solar energynsl/lectures/phys20054/15lecture 3 solar...product b (p, n, ) recoil b hydrogen & helium...

15
Solar Energy Solar energy production Solar luminosity Solar radiation spectrum M =1.989·10 33 g R =6.96·10 10 cm L =3.847·10 33 erg/sec T surface 6000K

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Solar Energy

    Solar energy production

    Solar luminosity

    Solar radiation spectrum M =1.989·10

    33 g R

    =6.96·1010 cm L

    =3.847·1033 erg/sec Tsurface 6000K

  • Math and Units

    2

    27

    8

    23

    19

    7

    2

    2

    49.9311066.11

    /10998.2

    10022.6

    106022.11

    101

    11

    c

    MeVkgamu

    smc

    particlesgA

    JeV

    Jerg

    s

    mkgJ

    http://en.wikipedia.org/wiki/Electronvolt

    s

    JunitsinosityminLuL

    m

    WunitsinFluxF

    WunitsinPowerS

    JunitsinEnergyE

    KunitsineTemperaturT

    :

    :

    :

    :

    :

    2

    http://en.wikipedia.org/wiki/Electronvolt

  • Example

    s

    tons

    s

    kg

    s

    m

    ss

    mkg

    sm

    c

    EmcmE

    s

    mkgJ

    sJsergLsun

    000,280,41028.4

    103

    /1085.3

    11

    /1085.3/1085.3

    9

    2

    228

    2

    226

    1

    2

    2

    2

    2

    2633

    Solar luminosity:

    According to Einstein:

    That amount of energy can only be generated by nuclear fusion processes!

  • Nuclear masses and energy

    The mass difference is the binding energy B

    Isotopes: nuclei with Z=constant, N varies!

    22 cmNmZcM np

    22 cmNmZcMB np

    The mass M of the nucleus is smaller than the

    mass of its proton and neutron constituents!

    http://ie.lbl.gov/toimass.html

    http://nucleardata.nuclear.lu.se/database/masses/

    http://ie.lbl.gov/toimass.htmlhttp://nucleardata.nuclear.lu.se/database/masses/

  • Nuclear Binding Energy

    Yield from nuclear fusion

    Yield from nuclear fission

    56Fe, 56Ni, maximum binding energy

  • Example: What is the binding energy of the oxygen isotope 18O?

    mp= 1.007825 · 1.66 · 10-24 g

    mn= 1.008665 · 1.66 · 10-24 g

    M(18O) = 17.99916 · 1.66 · 10-24 g

    Z=8, N=10

    Atomic Mass Unit: 1 amu=1/12(M12C)=1.66 · 10-24 g

    B = (Z · mp+ N · mn- M) · c2

    B(18O) = 1.398 · 105 keV = 2.24·10-11 J

    1g 18O contains 7.5·1011 J (W·s)

  • • Mass difference between initial particles and final particles is called:

    Q-value (energy)

    • If a reaction needs energy to take place it is called:

    Endothermic (Q0)

    A(a,b)B (mA+ma-mB-mb)·c2=Q

    Projectile a (p, n, )

    Target A (17N, 17O, 14C)

    http://ie.lbl.gov/toi2003/MassSearch.asp

    http://nucleardata.nuclear.lu.se/database/masses/

    Nuclear Reactions and Q-values

    Reaction occurs with a certain probability (cross section), which depends on the energy dependent Coulomb interaction and the probability for forming a new quantum system !

    Product b

    (p, n, )

    Recoil B

    http://ie.lbl.gov/toi2003/MassSearch.asphttp://nucleardata.nuclear.lu.se/database/masses/

  • Hydrogen & helium burning Calculate the energy release of solar hydrogen fusion:

    4 1H1 4He

    mp = 1.007825 · 1.66 · 10-24 g

    m4He = 4.002603 · 1.66 · 10-24 g

    MeVMeVQE

    eVJcMQE

    kgkgM

    HeHHeH

    HeHHeHHeH

    HeH

    7.2648.931002603.4007825.14

    1067.21028.4

    1076.41066.1002603.4007825.14

    1414

    7122

    141414

    2927

    14

    This is the energy release per fusion reaction

    s

    tons

    s

    reactionskgM

    s

    reactions

    MeV

    s

    MeV

    Rs

    MeV

    s

    JL

    H

    sun

    83727

    37

    39

    3926

    1002.61091066.1007825.14

    1097.26

    104.2104.21085.3

    http://ie.lbl.gov/toi2003/MassSearch.asp

  • Stellar helium burning

    MeVMeVQE

    eVJcMQE

    kgkgM

    CHeCHe

    HeHCHeCHe

    CHe

    27.748.93100.12002603.43

    1027.71017.1

    1030.11066.100.12002603.43

    12124

    12124

    124

    1313

    6122

    141313

    2927

    13

    Helium burning process in red giant stars

    3 4He 1 12C

    m4He = 4.002603 · 1.66 · 10-24 g

    m12C = 12.000000 · 1.66 · 10-24 g

    Betelgeuse In Orion

  • Solar Energy Source

    The energy generation rate in the pp chain, where XH is hydrogen mass fraction.

    Particle density: Ni Avogadro’s number: NA=6.022·10

    23 part/A g Hydrogen mass fraction: XH 0. 5, Solar core density (g/cm3): 160 g/cm3

    Burning temperature (GK): T 0.015 GK

    11380.33/2

    243/1104.2

    gserge

    T

    X THpp

    A

    HeHe

    A

    HH

    A

    iii

    N

    NX

    N

    NX

    N

    NAX

    41

    1H

    3He

    2H=D

    1H

    3He

    1H

    1H

    4He

    2H=D

    1H 1H 1H

    1H

    pp-I

    MeVQQHeH 7.2614 41

  • suncoresun

    core

    sun

    pp

    pp

    THpp

    MMgM

    ggserg

    sergM

    sergL

    gserg

    gsergecmg

    gsergeT

    X

    11.010989.1

    1019.26.17

    1085.3

    1085.3

    6.17

    015.0

    /1605.0104.2

    104.2

    33

    32

    11

    133

    133

    11

    11015.0380.3

    3/2

    324

    11380.3

    3/2

    24

    3/1

    3/1

    About 10% of the solar material is undergoing hydrogen burning reactions in the solar core !

  • Additional pp-chain sources

    4He 4He

    3He

    7Be

    4He

    e-

    7Li 1H

    4He

    4He

    8B

    8Be

    1H

    e-

    pp-II pp-III

    18%

  • Additional energy sources

    11228.153/2

    253/1104.4

    gserge

    T

    ZX THCNO

    The energy generation rate in the pp chain, where XH is hydrogen mass fraction and Z the average CNO mass fraction (metallicity).

    02.01 ZZXXX HeHi

    i

    This requires CNO seed abundance as catalyst!

  • More massive stars in CNO mode

    Vega in Lyra Distance 25 Ly Mvega=2.5Msun Lvega=50Lsun

    Sirius in Canis Majoris Distance 8.6 Ly Mvega=2.0Msun Lvega=25Lsun

  • Homework 1

    The solar hydrogen fuel will eventually get exhausted. The stellar core material contracts to increase the internal pressure to balance the gravitational forces. Assuming the stellar core material follows the ideal gas law, at what temperature will the CNO energy production be equal to the energy production by the pp-chains?.

    CNOpp

    GKT 017.0