficient 1.0 sec, Fv 1.0

0.2 sec (SDS) 0.049 g

1.0 sec (SD1) 0.020 g

PSI Project No.: 0312-1165-CW Geotechnical Study 12

Excavations Typically, soils and weathered rock penetrated by geotechnical augers can be removed with conventional earthmoving and pier drilling equipment. However, excavation equipment varies, and field refusal conditions may vary. Generally, the geologic process is erratic and variations can occur. The Edwards Formation in the project area is described as consisting of limestone. Difficult excavation conditions should be anticipated in the project budget and schedule for this site. The contractors should select equipment appropriate for excavation of the soils/rock present at this site. It should be noted that excavation equipment varies and field conditions may vary. Generally, geologic processes (such as alluvial deposition, faulting, weathering, etc.) are erratic and large variations can occur in small lateral distances. Details regarding “means and methods” to accomplish the work (such as excavation equipment and technique selection) are the sole responsibility of the project contractor. The comments contained in this report are based on the observations of small diameter boreholes excavated by continuous flight auger drilling methods. The foundation drilling contractor at this site should be prepared for hard drilling conditions with high torque drilling equipment and tooling. The Occupational Safety and Health Administration (OSHA) Safety and Health Standards (29 CFR Part 1926, Revised October 1989), require that excavations be constructed in accordance with the current OSHA guidelines. Furthermore, the State of Texas requires that detailed plans and specifications meeting OSHA standards be prepared for trench and excavation retention systems used during construction. We understand that these regulations are being strictly enforced, and if they are not closely followed, the owner and the contractor could be liable for substantial penalties. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and Federal safety regulations. We are providing this information solely as a service to our client. PSI does not assume responsibility for construction site safety or the contractor's or other parties’ compliance with local, state, and Federal safety or other regulations. Report Limitations The recommendations submitted in this report are based on the available subsurface information obtained by PSI and design details furnished by the client for the proposed project. If there are any revisions to the plans for this project, or if deviations from the subsurface conditions noted in this report are encountered during construction, PSI should be notified immediately to determine if changes in the recommendations presented in this report are required. If PSI is not notified of such changes, PSI will not be responsible for the impact of those changes on the project. The Geotechnical Engineer warrants that the findings, recommendations, specifications, or

PSI Project No.: 0312-1165-CW Geotechnical Study 13

professional advice contained herein have been made in accordance with generally accepted professional Geotechnical Engineering practices in the local area. No other warranties are implied or expressed. This report should not be copied, except in its entirety, without the written consent of PSI. The Geotechnical Engineer should be included in this project as the project plans progress. As noted previously, addition field exploration (to include observations and borings) within the retaining wall areas is needed to refine the retaining wall geotechnical parameters provided in this report and to analyze the global stability of the new slopes. Furthermore, the Geotechnical Engineer should be retained and be provided the opportunity to review the final design plans and specifications to check that our engineering recommendations have been properly incorporated into the design documents. At that time, it may be necessary to submit supplemental recommendations. If PSI is not retained to perform these functions, PSI will not be responsible for the impact of those conditions on the project. This report has been prepared for the exclusive use of Mr. Robert Smith of Kimley-Horn and his design team, for the specific application of the subject site cut-walls within the proposed Belle Vintage Park Multi-family Development described in this report Closing We appreciate the opportunity to provide these recommendations and look forward to continuing participation during the upcoming design and construction phases of this project. If you have any questions pertaining to this report, or if we may be of further service, please contact our office. Respectfully submitted, PROFESSIONAL SERVICE INDUSTRIES, INC. Texas Firm Registration No. F-3307 Dexter Bacon, P.E. Chief Engineer

6/17/2015

7

0

35

157

43

15

11Clayey SAND, with Gravel, lightbrown, MEDIUM DENSE to DENSE

Weathered LIMESTONE, light tan,VERY HARDCrystaline LIMESTONE with manysmall solution voidsVertical and horizontal seams ofcemented red ClayClay-filled pockets within theLIMESTONE matrix

Very Poor RQD indicating ahighly-jointed and clay-seamedWeathered LIMESTONE matrix - clay seams, light tan andrusty-brown @ ~7 feet

- clay seams, light tan andrusty-brown @ ~10 feet

- clay seams, light tan andrusty-brown @ ~12 feet

Boring terminated at a depth ofapproximatey 15 feet.

1150/4"

50/0"

311

25

DEPTH TO GROUND WATER

WC

PL

AS

TIC

LIM

IT

COMPLETION DEPTH: 15.0 Feet

20 40 60PL

AS

TIC

ITY

IND

EX

%R

QD

%R

QD

%R

QD

BORING B-1

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation: 1200.0

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE:

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H, F

T.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Belle Vintage ParkHardy Oak & Stoneway Drive; San Antonio, Texas

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

AL

UE

S

SP

T (

N)

&T

CP

(T

)V

AL

UE

S

UN

CO

NF

. C

OM

P.

(TS

F)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

03

12-1

165.

GP

J R

BE

NN

ET

T G

W.G

DT

6/

10/1

5

>>

0

0

0 137

58

47

47

Veneer of FAT CLAY (CH), darkbrown, VERY STIFFoverlying Weathered LIMESTONE

Weathered LIMESTONE, light tan,VERY HARD

- void

Crystaline LIMESTONE with manysmall solution voidsVertical and horizontal seams ofcemented red ClayClay-filled pockets within theLIMESTONE matrix

Very Poor RQD indicating ahighly-jointed and clay-seamedWeathered LIMESTONE matrix

Boring terminated at a depth ofapproximately 20 feet.

19

50/5"

50/0"

224

DEPTH TO GROUND WATER

WC

PL

AS

TIC

LIM

IT

COMPLETION DEPTH: 20.0 Feet

20 40 60PL

AS

TIC

ITY

IND

EX

%R

QD

%R

QD

%R

QD

BORING B-5

END OF DRILLING (ft.): NONE OBSERVEDSEEPAGE (ft.): NONE ENCOUNTERED

Elevation: 1200.0

LOCATION: See Boring Location Plan

DELAYED WATER LEVEL (FT): N/A

SA

MP

LES

DATE:

2.0 4.0 6.0W

AT

ER

Elevation:

LL

LIQ

UID

LIM

IT

% R

ET

AIN

ED

#4

DE

PT

H, F

T.

%R

QD

MO

IST

UR

EC

ON

TE

NT

SOIL DESCRIPTION

% P

AS

SIN

G #

200

5

10

15

20

25

30

% R

EC

PL

SY

MB

OL

Proposed Belle Vintage ParkHardy Oak & Stoneway Drive; San Antonio, Texas

Project No. 0312-1165

SP

T (

N)

&T

CP

(T

)V

AL

UE

S

SP

T (

N)

&T

CP

(T

)V

AL

UE

S

UN

CO

NF

. C

OM

P.

(TS

F)

UN

IT D

RY

WT

.(L

B/C

U F

T)

UNC CMP (TSF)HAND PEN (TSF)

GE

O T

ES

TS

03

12-1

165.

GP

J R

BE

NN

ET

T G

W.G

DT

6/

10/1

5

>>

SOLEA STONE OAK

ATTACHMENT B ‐ ACOUSTICAL REPORT

21

SOLEA STONE OAK

ATTACHMENT C ‐ ENERGY COMPLIANCE REPORTS

22

SOLEA STONE OAK

ATTACHMENT D ‐ EXPECTED SUBMITTALS

23

NOTES:

SUBMITTAL 

NO.

DESCRIPTION REVIEW BY

1 TESTING  REPORTS ‐ SOILS CIVIL, GEOTECH2 TESTING  REPORTS ‐ SUBSURFACE CIVIL, GEOTECH3 TESTING  REPORTS ‐ PAVING CIVIL, GEOTECH4 TESTING  REPORTS ‐ SITE CONCRETE CIVIL, LANDSCAPE5 TESTING  REPORTS ‐ BLDG CONCRETE STRUCTURAL6 TESTING  REPORTS ‐ SPECIAL INSPECTIONS ALL DISCIPLINES7 PAVING FINISH AND BASE MATERIALS CIVIL8 MANHOLES, UTILITY BOXES AND BEDDING CIVIL9 DOMESTIC WATER PIPING CIVIL10 WASTE WATER PIPING CIVIL11 STORM DRAIN CIVIL12 SITE FIRE PROTECTION CIVIL, SPRINKLER DESIGN, ARCHITECT13 GATES CIVIL, ARCHITECT15 IRRIGATION PIPING AND CONTROLS LANDSCAPE16 TOP SOIL LANDSCAPE17 PLANTING LANDSCAPE, ARCHITECT18 PLANTING ACCESSORIES LANDSCAPE21 PAVILION LANDSCAPE, STRUCTURAL, ARCHITECT, MEP23 SITE CONC MIX DESIGNS CIVIL, LANDSCAPE24 STANDARD WT CONC MIX DESIGNS STRUCTURAL25 LT WT CONC MIX DESIGNS STRUCTURAL26 GYPCRETE MIX DESIGNS STRUCTURAL29 CONCRETE STAINS AND SEALERS ARCHITECT, INTERIOR30 CONCRETE WALL REINFORCEMENT STRUCTURAL31 SLAB REINFORCEMENT STRUCTURAL32 VAPOR BARRIERS STRUCTURAL33 PARKING CONTROL CIVIL, ARCHITECT34 BOLLARDS CIVIL, ARCHITECT35 PAVERS ARCHITECT36 WATERSTOP ARCHITECT, STRUCTURAL37 BRICK ARCHITECT38 CMU ARCHITECT, STRUCTURAL39 MORTAR AND GROUT MIX ARCHITECT, STRUCTURAL40 MASONRY ACCESSORIES ARCHITECT41 FRAMING, SHEATHING, ROUGH CARPENTRY STRUCTURAL, ARCHITECT42 FLOOR FRAMING SHOP DRAWINGS STRUCTURAL, ARCHITECT43 ROOF FRAMING SHOP DRAWINGS STRUCTURAL, ARCHITECT44 ROOFING, ROOF FLASHING AND ROOF ACCESSORIES STRUCTURAL, ARCHITECT45 WALL FRAMING SHOP DRAWINGS STRUCTURAL, ARCHITECT46 INTERIOR WOODWORK ARCHITECT, INTERIOR47 FINISH CARPENTRY ARCHITECT, INTERIOR48 COUNTERTOPS ARCHITECT, INTERIOR49 FINISH CARPENTRY ACCESSORIES ARCHITECT, INTERIOR50 METAL FABRICATIONS ARCHITECT, INTERIOR51 HANDRAILS AND GUARDRAILS ARCHITECT, STRUCTURAL52 ROOF ACCESS LADDER ARCHITECT53 ROUGH CARPENTRY STRUCTURAL, ARCHITECT54 DAMPPROOFING ARCHITECT

EXPECTED SUBMITTAL SCHEDULE1. HIGHLIGHT ANY DEVIATIONS FROM SPECIFIED REQUIREMENTS.2. ALL SUBMITTALS SUBJECT TO REVIEW FOR CODE COMPLIANCE.3. ALL SUBMITTALS SUBJECT TO REVIEW BY ACOUSTICAL CONSULTANT

55 WATERPROOFING ARCHITECT56 INSULATION ARCHITECT57 EXPANSION JOINT SYSTEMS ARCHITECT58 TPO ROOFING ARCHITECT61 FLASHING AND SHEETMETAL ARCHITECT62 ROOF SPECIALTIES AND ACCESSORIES ARCHITECT63 ROOF HATCH ARCHITECT64 JOINT SEALANTS ARCHITECT65 METAL DOORS AND FRAMES ARCHITECT, INTERIOR66 PREHUNG DOORS AND WINDOWS ARCHITECT, INTERIOR67 WOOD DOORS ARCHITECT, INTERIOR68 ALUMINUM ENTRANCES AND STOREFRONTS ARCHITECT, INTERIOR71 HARDWARE ARCHITECT, INTERIOR72 GLASS ARCHITECT, INTERIOR73 STUCCO ARCHITECT74 GYPSUM BOARD ASSEMBLIES ARCHITECT75 EIFS TRIM (EPS TRIM) ARCHITECT76 TILE ARCHITECT, INTERIOR77 CARPET ARCHITECT, INTERIOR78 RESILIENT FLOORING AND BASE ARCHITECT, INTERIOR79 ACOUSTICAL SOUND MAT ARCHITECT, ACOUSTIC80 PAINT ARCHITECT, INTERIOR81 TOILET PARTITIONS ARCHITECT, INTERIOR82 SIGNAGE ARCHITECT, INTERIOR83 FIRE EXTINGUISHERS ARCHITECT, INTERIOR84 TOILET AND BATH ACCESSORIES ARCHITECT, INTERIOR85 GRILLES AND SCREENS ARCHITECT86 POSTAL SPECIALTIES ARCHITECT, INTERIOR87 BICYCLE RACKS ARCHITECT, LANDSACPE88 APPLIANCES ARCHITECT, INTERIOR, MEP89 ELEVATORS ARCHITECT, MEP91 BASIC MECHANICAL MATERIALS MEP92 BUILDING SERVICE PIPING MEP93 FIRE SPRINKLER SYSTEM ARCHITECT, SPRINKLER DESIGN, MEP94 FIRE ALARM ARCHITECT, SPRINKLER DESIGN, MEP95 MECHANICAL EQUIPMENT AND SHOP DRAWINGS MEP

96 PLUMBING FIXTURES ARCHITECT, MEP97 ELECTRICAL GEAR MEP98 BASIC ELECTRICAL MATERIALS MEP99 LIGHT FIXTURES ARCHITECT, INTERIOR, MEP100 COMMUNICATIONS ARCHITECT, MEP

SOLEA STONE OAK

ATTACHMENT E ‐ THIS PAGE IS INTENTIONALLY LEFT 

BLANK

24

SOLEA STONE OAK

ATTACHMENT F ‐

THIS PAGE INTENTIONALLY LEFT BLANK

25

SOLEA STONE OAK

ATTACHMENT G ‐

THIS PAGE INTENTIONALLY LEFT BLANK

26