solar cell operating principles

Upload: srinivas-sai

Post on 14-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Solar cell operating principles

    1/20

    Solar cell operation is based on the photovoltaic effect:

    The generation of a voltage difference at the junction of two differentmaterials in response to visible or other radiation.

    1. Absorption of light - Generation of charge carriers

    2. Separation of charge carriers

    3. Collection of the carriers at the electrodes

    Solar cell operating principles

  • 7/27/2019 Solar cell operating principles

    2/20

    p-type Si absorber

    p-n junction

    back contact

    front contact

    Semiconductor based solar cells

    p++-type Si membrane

    n-type Si membrane

  • 7/27/2019 Solar cell operating principles

    3/20

    p-type Si

    n-type Si

    back contact

    front contact

    Solar cell materials

    Transparent adhesive

    Cover glass

    Encapsulant/glass

    Passivation layer/ARC

    p++-type Si

  • 7/27/2019 Solar cell operating principles

    4/20

    Solid materials crystalline (regular atomic structure: long range order) amorphous (amorphous network: short range order)

    Electrical conductivity based upon mobile electrons conductors ( > 104 -1 cm-1)

    semiconductors (104 -1 cm-1 > > 10-8 -1 cm-1)

    insulators ( < 10-8 -1 cm-1)

    Thermal behavior of electrical conductivity

    Control of electrical conductivity by doping

    General properties

    Semiconductors

  • 7/27/2019 Solar cell operating principles

    5/20

    Optical properties

    band gap absorption coefficient

    index of refraction

    Carriers concentration

    Concentration of dopant atoms

    Transport properties mobility of carriers (drift)

    diffusion coefficient (diffusion)

    Recombination lifetime of minority carriers and diffusion length

    distribution of density of energy states

    Important properties for a solar cell:

    Semiconductors

  • 7/27/2019 Solar cell operating principles

    6/20

    Atomic number: 14

    Atomic weight: 28.08

    Ground state

    electron configuration:

    4 valence electrons

    Covalent bond

    Basic unit: 5 Si atoms

    Crystal lattice:

    diamond lattice unit

    lattice constant 5.4

    Atom Crystal

    Silicon

  • 7/27/2019 Solar cell operating principles

    7/20

    Si atom

    Unit cell

    Silicon

  • 7/27/2019 Solar cell operating principles

    8/20

    Si atom electron

    Bonding model

    Silicon

  • 7/27/2019 Solar cell operating principles

    9/20

    n = p

    holeCovalent bond

    Bonding model

    Silicon

  • 7/27/2019 Solar cell operating principles

    10/20

    Introducing PhosphorusPhosphorus atom:

    5 valence electrons

    Introducing BoronBoron atom:

    3 valence electrons

    n-type p-type

    Doping

    Silicon

  • 7/27/2019 Solar cell operating principles

    11/20

    n > p n < p

    P atom B atom

    Bonding model

    Silicon

  • 7/27/2019 Solar cell operating principles

    12/20

    Fermi-Dirac distribution function

    ( ) ( ) kTEE FeEf

    +=

    1

    1

    A plot of the allowed electron energy states in a material as

    a function of position along pre-selected direction.

    n = p = nini = 1.5 10

    10 cm-3

    =

    kT

    EENn FC

    C exp

    =

    kT

    EENp VFV exp

    NC = 3.21019 cm-3

    NV = 1.81019 cm-3

    Concetrantion of electrons and holes

    Energy band diagram

    Silicon

    EC

    EV

    EF EG=1.1 eV

    CB

    VB

  • 7/27/2019 Solar cell operating principles

    13/20

    n ND (T=300 K)

    EDEC

    EV

    EF

    n > p

    n-type Si

    np = ni2 n < p

    EC

    EV

    EF EA

    p-type Si

    np = ni2

    p NA (T=300 K)

    ND = n = 1.01017 cm-3

    p = ni2/n = 2.25103 cm-3

    EC - EF = 0.14 eV

    NA = p = 1.01020 cm-3

    n = ni2/p = 2.25 cm-3

    EF - EV = 0.04 eV

    Silicon

  • 7/27/2019 Solar cell operating principles

    14/20

    About 55% of solar energy is not usable by PV cells

    EC

    EV

    EphEG

    Creation of anelectron-hole pair

    EC

    EV

    EphEG

    Thermalization Eph>EG

    Band gap (EG)

    SemiconductorsEC

    EV

    EphEG

    Non absorption Eph

  • 7/27/2019 Solar cell operating principles

    15/20

    Band gap (EG)

    Semiconductors

  • 7/27/2019 Solar cell operating principles

    16/20

    Drift: Charged-particle motion in response to electric field

    Drift current:

    Mobility:

    Phonon scattering

    Ionized impurity scattering

    EC

    EV

    EF

    ndriftN nqJ = pdriftP pqJ =

    ( )+ + AD NNT 23

    Transport

    Semiconductors

    Electrical conductivity:

    pqnq pn +=

  • 7/27/2019 Solar cell operating principles

    17/20

    Diffusion current:

    EC

    EV

    EF

    dx

    dn

    DqJ ndiffN =

    dx

    dpDqJ pdiffP =

    Diffusion coefficient:

    nnq

    kTD =

    ppq

    kTD =

    Diffusion:A process whereby particles tend to spread out fromregions of high particle concentration into regions of low particle

    concentration as a result of random thermal motion.

    Transport

    Semiconductors

  • 7/27/2019 Solar cell operating principles

    18/20

    Recombination: A process whereby electrons and holes (carriers) areannihilated or destroyed.

    Generation: A process whereby electrons and holes are created.

    Phonons

    Heat

    EC

    EV

    ET

    R-G Center recombination Minority carrier lifetime:

    Tn

    nNC

    1=

    Tp

    pNC

    1=

    Diffusion length:

    nnn DL = ppp DL =

    Semiconductors

  • 7/27/2019 Solar cell operating principles

    19/20

    Heat

    Light

    EC

    EV

    EC

    EV

    Light

    (photons)

    Band-to-band recombination

  • 7/27/2019 Solar cell operating principles

    20/20

    EC

    EV

    ET

    Heat

    (phonons)

    R-G center- dominant recombination-generation mechanism