smart grid’s design · 2016-11-03 · guillaume guérard versailles - france a generic modelling...

30
Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Upload: others

Post on 30-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Guillaume Guérard

Versailles - France

A generic modelling for

Smart Grid’s Design

1

May 2015SmartGreens2015Lisboa

Page 2: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

The current Energy Grid is based on Nikola Tesla work (1888).

Shortcoming:- Production: integration and management

of Renewable Energies, management of storage.

- Consumption: congestion, network latency, profitability of plants, DSM, demand-response, data security.

Industrial goals

2

Global behavior:

- To smooth the curve

- To manage supply and demand

- To guarantee the QoS.

Source: ABB

Smart Grid : network integrating users behavior.

Page 3: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

A smart system of systems

3

• Self-Healing• Flexibility• Predictive• Interactive• Optimal• Secure.

A efficient smart grid should integrate:

Unlike its predecessor, it reacts in real time to the internal or external constraints.

Source: Siemens

smart infrastructure

smart management

smart protection

Smart Grid

Page 4: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Current models

4

Most of simulations/models are done on a

specific case/technology with a limitedevolution perspective.

Drawbacks of most models:- Time of computation depends on size of

variables.

- Data storage, data mining are almost difficult to treat for real-time management.

- Models are not “plug-and-play” and not “friendly-user”.

Objective: to model a context-free Smart Grid.

Brandon Palacio

Page 5: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

The modelling challenges

Challenges:• It is difficult to find an

objective function solving the overall problem.

• The number of variables involved range up to thousands of entities.

Response:• To find an appropriate

class of algorithms for optimizing local applications.

• Data involved in each application should be standardized.

5

Goal: to find a method in order to analyse and define a model for managing a complex system.

Studying the smart grid through modelling and simulation provides us withvaluable results, which cannot be obtained in the real world due to time andcost-related constraints.

Page 6: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Optimization in a smart grid:

How to optimize the consumption, the production and thedistribution of the energy in a Smart Grid.

focus on the smart management system

Various optimization problems:

- Resiliency.- Reliability.- Minimal cost (flow, production, consumption).- Demand-Response.

Problematic

6

Page 7: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Smart Grid

Complex system approach Algorithms Smart system

7

Page 8: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Complex system approach

8

Page 9: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Smart Grid: a complex system

9

Page 10: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Complex system analysis

10

Would it not be better and permissive to understand the fundamentals of Smart Grid rather than imposing new and often incompatible technologies?

Evolution

Self-organization

Composite

• Feedbacks

• Learning system

• Optimization

• Communication

• Agents/Structure

How to model an agent ?(MAS)

Page 11: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Smart Grid: network and local objectives

11

Several goals in competition:

• To minimize the cost for producers, consumers and during distribution.

• To avoid congestion, under/overproduction.

• To maximize the use of local Renewable Energies.

• To manage energy storage.

Source: Siemens

Network structure:

Page 12: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

3-layered Grid

12

Loca

l lev

el

• Isolated, grouped in a tree structure.

• Local management:

• Domotic

• Renewable Energies

• V2G

• Energy distribution.

Mic

rogr

id

• Root station for local agents.

• DSM

• Supply and demandequilibrium

• Consumer’sbehaviour

• Local concensusbetween supply and demand

T&D

net

wo

rk

• 2-connected graph

• Demand-response:

• Production management

• Scheme of consumption

• Predict future production

• Energy ditribution

Page 13: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

A generic model

13

Page 14: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

General process

14

• Bottom-up– Scheme of consumption

following prognostics

– If prognostics are valid, then next step.

• Top-down– Equilibrium supply/demand

– Final allocation and prognostics update for future iterations.

Bottom - up

Top - down

Page 15: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Local level

15

Update

• Data update (devices, sensors, batteries).

First allocation

• Comparing prognostics to data.

First allocation II

• Find the First Optimal Solution.

Iteration: each 5min.

Page 16: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Priority of consumption - local management

House1 House2 House3 House4 House5

1/0/811/1/803/0/835/2/7520/4/20

Forecast: 4FOS : 5

1/0/161/0/162/1/153/0/184/3/75/3/5

Forecast: 6FOS: 7

1/01/010/0

Forecast: 12FOS: 12

1/0/331/1/323/0/353/2/294/1/328/4/8

Forecast: 8FOS: 9

1/03/0

Forecast: 6FOS: 6

16

Value function of device’s priority and its consumption: ui=(weightmax*prioritymax)-(weighti*priorityi) + weighti

Net consumption: a local agent will consume its production beforecomputing its needs.

DSM: only smart devices/domotics can have a priority value superior to 0.

Page 17: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Microgrid level

17

Auction

• Demand-side management

• Bid system

• Feedback with T&D

Consensus

• Local knapsack problem

• Knapsack bottom-up resolution.

Page 18: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Strategies

18

Strategies based on the priority value/consumption of each devices (one-sided)

DSM Strategies (two-sided)The behaviour of the consumer may differs to the producers’ one. Microgrid’s policies can’t impose a local strategy but influence all utilities.

Set of devices 1 l/r Response 1 … Response i

Set of devices 2 l/r DSM 1 l/r l/r l/r

Set of devices 3 l/r DSM 2 l/r l/r l/r

… l/r … l/r l/r l/r

Set of devices m l/r DSM j l/r l/r l/r

- l: utility of the strategy for the consumer- r: utility of the strategy for the producers (granted energy).

The strategy with the highest sum l+r is chosen (Pareto). The microgridbenefits depends on the benefits of both sides

Page 19: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

How to build efficient strategies

• 0-1 Knapsack problem:

• Upper bound in real-time:

– our tout instant T

– max 𝑖=1𝑛 𝑥𝑖 𝑢𝑖

• xi=1 si la demande en énergie est satisfaite à l’instant T, 0 sinon.

• Ui= valeur calculée lors du sac-à-dos ou lors des enchères (modèle économique).

19

– For each iteration

max

𝑖=1

𝑛

𝑥𝑖 𝑢𝑖

s.t. 𝑖=1𝑛 𝑥𝑖𝑤𝑖 ≤ 𝑊

𝑗

𝑖=1𝑛 𝑎𝑖

𝑘 𝑤𝑖 ≤ 𝑊𝑘

𝑖=1𝑚 𝑎𝑖

𝑘 = 𝑥𝑖

𝑗=1𝑎𝑙𝑙(𝑗)𝑊𝑗 = 𝑘=1

all(𝑘)𝑊𝑘

• j for each microgrid

• k for each flow• Wj consumption of each

microgrid.

How to increase the efficiency of algorithms ?

Parametrize the strategies in order to increase benefits

Page 20: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

T&D level

20

Graph update

• Network data update.

Max flow, min cost

• Find a valid distribution pattern.

Equilibrium

• Identify bottleneck and perform feedback.

Page 21: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

T&D network

21

• Network: pretopology

• Network updateHow to build a dynamic graph ?

Pros: real time management, detailed network, easy to parameterize, self-healingCons: the grid need to be covered by a lot of sensors, fault risk during data mining.

1. A graph for each criterion.

3. The final graph is a Boolean function of the pretopologicspaces.

3. Resolve the max flow at minimum cost problem.

Page 22: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

A real-time management

22

Page 23: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Demand-response management

23

Feedback gives advices for current and further iterations.

Feedback n°j

• Current feedback: Microgrids can change their behaviour.

• Final decision:

2 𝑖=1𝑗𝑗∗(𝑥𝑟𝑒𝑠𝑢𝑙𝑡 𝑗 )

𝑗(𝑗−1)

• x : for each microgrid• x : for each producer• Building forecast at the

end of an iteration.

Page 24: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

How to smooth the curve

24

• Slope and regularity • K-Lipschitz function

Local algorithm cannot see the overall results.

Page 25: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Smart Grid: an iteration.

25

1. Data update2. First Optimal Solution3. Auction – Network update4. Feedback – New auction5. Consensus: local distribution.

3

Page 26: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Global benefits

• For the producers:– Production is predictive

– The use of fossil-fuel power plants is limited.

• For the consumers:– DSM reduces energy

cost.

– Reward for acceptance of Response strategies.

– Minimal use of general distribution network.

– Maximal use of local renewable energies and storage.

26

Page 27: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Future works

27

Smart management system:• Parametrize strategies• Parametrize utility values Real-time learning process• Adapt to local changes (IA)

Context-free and friendly tool to model an efficient Smart Grid:• Create a « plug-and-play » framework• Allow external device management • Allow competition between microgrids• Allow competition between producers• Allow consumers to choose DSM strategies

Multi-agent model

The presented model is a general framework for future Smart Grid design.

Page 28: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Quel message voulez-vous diffuser ?

A generic modelling for

Smart Grid’s DesignSmartGreens2015

28

Guérard GuillaumeVersailles – PRiSMFrance

Obrigado pela sua atenção!

Page 29: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

Publications

29

International Journal / Revue

Guérard, G., Amor, S. B., & Bui, A. (2012). Survey on smart grid modelling. International Journal of Systems, Control and

Communications, 4(4), 262-279.

Ahat, M., Amor, S. B., Bui, M., Bui, A., Guérard, G., & Petermann, C. (2013). Smart grid and optimization. American Journal of

Operations Research, 3, 196.

Guérard, G., & Tseveendorj, I. (2014), Inscribed Ball and Enclosing Box for Convex Maximization Problems. Optimization

Letters (2nd revised edition).

International Conference

Guérard, G., Amor, S. B., & Bui, A. (2012). A Complex System Approach for Smart Grid Analysis and Modeling. In KES (pp.

788-797).

MAGO14, Guérard, G., & Tseveendorj, I. (2014) Largest Inscribed Ball and Minimal Enclosing Box for Convex Maximization

Problems.

IEEE/ACM'14, Guérard, G., Amor, S. B., & Bui, A. (2014). A Context-Free Smart Grid Model Using Complex System Approach.

ProjectEPIT 2.0 (Bouygues; Alstom; Renault; Supélec; Eurodecision) 2011-2014

Page 30: Smart Grid’s Design · 2016-11-03 · Guillaume Guérard Versailles - France A generic modelling for Smart Grid’s Design 1 May 2015 SmartGreens2015 Lisboa

La simulation

Module réseau de transport

Module consommation et production

Module distribution de l’énergie

Module gestion des pannes

Module réseau de communication

Coralie Petermann - UVSQ 30