soils climate and food security

21
',#&)#'* ' Soils climate and food security (a global perspective) Prof. dr. Pablo A. Tittonell Farming Systems Ecology Current agriculture cannot feed the world "!! Global Food: Waste Not, Want Not " (' $" (&''% )& +&/ ',) &+)&+"'&$ '"$ )& & &')%+"'& &+) ')$ +$* ' *)+""+"'& +$ *'"$ "+!',+ -++"'& )/ ) *'"$ ) *'"$ "" & "" +$&+" & &"& & !"$"(( #."0 )&$ (+/ Agriculture Global greenhouse gas emissions

Upload: hadiep

Post on 11-Jan-2017

232 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Soils climate and food security

Soils climate and food security

(a global perspective)

Prof. dr. Pablo A. Tittonell

Farming Systems Ecology

TSBF, 2007

State of Food Insecurity in the World 2012 FAO, WFP, IFAD 870 million people suffered from chronic undernourishment between 2010-12

GHI GHI GHI GHI

'90 '96 '01 '12

World

GHI GHI GHI GHI

'90 '96 '01 '12

South Asia

GHI GHI GHI GHI

'90 '96 '01 '12

Sub-SaharanAfrica

GHI GHI GHI GHI

'90 '96 '01 '12

Southeast Asia

GHI GHI GHI GHI

'90 '96 '01 '12

Latin America & Caribbean

GHI GHI GHI GHI

'90 '96 '01 '12

GHI GHI GHI GHI

'90 '96 '01 '12

Near East & North Africa

Under-five mortality rate Prevalence of underweight in children Proportion of undernourished

5

10

15

20

25

30

35

19.8

30.3

24.0 24.322.5

24.6 24.823.7

20.7

14.5

12.0

9.67.9 8.2 7.9

6.85.3

8.8

5.2 4.42.8

7.46.1

4.9

17.2 16.314.7

Eastern Europe & Commonwealth of Independent States

GH

I sc

ore

Current agriculture cannot feed the world

0

20

40

60

80

100

120

140

1960 1970 1980 1990 2000 2010

Monde

Chine

Brésil

France

USA

Consomation de viande per capitaMeat consumption per capita (kg/year)

Notes: Data refer to adults of both sexes aged 20+, age standardized, in 2008. Obesity is defined as BMI ≥30kg/m².Source: World Health Organization.

Prevalence of obesity (%)

<10

10–19.9

20–29.9

≥30

Data not available

Not applicable

Prevalence of obesity

Global Food: Waste Not, Want Not

Agriculture

Global greenhouse gas emissions

Page 2: Soils climate and food security

Hoe is het begonen?

i l l f h f h d h ld f

0

20

40

60

80

0

2

4

6

8

10

12

a

b

c

Glo

bal

cer

eal p

rodu

ctio

n(1

09 m

egat

onne

s)

2.0

1.6

1.2

0.81960 1970 1980 1990 2000

Year

1960 1970 1980 1990 2000Year

196019501940 1970 1980 1990 2000Year

Pesticide productionPesticide imports

NH2OP

Nitr

ogen

and

pho

spho

rus

fert

ilize

r(1

06 t

onne

s; W

orld

–US

SR

)

Glo

bal

irri

gatio

n (1

09 h

a)

0.28

0.24

0.20

0.16

0.12

Glo

bal

pes

ticid

e pr

oduc

tion

(106

ton

nes)

3.0

2.0

1.0

0.0

Glo

bal

pes

ticid

e im

port

s(1

996

US

$ bi

llion

)

Figure 1 Agricultural trends over the past 40 years. a, Total global cereal production2;b, total global use of nitrogen and phosphorus fertilizer (except former USSR notincluded) and area of global irrigated land; and c, total global pesticide production3

and global pesticide imports (summed across all countries)2. Parts b and c modified

from ref. 4.

Agricultural sustainability and intensive production practicesDavid Tilman*, Kenneth G. Cassman‡, Pamela A. Matson§ ||, Rosamond Naylor|| & Stephen Polasky†

*Department of Ecology, Evolution and Behavior, and †Department of Applied Economics, University of Minnesota, St Paul, Minnesota 55108, USA (e-mail: [email protected])‡Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA§Department of Geological and Environmental Sciences, and ||Center for Environmental Science and Policy, Stanford University, Stanford,California 94305, USA

A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainabilityboth of food production and of terrestrial and aquatic ecosystems and the services they provide to society.Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, thesurface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability ofagriculture and ecosystem services will be crucial if we are to meet the demands of improving yields withoutcompromising environmental integrity or public health.

De groene revolutie

Green revolution cereals:

0

1

2

3

4

5

6

7

8

1960 1970 1980 1990 2000 2010

FranceUnited StatesChinaBrazilKenyaBurkina Faso

Productiviteit van granen(t ha-1 yr-1)

0

50

100

150

200

250

300

350

1960 1970 1980 1990 2000 2010

Kunstmest gebruik (kg ha-1 yr-1)

Fig. 1. Dilution effects of phosphorus fertilization in red raspberry plants; 0, 22, and 44 ppm added to soilcontaining 12 ppm (Hughes et al., 1979; dry weight basis). The relative plant dry weight was,respectively, 1:1.4:2.2.

Page 3: Soils climate and food security

We need change, we need alternatives

Study conducted for the International Congress

SAVE FOOD!

at Interpack2011Düsseldorf, Germany

EXTENT, CAUSES AND PREVENTION

A model that is thermodynamically and socially untenable…

  

  

  

Popular myths…

Who’s producing our food?

• 

• 

• 

Environ. Res. Lett. 8 (2013) 034015

Figure 1. Calorie delivery fraction per hectare. The proportions ofproduced calories that are delivered as food are shown.

Page 4: Soils climate and food security

Latest news: plants respond to fertilisers!

Poorly-responsive fertile fields

Responsive fields

Poorly-responsive infertile fields

Yie

ld w

ithou

t nut

rient

inpu

ts

Nutrient input

Cro

p yi

eld

Variable crop responses to inputs on-farm

(not always)

S. Zingore et al. / Field Crops Rese

Agricultural field (millet/cowpea) Savannah vegetation (under use)

Designing agricultural systems by mimicking nature

  Non-disturbed soil structure   Permanent vegetation cover   Biomass inputs to the soil   Nutrient recycling   Exploration of multiple strata above and below ground

Soil temperature with 9.2 ton ha-1 (BrachiariaDecumbens) and without crop residues on the

soil surface (NT - 10 years – GO, 16 ° SL)

Soil temperature with 9.2 ton ha-1 (BrachiariaDecumbens) and without crop residues on the

soil surface (NT - 10 years – GO, 16 ° SL)

62.9 ºC

No Crop Residues CR = 9.2 ton ha-1

32.6 ºC

Page 5: Soils climate and food security

Facilitation of crop production through association with native woody species (Lahmar et al., 2012)

Native resources and local knowledge in the Sahel

Understanding traditional soil fertility management

Page 6: Soils climate and food security

Understanding/optimising shrub-based CA systems

Effects of (inadequate) tillage

Page 7: Soils climate and food security

Biological N2 fixation

Residual effects on maize

N-P applied (kg ha-1 )

0-0 60-2030-200-20

Mai

ze g

rain

yie

ld (

t ha-1

)

0

1

2

3

4

5

6

Maize after pigeonpea

Continuous maize

Distinct row intercropping

Within row intercropping

Fig. 3. Effect of intercropping, rotation, and N and P fertilisation on maize–grainyield in Ruaca in the third (2010/2011) season.

0

5

10

15

20

25

30

35

40

45

50

Africa Asia Europe Latin America North America Oceania

Mill

ion

tonn

es o

f N p

er y

ear

Fertiliser use N fixation (agriculture)N fixation (natural)Dry depositionWet deposition

Produceer meer, produceer anders

Input Output

Specialized System

Externalities

Page 8: Soils climate and food security

Putting soil biodiversity to work

From: Mäder et al. (2002)

In BIO aggregate stability +10-60%

C e l e b r a t i n g y e a r s

ORGANIC CONVENTIONAL

ORGANIC CONVENTIONAL

0

200

400

600

800

1000

ORGANIC CONVENTIONAL

$ p

er a

cre

per

yea

r

INCOME EXPENSES RETURNS

$8

35

$2

77

$5

58

$4

95

$3

05

$1

90

INCOME, EXPENSES & RETURNS IN FST ORGANIC AND CONVENTIONAL SYSTEMS

0

30

60

90

120

150

ORGANIC CONVENTIONAL

130 bu/a=Yield goal for Rodale soils

134 102

Co

rn y

ield

s (b

u/a

@15

.5%

)

FST CORN YIELDS IN YEARS WITH MODERATE DROUGHT

bu/a=bushels/acre

ENERGY INPUTS

Labor

Diesel fuel

Equipment

Transportation of inputs

Herbicide

Seed

Lime

Compost production

Mineral fertilizer production

0

2000

4000

6000

8000

ORGANIC CONVENTIONAL

Meg

ajou

le/h

ecta

re/y

ear

GREENHOUSE GAS EMISSIONS

0

500

1000

1500

2000

N2O emissions from soil

Diesel fuel

Equipment

Transportation of inputs

Herbicide

Seed

Lime

Compost production

Mineral fertilizer production

ORGANIC CONVENTIONAL

Kilo

gram

CO

2/he

ctar

e/ye

ar

Emissions from soil processes

Emissions from direct inputs

FIELD TRIALCOMPONENTS COMPARED

CARBON GAINS (+) OR LOSSES (-)

KG C HA-1 YR-1

RELATIVE YIELDS OF THE RESPECTIVE CROP ROTATIONS

DOK1 Experiment, Research Institute FiBL and Federal Research Institute Agroscope (Switzerland)(Mäder, et al., 2002, Fliessbach, et al., 2007))Running since 1977

Organic, with composted farm yard manure

+ 42 83 %

Organic, with fresh farm yard manure

- 123 84 %

Integrated Production, with fresh farm yard manure and mineral fertilizer

- 84 100 %

Integrated Production, stockless, with mineral fertilizer

- 207 99 %

SADP, USDA-ARS, Beltsville, Maryland (USA) (Teasdale, et al., 2007)Running 1994 to 2002

Organic, reduced tillage

+ 810 to

+ 173883 %

Conventional, no tillage 0 100 %

Rodale FST, Rodale Institute, Kurtztown, Pennsylvania (USA,) (Hepperly, et al., 2006; Pimentel, et al., 2005)Running since 1981

Organic, with farm yard manure

+ 1218 97 %

Organic, with legume based green manure.

+ 857 92 %

Conventional + 217 100 %

Frick2 Reduced Tillage Trial, Research Institute FiBL, (Switzerland) (Berner, et al., 2008)Running since 2002

Organic, with ploughing

0 100 %

Organic, with reduced tillage

+ 879 112 %

Scheyern3 Experimental Farm, University of Munich, Germany (Rühling, et al. 2005),Running since 1990

Organic + 180 57 %

Conventional - 120 100 %

MITIGATION AND ADAPTATION POTENTIAL OF SUSTAINABLE FARMING SYSTEMS

LOW GREENHOUSE GAS AGRICULTURE

Page 9: Soils climate and food security

   

    

Page 10: Soils climate and food security

The Brazilian case

  

Gráfico 1: Brasil, Evolução da Extrema Pobreza, 1990 a 2008

1o Objetivo do Milênio

SÃO PAULO

PORTO ALEGRE

FLORIANÓPOLIS

CURITIBA

SÃO PAULO

RIO GRANDEDO SUL

SANTA CATARINA

CAMPO GRANDEBELO HORIZONTE

SALVADOR

ARACAJÚ

MACEIÓ

RECIFE

JOÃO PESSOA

NATAL

CEARÁ

TEREZINA

SÃO LUIZ

PALMAS

GOIÂNIA

CUIABÁ

PORTO VELHO

MANAUS

BOA VISTA

MACAPÁ

ILHA DEMARAJÓ BELÉM

RIO BRANCO

D.F.

RIO DE JANEIRO

14,21%

44,24%

11,02%

44,74%

51,27%

48,73%31,44%

6,65%

59,90%

49,01%

50,99%

45,56%

54,44%

51,91%

48,09%58,13%

15,95%

25,92%

28,53%

29,72%

70,28%

25,59%

74,41%

27,28%

44,19%

16,98%

68,81%36,61%

22,36%

38,03%

59,91%

32,25%

63,64%

16,36%57,07%

14,72%

28,21%

7,84%

VITÓRIA

ESPÍRITOSANTO

RIO DE JANEIRO

MATO GROSSO DO SUL

MATO GROSSO

RONDÔNIA

ACRE

AMAZONAS

RORAIMA

AMAPÁ

BRASIL: DISTRIBUIÇÃO DA POPULAÇÃO INDIGENTE

PARÁ

MINAS GERAIS

BAHIA

SERGIPE

ALAGOAS

PERNAMBUCO

PARAÍBA

RIO GRANDEDO NORTE

FORTALEZA

PIAUÍ

MARANHÃO

TOCANTINS

GOIÁS

PARANÁ

0,01 a 0,4

0,8 a 1,4

2,1 a 3,1

4,7 a 4,9

5,3 a 6,8

7,2 a 7,4

9,5 a 11,0

13,7ÁREA METROPOLITANA

ÁREA URBANA NÃO METROPOLITANA

ÁREA RURAL

I - DISTRIBUIÇÃO PERCENTUAL DOS 32 MILHÕESDE BRASILEIROS EM CONDIÇÕES DE INDIGÊNCIASEGUNDO UNIDADES DA FEDERAÇÃO - 1990

II - DISTRIBUIÇÃO PERCENTUAL DAS PESSOAS INDIGENTESDENTRO DE CADA UNIDADE DA FEDERAÇÃO POR SITUAÇÃODO DOMICÍLIO

LEGENDA

1 - NA REGIÃO NORTE NÃO CONSTA A INDIGÊNCIA RURALPOR FALTA DE DADOS DISPONÍVEIS.

2 - OS INDIGENTES DO ESTADO DO TOCANTINS ESTÃO INCLUÍDOSNO ESTADO DE GOIÁS.

ELABORAÇÃO:IPEA - Instituto de Pesquisa Econômica Aplicada

OBS:

SÃO PAULO

PORTO ALEGRE

FLORIANÓPOLIS

CURITIBA

SÃO PAULO

RIO GRANDEDO SUL

SANTA CATARINA

CAMPO GRANDE

LEGENDA:

ZONAS % DA PRODUÇÃO DE GRÃOS0.01 a 0.800.81 a 1.601.61 a 2.402.41 a 3.20

3.21 a 4.00

4.01 a 4.80

4.81 a 7.20

10.41 a 11.20

13.61 a 14.40

17.61 a 18.40

MILHO

A PRODUÇÃO DAS 63 ZONAS ESTRATIFICADASCORRESPONDENTE A 81% DA PRODUÇÃO NACIONAL DE MILHO, FEIJÃO, ARROZ, SOJA E TRIGO NOPERÍODO DE 1986/89, OU CERCA DE 48,0 MILHÕESTONELADAS

OBS:

SOJA

TRIGO

FEIJÃO

ARROZ

BELO HORIZONTE

SALVADOR

ARACAJÚ

MACEIÓ

RECIFE

JOÃO PESSOA

NATAL

CEARÁTEREZINA

SÃO LUIZ

PALMAS

GOIÂNIA

CUIABÁ

PORTO VELHO

MANAUS

BOA VISTA

MACAPÁ

ILHA DEMARAJÓ BELEM

RIO BRANCO

D.F.

RIO DE JANEIRO

VITÓRIA

ESPÍRITOSANTO

RIO DE JANEIRO

MATO GROSSO DO SUL

MATO GROSSO

RONDÔNIA

ACRE

AMAZONAS

RORAIMA

AMAPÁ

DISTRIBUIÇÃO DA PRODUÇÃO NACIONALDE GRÃOS ALIMENTÍCIOS

PARÁ

MINAS GERAIS

BAHIASERGIPE

ALAGOAS

PERNAMBUCO

PARAÍBA

RIO GRANDEDO NORTE

FORTALEZA

PIAUÍ

MARANHÃO

TOCANTINS

GOIÁS

PARANÁ

1. Acesso aos Alimentos

2. Fortalecimento da Agricultura Familiar

3. Geração de Renda

4. Articulação, Mobilização e Controle Social

Fome Zero no Brasil, 2010

The crop yield gap between organic and conventional agriculture

Tomek de Ponti, Bert Rijk, Martin K. van Ittersum ⇑Plant Production Systems, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands

a r t i c l e i n f o

Article history:Received 13 April 2011Received in revised form 27 August 2011Accepted 19 December 2011Available online 7 February 2012

Keywords:Organic agricultureConventional agricultureYield gapPotential productionWorld food securityFarming system design

a b s t r a c t

A key issue in the debate on the contribution of organic agriculture to the future of world agriculture iswhether organic agriculture can produce sufficient food to feed the world. Comparisons of organic andconventional yields play a central role in this debate. We therefore compiled and analyzed a meta-datasetof 362 published organic–conventional comparative crop yields. Our results show that organic yields ofindividual crops are on average 80% of conventional yields, but variation is substantial (standard devia-tion 21%). In our dataset, the organic yield gap significantly differed between crop groups and regions.The analysis gave some support to our hypothesis that the organic–conventional yield gap increases asconventional yields increase, but this relationship was only rather weak. The rationale behind thishypothesis is that when conventional yields are high and relatively close to the potential or water-limitedlevel, nutrient stress must, as per definition of the potential or water-limited yield levels, be lowand pests and diseases well controlled, which are conditions more difficult to attain in organicagriculture.We discuss our findings in the context of the literature on this subject and address the issue of upscal-

ing our results to higher system levels. Our analysis was at field and crop level. We hypothesize that dueto challenges in the maintenance of nutrient availability in organic systems at crop rotation, farm andregional level, the average yield gap between conventional and organic systems may be larger than20% at higher system levels. This relates in particular to the role of legumes in the rotation and the farm-ing system, and to the availability of (organic) manure at the farm and regional levels. Future researchshould therefore focus on assessing the relative performance of both types of agriculture at higher systemlevels, i.e. the farm, regional and global system levels, and should in that context pay particular attentionto nutrient availability in both organic and conventional agriculture.

� 2012 Elsevier Ltd. All rights reserved.

Contents lists available at SciVerse ScienceDirect

Agricultural Systems

journal homepage: www.elsevier .com/locate /agsy

LETTERdoi:10.1038/nature11069

Comparing the yields of organic and conventionalagricultureVerena Seufert1, Navin Ramankutty1 & Jonathan A. Foley2

Numerous reports have emphasized the need for major changes inthe global food system: agriculture must meet the twin challenge offeeding a growing population, with rising demand for meat and

Sixty-six studies met these criteria, representing 62 study sites, andreporting 316 organic-to-conventional yield comparisons on 34 dif-ferent crop species (Supplementary Table 4).

The glass is half-full

0.4 0.6 0.8 1.0 1.2

Crop typeAll crops (316)

Fruits (14)

Oilseed crops (28)

Cereals (161)

Vegetables (82)

a

0.4 0.6 0.8 1.0 1.2

Plant typeLegumes (34)

Non-legumes (282)

Perennials (25)

Annuals (291)

b

Org

anic

yie

ld (t

ha-1

)

Conventional yield (t ha-1)

1:1 line

0.84 0.77 0.75 0.79

Page 11: Soils climate and food security

A conventional farmer purchasing pesticides

An agroecological farmer inspecting his intercrop

Communication and image Estancia Laguna Blanca, Entre Rios, Argentina Ecological farming on 3000 ha

Page 12: Soils climate and food security

Intensivering, extensivering, ontgiften…

    

Thanks for your attention

[email protected] www.wageningenUR/FSE

https://www.facebook.com/FSE.WageningenUR

Page 13: Soils climate and food security

If solutions depend on resources of which we do not have enough, then they are not real solutions Ecologically intensive farming is more than just conventional farming without inputs

It requires: -  ecological engineering at farm and landscape level -  ability to engage local actors and learn from each other -  systems approaches that embrace the complexity of social-ecological

interactions

It needs: -  Serious public funding that compensates for the investment gaps -  Creative farmers ready to experiment and take risks -  Responsible chains and consumers -  Articulation with cities for energy and nutrient recycling -  New legislation that promotes change (carrot bigger than stick) -  To attract the youth to farming

Concluderende opmerkingen

Adapted from: Goewie, 1993

Re-design of agroecosystems

rijn

rijn

mosel

maas

waal

ijssel

main

naar München

naar Hannover - Berlijn

naar Brussel - Parijs

continuous productive landscape

permanent and m

ixed crops

extensive permanent and mixed crops

agrofoodcluster

catchment area: 185 000 km2delta plain: 7 500 km2inhabitants / km2 = 270,27

Page 14: Soils climate and food security

Building upon local agroecological knowledge

Page 15: Soils climate and food security

Agroforestry: ecological niches shared between species

How would Agroforestry look like in Europe?

Page 16: Soils climate and food security

Temperate agroforestry with black walnut trees

Table 1 Three phases of black walnut stand development

Period Yields Timeframe Allelopathy

Short term 0–15 years None to low

Medium term 15–30 years Low to high

Long term 30< years High

Table 2 Short term, medium term, and long term yields which are possible in the presence of black walnut trees

Species Yield Source

Short term: <15 years

Juglone-intolerant field crops Grain, produce, forage Burde 1989; Jose and Gillespie 1996.

Alfalfa (Medicago sativa) Forage Brooks 1951.

Cereal rye (Secale cereale) Forage Kallenbach et al. 2006.

Fescue (Festuca arundinacea) Forage Buergler et al. 2005.

Ryegrass (Lolium multiflorum) Forage Kallenbach et al. 2006.

Jerusalem artichokes (Helianthus tuberosum) Vegetable Ross 1996.

Lima bean (Phaseolus lunatus) Vegetable MacDaniels and Pinnow 1976.

Onion (Allium cepa) Vegetable MacDaniels and Pinnow 1976.

Parsnips (Pastinaca sativa) Vegetable MacDaniels and Pinnow 1976.

Sugar beet (Beta vulgaris) Vegetable Piedrahita 1984.

Wax bean (Phaseolus vulgaris) Vegetable MacDaniels and Pinnow 1976.

Cattle (Bos taurus L.) Meat, dairy Kallenbach et al. 2006.

Chicken (Gallus gallus) Meat, eggs, manure Ponder et al. 2005.

Medium Term: 15–30 years

Fescue (Festuca arundinacea) Forage Funt and Martin 1993.

Kentucky Bluegrass (Poa pratensis) Forage Orton and Jenny 1948; Brooks 1951

Piedrahita 1984; Funt and Martin 1993.

Red Clover (Trifolium pratense) Forage, N-fixer Boes 1986.

Timothy (Phleum pratense) Forage MacDaniels and Pinnow 1976; Boes 1986.

White clover (Trifolium repens) Forage, N-fixer Piedrahita 1984; Boes 1986.

Black Raspberry (Rubus occidentalis) Fruit Brooks 1951; MacDaniels and Pinnow 1976;

Piedrahita 1984; De Scisciolo et al. 1990; Fuchs 1995.

Currant (Ribes spp.) Fruit Brooks 1951; Anonymous 1998.

Elderberry (Sambucus canadensis) Fruit Brooks 1951; Anonymous 1998

Mulberry (Morus spp.) Fruit Brooks 1951; Mollison 1988.

Pawpaw (Asimina triloba) Fruit Brooks 1951; Anonymous 1998.

Persimmon (Diospyros virginiana) Fruit Gordon 1981.

Autumn olive (Elaeagnus umbellata) N-fixer Ponder et al. 1980.

Black locust (Robinia pseudoacacia) N-fixer, wood Ponder et al. 1980.

European alder (Alnus glutinosa) N-fixer, wood Bohanek and Groninger 2005.

Russian olive (Elaeagnus angustifolia) N-fixer Burde 1989.

Black walnut (Juglans nigra) Nuts

Eastern white pine (Pinus strobus) Wood Fisher 1978; Burde 1989.

Red oak (Quercus rubra) Wood Burde 1989.

Sugar maple (Acer saccharum) Wood Burde 1989.

White ash (Fraxinus americana) Wood Burde 1989.

Long term: >30 years

Bamboo (Phyllostachys spp.) Wood, edible shoots (author’s observation)

Black walnut (Juglans nigra) Wood, nuts, sap

Ginseng (Panax quinquefolium) Medicinal roots Apsley 2004; Carroll 2004.

Mushroom logs Mushrooms

Agroforest Syst (2007) 71:185–193 189

  

Silvopastoral systems: a future Dutch dairy farm??

0

1

2

3

4

5

6

A B C D E F F* G H I

Productie per koe

Voer zelfvoorziening

N efficientie

Weidedagen

Antibiotica gebruik

OS toename

Page 17: Soils climate and food security

Biodiversiteit in landbouwkundige landschappen

Table 1. Example of calculation of Medicinal Herb Enriched value of grasslands for one farm

Common name Latin name DW% found Importance Final value MHE

Grote vossenstaart Alopecurus pratensis L. 0.3 0.0 0.0

Madeliefje Bellis perennis L. 0.2 1.0 0.2

Zachte dravik Bromus hordeaceus L. 0.0 0.0 0.0

Kamgras Cynosurus cristatus L. 0.1 0.0 0.0

Gestreepte witbol Holcus lanatus L. 4.3 0.0 0.0

Pitrus Juncus effusus L. 0.5 1.0 0.5

Engels raaigras Lolium perenne L. 29.0 0.0 0.0

Timoteegras Phleum pratense L. 8.5 0.0 0.0

Grote weegbree Plantago major L. 0.1 1.0 0.1

Straatgras Poa annua L. 9.2 0.0 0.0

Kruipende

boterbloem Ranunculus repens L. 2.7 1.0 2.7

Ridderzuring Rumex obtusifolium L. 2.0 0.0 0.0

Gewone

paardenbloem

Taraxacum officinale

Weber 11.4 1.0 11.4

Witte klaver Trifolium repens L. 31.8 1.0 31.8

Total 100% 46.7

Ecologische intensivering van begrazingssystemen

Environmental impact of different intensification pathways

Page 18: Soils climate and food security

• – 

• – – – 

• – – 

Landis et al. 2008; Losey & Vaughan 2006; Costanza et al. 1997

Arthropod-mediated ecosystem services

National Vegetation Database grey = field borders green = existing hedgerows red = planned new hedgerows

500 m.

Page 19: Soils climate and food security
Page 20: Soils climate and food security

Why do we need an inventive farmer?

  

     

  

Page 21: Soils climate and food security

Thematic Group 7 on Sustainable Agriculture and Food Systems comprises