small-signal analysis of the constant peak current...

23
1 • Chris Basso Small-Signal Analysis of the Constant Peak Current-Operated Flyback Converter in Frequency Foldback Christophe Basso 2 • Chris Basso Reducing the Switching Frequency New generation controllers reduce frequency in light load The peak current is frozen and frequency is controlled The relationship between and is known at constant F sw What about the relationship linking to at I peak constant? ˆ out v ˆ p i ˆ out v ˆ sw F

Upload: truongnguyet

Post on 29-Jul-2018

250 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

1 • Chris Basso

Small-Signal Analysisof the Constant Peak Current-Operated

Flyback Converter in Frequency Foldback

Christophe Basso

2 • Chris Basso

Reducing the Switching Frequency New generation controllers reduce frequency in light load The peak current is frozen and frequency is controlled

The relationship between and is known at constant Fsw

What about the relationship linking to at Ipeak constant?ˆoutv

piˆoutv

swF

Page 2: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

3 • Chris Basso

Where do We Start From? We have a DCM peak-current mode control large-signal model The PWM switch controls the peak current at a fixed Fsw

Why not fixing the peak current and controlling Fsw?

a

p

c

cdI c

i

V

R 2LI∆

a

p

c

on SW ct F I c

i

V

R( )1

2 out

SW

DV

LF

pi

constantswF

swF

constantpeakI

The peak current is frozen and the frequency is controlled

4 • Chris Basso

A Transient Load Step Response First

3

4

ILprim

Lprim600u

6Cout1470uIC = 18

Vout

Vout

Resr160m

12

X4XFMR-AUXRATIO_POW = -0.25RATIO_AUX = -0.18

VDS

15

Rprim0.5

Vin330

1

9

34

19

L32.2u

R510m

20

R7250m

C7100uIC = 18

X2Optocoupler

Rled1k

5

R20.8

11

R101k

31

D41N4937

Vcc

C610uIC = 17

aux

R11k

C4220pF

C51nF

FB

FB

Vsense

VFB

int

Vout

30

R1880

C11680p

D2Ambr20200ctp

R1910

V5IOpto

S

R

Q

QClk

D

26

10

14

X9F_FLOP

Qb

V65

35

X10OR2

+-

33

X11COMPARHYS

V71

R1320k

Vclk

Kraken Clock

FB

Gnd

Clk

maxDC

EN Ramp

36

X1krakenclock

vdd

vdd

vdd

maxdc

maxdc

ramp

vdd

D31N967

X3PSW1

Vdrv

32

X8PSW1

V4unknown

parameters

Vout=19P1=15P2=20

R1=Vout^2/P1R2=Vout^2/P2

We can check the cycle-by-cycle response to a load step

VCOLoad step

Cycle by cycle model Fsw = 51 kHz

Page 3: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

5 • Chris Basso

A Transient Load Step Response First And compare it to that of a modified PWM switch model

5

Vin330

3 12

X3XFMRRATIO = -250m

2

4

L3600u

15

Cout1470u

Resr160m

1

17

X1Optocoupler

19

L12.2u

R510m

20

R7250m

C7100u

Rled1k

R11k

D31N967

vout

vout

Vout

13

R420k

V25

C51nF

10

B1Voltage

vc

-622m+V(Vc)*1.58

vcac

PW

M s

witc

h C

Mp

duty

-cyc

le

X2PWMDCMCM

Fsw

21

X8PSW1

V4unknown

R61

parameters

Vout=19P1=15P2=20

R1=Vout^2/P1R2=Vout^2/P2

0V

-82.9V

20.7V

330V20.7V

18.3V

3.61V

20.7V

20.7V

20.7V

5.00V

5.09V

19.4V3.61V

115mV *.param Vc=1*Bdc dcx 0 V = Vc*V(Fsw)*10k/(Se+(abs(v(a,c))*Ri)/L+1u)Xdc dcx dc limit params: clampH=0.99 clampL=7mBVcp 6 p V=(V(dc)/(V(dc)+V(d2)))*V(a,p)BIap a p I=(V(dc)/(V(dc)+V(d2)))*I(VM)Bd2 d2X 0 V=(2*I(VM)*L-v(a,c)*V(dc)^2*1/(V(Fsw)*10k)) / ( +v(a,c)*V(dc)*1/(V(Fsw)*10k)+1u )Xd2 d2X dc d2 limit2Rdum1 dc 0 1MegRdum2 vc 0 1MegRS 7 c 1uVM 6 7 *.ENDS

Current frozen to 1 senseR

Modified netlist of the PWM switch

1 V = 10 kHz

Averaged model

Load step

Fsw = 50.9 kHz

6 • Chris Basso

You Need to Adjust the VCO Modulator The control voltage to the switching frequency is the VCO gain

swF

cV0.4 V 4.5 V

65 kHz

100 Hz

VCO gain GVCO is

64.915.8kHz V

4.1sw

c

F ky

V

∆= = =

y ax b= +

100 0.4 15.8ax b k b= + = × +

0.10 0.4 15.8 622mVb = − × = −

1 10000

FBV0.622 15.8 FBV− + ×SWFV 10k×

15.8kHz V

Scalingfactor

Page 4: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

7 • Chris Basso

10.6m 12.7m 14.8m 16.9m 19.0m

20.60

20.70

20.80

20.90

21.00

v

( )outv t

( )outv t

average

Cycle by cycle

Compare the Transient Responses Responses are identical, the averaged version looks correct

( )st

8 • Chris Basso

Keys of Small-Signal Analysis Rather than going full speed into small-signal analysis:

break down the system into smaller parts

run simplifications whenever you can

go step by step and verify the answer always fits the original

a

p

c

1

1 2c

dI

d d+

c

i

V

R1 2

2 12

cpsw

V d dd T

L

+ −

Start from here, DCM model"Switch-mode Power Supplies: SPICE Simulations and Practical Designs", C. Basso, McGraw-Hill 2008, page 161

Need to be computed

aI Iµ

Page 5: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

9 • Chris Basso

Simplifying and Compacting the Model Compact the DCM model to suppress variables computing

1

1 2a c

dI I

d d=

+2 1 21

2cp

sw p

d V d dI

F Lµ+ = −

1

p c sw

ac i

L V Fd

V R=

2 11

2 c sw p

ac

I F Ld d

d V= −

"Let the craziness begin"1

1 2a c

dI I

d d=

+

substitute

2

22

sw p ca

i ac

F L VI

R V=

( )( )2 2

2

2cp c c i sw p c c i ac

sw p i c ac

V V I R F L V I R VI

F L R V Vµ

− −= −

10 • Chris Basso

The New Model Looks Simpler

a

B2Current

((Vc/Ri)^2)*Lp*V(Fsw)*k/((2*V(a,c))+1u)

1

B3CurrentVc/Ri

B4Current-V(c,p)*(Vc-I(Vc)*Ri)*(V(Fsw)*k*Lp*Vc*Vc-2*I(Vc)*Ri*Ri*V(a,c))+/((V(Fsw)*k*Lp*Ri*Vc*Vc*V(a,c))+1u)

Vc

c

p

R81Meg

Fsw

The equations no longer include a computed variable

aI

vcac

PW

M s

witc

h C

Mp

dut

y-cy

cle

X2PWMDCMCM

Check against thecomplete model

Page 6: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

11 • Chris Basso

Ac Responses are Similar The curves perfectly superimpose, 1st step is ok

-35.0

-25.0

-15.0

-5.00

5.00

10 100 1k 10k 100k

-90.0

-70.0

-50.0

-30.0

-10.0

dB

°

( )H f

( )H f∠

( )Hzf

12 • Chris Basso

Second Step, Linearize the Sources To apply Laplace equations, we need linear elements Linearization can be done in different ways:

perturb all equations with a small quantity (the "hat" notation) re-arrange the terms and collect dc and ac contributors can be tedious to re-arrange, you neglect cross products

( ) ( ) ( )1 1 1 3

1 1 1 1 1 3 3

1 1 1 3

1 1 1 3 3 3

ˆˆˆ ˆ

ˆ ˆˆˆ ˆ ˆ

V R I DV

V v R I i d D V v

V R I DV

v R i dV dv Dv

= +

+ = + + + +

= +

= + + + ac equation

dc equation (bias point)

0≈

Page 7: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

13 • Chris Basso

Second Step, Linearize the Sources A second option is to calculate partial derivative coefficients

the process can be automated by Mathcad®

you only have ac terms, no sort needed

( )( ) ( ) ( )

( ) ( ) ( )1 3 13

3 , ,1 3 1

1 1 3 1 1 3

11 1 1 1 11 1 3

1 3, ,,

1 1 1 1 1 11 1 3

1 3,

1 1 1 3 3

, ,

, ,, , , ,

, , , , , ,ˆˆˆ ˆ

ˆˆˆ ˆ

I V D I

I V D ID V

D V

V I D V R I DV

V I D VV I D V V I D VdV dI dD dV

I D V

V I D V V I D V V I D Vv i d v

I D V

v R i Dv dV

= +

∂∂ ∂ = + + ∂ ∂ ∂

∂ ∂ ∂= + +

∂ ∂ ∂

= + +

ac equation, no cross products

14 • Chris Basso

Second Step, Linearize the Sources

2

22

sw p ca

i ac

F L VI

R V=

( )( )2 2

2

2cp c c i sw p c c i ac

sw p i c ac

V V I R F L V I R VI

F L R V Vµ

− −= −

Now, identify the variables in each source

sw

ac

F

V

cp

ac

sw

c

V

V

F

I

6 variables imply six partial derivatives, 6 coefficients

You must identify these static variables first

Look at the PWM switch configuration

Page 8: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

15 • Chris Basso

Identify the Variables in the Schematic

1

Vin330

3 4

X3XFMRRATIO = -250m

5

L3600u

6

B1Voltage

-622m+V(Vc)*1.58

vcac

PW

M s

witc

h C

Mp

duty

-cyc

le

X2PWMDCMCM

dc

Vout

the average voltage across L3 is 0: point c is grounded.

1:-N

( ) 0sw

L Tv t =

outcp

VV

N=

ac inV V=

16 • Chris Basso

Sources Derivation We can now individually derive all these sources

2

22

sw p ca

i ac

F L VI

R V= ˆˆ ˆ

ac sw

a aa sw ac

sw acV F

I Ii F v

F V

∂ ∂= + ∂ ∂

2

1 22

p c

i ac

L Vk

R V=

2

2 2 22

sw p c

i ac

F L Vk

R V= −

( )( )2 2

2

2cp c c i sw p c c i ac

sw p i c ac

V V I R F L V I R VI

F L R V Vµ

− −= −

, , , , , ,, ,

ˆˆ ˆˆ ˆ

sw cp ac c cp ac cp c swc sw ac

cp c sw accp c sw acF V V I V V V I FI F V

I I I Ii v i F v

V I F Vµ µ µ µ

µ ∂ ∂ ∂ ∂

= + + + ∂ ∂ ∂ ∂

3k 4k 5k 6k

Page 9: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

17 • Chris Basso

Sources Derivation

( ) ( )2 2

3 2

2c c i sw p c c i ac

sw p i c ac

V I R F L V I R Vk

F L R V V

− −= −

( ) ( )2 2

4 2 2

2 2cp sw p c c i ac i cp c c i

sw p c ac sw p c

V F L V I R V R V V I Rk

F L V V F L V

− −= +

( )( ) ( )2 2

5 2 2

2cp c c i sw p c c i ac cp c c i

sw i acsw p i c ac

V V I R F L V I R V V V I Rk

F R VF L R V V

− − −= −

( )( ) ( )2 2

6 2 2 2

2 2cp c c i sw p c c i ac c i cp c c i

sw p i c ac sw p c ac

V V I R F L V I R V I R V V I Rk

F L R V V F L V V

− − −= +

Yes, Mathcad® or an equivalent software is of great help…

18 • Chris Basso

Evaluate all These Coefficients Select a converter at a certain operating point

1

1

21.1 V

18Ω

0.8

1V

330V

0.06Ω

470µF

0.25

84.4V

600µH

10000

out

load

i

c

ac

C

out

outcp

p

F

V

R

R

V

V

r

C

N

VV

N

L

k

==

= Ω==

==

=

= =

=

=

( )

2

2

2

2

2

2

252.8kHz

0.368A2

0.075A2

0.882A

out i outsw

p c

sw p c ac cpc

i ac cp

sw p ca

i ac

I R VF

L V

F L V V VI

R V V

F L VI

R V

= =

+= =

= =

=

Page 10: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

19 • Chris Basso

Test the Coefficient Values with the Sources Capture a new schematic with the linearized sources

Vin330

X3XFMRRATIO = -250m

2

L3600u

15

Cout1470u

Resr160m

1

17

X1Optocoupler

Rled1k

R11k

D31N967

vout

vout

Vout

13

R420k

V25

C51nF

vc

a c

pFsw

a

BIa_dcCurrentIa

8

BIpeakCurrentVc/Ri

parameters

Vc=1Lp=600uRi=0.8Lp=600uk=10kN=250mFsw=52.766kIout=P1/VoutVac=330Vcp=Vout/NIa=Fsw*Lp*Vc^2/(2*Ri^2*Vac)k1=(Lp*Vc^2)/(2*Ri^2*Vac)k2=(Fsw*Lp*Vc^2)/(2*Ri^2*Vac^2)AA=Fsw*Lp*Vc^2*Vac+Fsw*Lp*Vc^2*VcpBB=2*Ri^2*Vac*VcpIc=AA/BBA=-Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)B=Fsw*Lp*Ri*Vc^2*VacImju=A/BAAA=-(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)BBB=Fsw*Lp*Ri*Vc^2*Vack3=AAA/BBBk4A=Vcp*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k4B=Fsw*Lp*Vc^2*Vack4C=2*Ri*Vcp*(Vc-Ic*Ri)/(Fsw*Lp*Vc^2)k4=(k4A/k4B)+k4Ck5A=Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k5B=Fsw^2*Lp*Ri*Vc^2*Vack5C=Vcp*(Vc-Ic*Ri)/(Fsw*Ri*Vac)k5=(k5A/k5B)-k5Ck6A=Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k6B=Fsw*Lp*Ri*Vc^2*Vac^2k6C=2*Ic*Ri*Vcp*(Vc-Ic*Ri)/(Fsw*Lp*Vc^2*Vac)k6=(k6A/k6B)+k6C

BmjuCurrentIm ju

Vc

c

p

R81Meg

Fsw

DCM version

BIa_k1Currentk1*V(Fsw)*k

BIa_k2Currentk2*V(a,c)

(-622m+V(Vc)*1.58) B1Voltage

Bmjuk3Currentk3*V(c,p)

Bmjuk4Currentk4*I(Vc)

Bmjuk5Currentk5*V(Fsw)*10k

Bmjuk5xCurrentk6*V(a,c)

7

CoL1kF

V1AC = 1

LoL1kH

R22R1

parameters

Vout=21.1P1=24.73R1=Vout^2/P1

330V

-65.0V

0V 16.3V

16.3V

16.3V

5.00V

5.00V

7.28V 5.00V

0V

0V

16.3V

Mathcad® coefficients

Linearized sources

20 • Chris Basso

Responses with Previous Models are Similar The curves perfectly superimpose, 2nd step is ok

10 100 1k 10k 100k

-90.0

-70.0

-50.0

-30.0

-10.0

-35.0

-25.0

-15.0

-5.00

5.00

dB °( )H f

( )H f∠

( )Hzf

Page 11: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

21 • Chris Basso

Combine and Arrange the Sources Now, re-arrange the sources in a more convenient way

8

X3XFMRRATIO = -N

L3600u

15

Cout1470u

Resr160m

Vout

parameters

Vc=1Lp=600uRi=0.8Lp=600uk=10kN=250mFsw=52.766kIout=P1/VoutVac=330Vcp=Vout/NIa=Fsw*Lp*Vc^2/(2*Ri^2*Vac)k1=(Lp*Vc^2)/(2*Ri^2*Vac)k2=(Fsw*Lp*Vc^2)/(2*Ri^2*Vac^2)AA=Fsw*Lp*Vc^2*Vac+Fsw*Lp*Vc^2*VcpBB=2*Ri^2*Vac*VcpIc=AA/BBA=-Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)B=Fsw*Lp*Ri*Vc^2*VacImju=A/BAAA=-(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)BBB=Fsw*Lp*Ri*Vc^2*Vack3=AAA/BBBRk3=1/k3k4A=Vcp*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k4B=Fsw*Lp*Vc^2*Vack4C=2*Ri*Vcp*(Vc-Ic*Ri)/(Fsw*Lp*Vc^2)k4=(k4A/k4B)+k4Ck5A=Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k5B=Fsw^2*Lp*Ri*Vc^2*Vack5C=Vcp*(Vc-Ic*Ri)/(Fsw*Ri*Vac)k5=(k5A/k5B)-k5Ck6A=Vcp*(Vc-Ic*Ri)*(Fsw*Lp*Vc^2-2*Ic*Ri^2*Vac)k6B=Fsw*Lp*Ri*Vc^2*Vac^2k6C=2*Ic*Ri*Vcp*(Vc-Ic*Ri)/(Fsw*Lp*Vc^2*Vac)k6=(k6A/k6B)+k6C

4

Vc

Fsw

DCM versionsmall-signal modelac only

BIa_k1Currentk1*V(Fsw )

BIa_k2Current

k2*V(c)

Bmjuk4Currentk4*I(Vc)

Bmjuk5Currentk5*V(Fsw )

Bmjuk6Current

k6*V(c)

V13.61AC = 1

p

c

B1Voltage

V(Vc)*1.58*k

Vc

R31/k3

VCO modulator

i2

i1

R22R1

parameters

Vout=21.1P1=24.73R1=Vout^2/P1

Linearized PWM switch

Ac response is ok!

V(a,c) = -V(c) if V(a)=0 Reversed because V(a)=0

k2 is positive

22 • Chris Basso

8

X3XFMRRATIO = -N

L3600u

15

Cout11360u

Resr18.5m

Vout

4

Vc

BIa_k1Currentk1*V(Fsw)*k

BIa_k2Currentk2*V(c)

Bmjuk4Currentk4*I(Vc)

Bmjuk5Current

k5*V(Fsw)

Bmjuk6Currentk6*V(c)

p

c

R11/k3

R22R1

Go for Mesh and Node Analysis Express the current and voltage in the primary side

outV

N−

2i

1i

pi

( )eqZ s

Page 12: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

23 • Chris Basso

Mesh and Node Analysis

1 21

1

out

p

VR i

Ni

sL

− −=

( )4 1 5 1 2 6 1sw pk i k V F i i sk L i+ + = +

KCL: the sum of currents arriving at a node equals the sum of currents leaving the node:

( )2 1 1 4 5 1 6sw pi i i k k V F sL i k= + + −

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 4 1 1 5 1 1 6 11

1

out sw p

p

V s N R i s N R i s k N R k V F sL R i s k Ni s

L N s

+ + + −= −

solve for i1:

( ) ( ) ( )( ) ( )

1 1 51

1 1 4 1 6 11 1out sw

p

V s N R k V Fi s

N R k sL N k R

+= −

+ + −

24 • Chris Basso

Mesh and Node Analysis Apply similar technique to get the primary current:

( ) ( ) ( ) ( )1 2 1 1p sw pi s k V F k i s sL i s= + −

( ) ( ) ( ) ( )( ) ( )( )( )

2 1 1 1 5 1 4 1 1 1 1 6 1 2 5

1 1 1 4 1 6

out p out sw p swp

p p

V s L V s k s N R V F k k k k sL N V F k R k k R k ki s

N R R k sL sL R k

− + + + + − −=

+ + −

1

pout

ii

N= − out out eqV i Z=

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )2 1 1 1 5 1 4 1 1 1 1 6 1 2 5

21 1 1 4 1 6

out p out sw p swout eq

p p

V s L V s k s N R V F k k k k sL N V F k R k k R k kV s Z s

N R R k sL sL R k

− + + + + − −=

+ + −

( )( )

( ) ( )( )( ) ( ) ( )

( )1 1 1 5 1 4 1 1 1 1 6 1 2 5

21 1 6 1 4 1 2

pouteq

sw p p eq p eq

N R k k k k sL N k R k k R k kV sZ s

V F N sR L k sL R k R Z s sL k Z s

+ + + − −=

− − − − +

Page 13: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

25 • Chris Basso

Fast Analytical Techniques Fast analytical techniques unveil Zeq in a second!

loadR

C

Cr

1I1V 1st-ordersystem ( ) 0

1

1z

eqp

sZ s Z

s

ωω

+=

+

1. In dc, open the capacitor:

2. What prevents the excitation I1 from reaching the output V1? A short-circuit between rC and C:

0 loadZ R=

110C

Csr C

rsC sC

++ = = 1

zCr C

ω =

26 • Chris Basso

Fast Analytical Techniques

Get the time constant by putting the excitation to zero: open the current source and look at the cap. driving R

loadRCr ( )C loadr R Cτ = +

The equivalent impedance is therefore:

( ) ( )1

1C

eq loadC load

sr CZ s R

sC r R

+=

+ +

You cannot beat equation-solving by inspection!

?

Page 14: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

27 • Chris Basso

Almost There…

Develop the expression with Zeq(s), cry and re-arrange:

( ) ( )( )0

N sH s H

D s= ( )

( )1 1 1 5 1 4

0 21 1 4 21

load outVCO VCO

swload

N R R k k k k VH G G

FR N R k

+ += − =

+ +

( ) ( ) ( )1 1 1 6 1 2 5

1 1 5 1 4

1 1p Ck R k k R k k

N s sL sr CR k k k k

− −= + + + +

( ) 21D s as bs= + +

( ) ( )2 2 2

1 2 1 1 62 2

1 1 4 1 1 41 1load load

out load C pload load

R N R k N R ka C R r L

R N R k R N R k

− −= + − +

+ + + +

( )

2 1 6 1 622 1

1 21 1 41

loadload C C load C

p outload

RR r k r R R k R k r

Nb L N C

R N R k

+ − − − = + +

28 • Chris Basso

A Few More Minutes, Keep the Faith…

Put the denominator under a second-order form and identify

( )2

2

0 0

1 1s s

D s as bsQω ω

= + + = + +

( )

( )

1 421

0

2 1 621

11

1.75kHz2

load

loadp outload C C load C

RR k

Nf

RL C R r k r R k R rN

π

+ += =

+ − − +

( ) ( )2 2 2

1 2 1 1 60 2 2

1 1 4 1 1 4

10.021

1 1load load

out load C pload load

QR N R k N R k

C R r LR N R k R N R k

ω

= = − − + − +

+ + + +

Page 15: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

29 • Chris Basso

A Few More Minutes, Keep the Faith…

Extract the zeros:

( )( )

11 1 1 6 2 5

1 1 5 1 4

1487 kHz

2z

p

fk R k k k k

LR k k k k

π= = −

− − + +

2

15.6kHz

2zC out

fr Cπ

= =

RHPZ

Extract the low-frequency poles:

( )1

137.73Hzp

out load C

fC R rπ

= =+

( )

2 2 21 2 1 1 6

21 1 4

1152kHz

21

p

loadp

load

fN R k N R k

LR N R k

π= =

− − + +

( )

1 2

21 1 4

1 1 1

22 21

pload load outload out load Cout load C

load

fR R CR C R rC R r

R N R k

πππ= = ≈

+ −+ − + +

C loadr R≪

30 • Chris Basso

Final Lap, Compare the ac Plots

Compare the original equation and its re-arranged form:

It confirms the derivation is correct!

10 100 1 103× 1 10

4× 1 105× 1 10

6×60−

40−

20−

0

100−

0

100

20 log H1 i 2⋅ π f k⋅( )( )⋅

20 log Hfinal i 2⋅ π f k⋅( )( )⋅

arg H1 i 2⋅ π f k⋅( )( ) 180

π⋅

arg Hfinal i 2⋅ π f k⋅( )( ) 180

π⋅

f k

10dB

( )H f

( )H f∠

( )Hzf

Page 16: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

31 • Chris Basso

The Final Test: SPICE vs Mathcad

10 100 1k 10k 100k 1Meg

-144

-72.0

0

72.0

144

-53.0

-39.0

-25.0

-11.0

3.00

dB °

If all is well, the curves must perfectly superimpose

( )H f∠

( )H f

If not, there is a hidden mistake: chase it (good luck)

( )Hzf

32 • Chris Basso

The Final Transfer Function

The current-mode flyback converter is operated in DCM The peak current is fixed and Fsw is controlled What is the simplified transfer function?

VCOˆcv swFˆoutvFlyback

freezepeakI =NCP1250

( ) 0ˆ 11

ˆ 1 2 12

out out C outzVCO

loadc p swout

v V sr CsH s H G

Rv s F s C

ωω

++= = =

+ +

Page 17: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

33 • Chris Basso

A Faster Way? If you are in a hurry and looking for a faster way:

Formulate the output current expression Differentiate the expression to its variables Draw an equivalent schematic and solve the equations

A DCM/CCMcurrent-mode converter

outVoutI

outi

ˆoutv

loadR

Cr

outC

Simplified linearized model

34 • Chris Basso

The Founding Equation is Well Known A flyback converter running in DCM obeys:

21

2out out out p peak swP I V L I F= =2

1

2c

out out p swi

VI V L F

R

=

cpeak

i

VI

R=

2

2

cp sw

iout

out

VL F

RI

V

=

Two variables

( ) ( ), , ˆˆ ˆ

sw out

out sw out out sw outout out sw

out swF V

I F V I F Vi v F

V F

∂ ∂= + ∂ ∂

Page 18: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

35 • Chris Basso

First Expression Comes Easily

( ) 2

2

,ˆ ˆ

2sw

sw pout sw out cout out

out ioutF

F LI F V Vv v

V RV

∂ = − ∂

loadR

ˆoutv22

2 2

12

2

peak sw psw p c

iout out

I F LF L V

RV V

− = −

2

1out out out

out out loadout

P V I

V V RV− = − = −

1ˆ ˆm out outg v v

R⋅ =

1− Ω

Rework the individual coefficients to a simpler form

36 • Chris Basso

Second Expression is Also Simple

( ) 2, ˆ ˆ

2out

pout sw out csw sw

sw out iV

LI F V VF F

F V R

∂ = ∂

Identify the power in the equation, simplify…

2

ˆ ˆ ˆ ˆ2

p c out out out outsw sw sw sw

out i sw out load sw out load sw

L V P V V VF F F F

V R F V R F V R F

= = =

ˆoutsw

load sw

VF

R F

Controlledvariable

loadR

Cr

outC

loadR

ˆoutv

Can't beat such asimple schematic!

Page 19: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

37 • Chris Basso

The Transfer Function is Immediate The transfer function is now straightforward

( ) ( ) ( )ˆˆ ||outout sw load eq

load sw

Vv s F s R Z s

R F=

Put it under the normalized form

( ) 0ˆ 11

ˆ 1 2 12

out out C outzF VCO

loadc p swout

v V sr CsH s H k G

Rv s F s C

ωω

++= = =

+ +

( ) ( ) 1ˆ ˆ

21

2

out Cout c F VCO

loadsw

V sr Cv s v s k G

RFsC

+=

+

No RHPZ and no high-frequency pole prediction Good for low-frequency analysis only, but good enough for us!

1

21

2

load C

load

R sr C

RsC

+≈

+

38 • Chris Basso

2

Cout1470u

Resr160m

Vout

R22R1

parameters

Vc=1Lp=600uRi=0.8Lp=600ukf=10k

Vout=21.1P1=24.73R1=Vout^2/P1Fsw=50.8k

B1Current

Lp*(Vc/Ri) 2*V(Fsw)/(2*V(out)+100n)

out

Fsw

V13.61AC = 1

B2Voltage

(-622m+V(Vc)*1.58)*kf

Vc

VCO modulator

3

Cout2470u

4

Resr260m

VoutSIMP

R3R1

B3Current

(Vout/(R1*Fsw))*V(Fsw)

R4R1

Simulation Shows the Differences SPICE only manipulates linear equations

Large-signalequation

Small-signalequation

10 0 10 1021.1

20log 20log 20log 10 1.58 10.3dB2 2 50.8

outF VCO

sw

VH k G k

F k

= = ⋅ = ×

Page 20: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

39 • Chris Basso

Simulation Shows the Differences Ac results are identical at low frequency

-46.0

-32.0

-18.0

-4.00

10.0

10 100 1k 10k 100k 1Meg

-160

-120

-80.0

-40.0

0

( )H f

( )H f∠

Simple model

Simple model

dB

°

Complexmodel

Complexmodel

10.3 dB

( )Hzf

40 • Chris Basso

Test Fixture Plant frequency response with a NCP1250 Load is reduced to force DCM where Ipeak is frozen

NCP1250 1

2

3

4 5

6

R1147k

7

C210n

8C34.7uF

910 11

R22536k

R51.6k

R6c1

12R231k

13

C81nF

Vbulk

.. 14

C5a680uF

17

R910k

15

IC2TL431

C610nF

16

20R191k

18

R81k

C15220p

.

C12100uF

R2122

R1347k

D41N4937

D5MBR20200

C5b680uF

C510nF

D71N4937

C4100pF

Vout

C132.2nFType = Y1

22

D31N4937

C17100uF

D6

1N4148

R6b1

R6a1

23R16

22

T1

Np Ns

Naux

24

D10

1N4148

Q12N2907

R1822k

D11N964

R14NTC

C1022pF

1 kV

R24220

C9330pF

R1066k

1

2

3

6

4

5

R10022

19

21

. .

( )BV f

( )AV f

( ) ( )( )

B

A

V fH s

V f=

Page 21: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

41 • Chris Basso

Connections Connect probe grounds to a quiet point: opto emitter is ok Use an isolated current-limited dc-supply Short primary and secondary grounds

100 V dc

Injectiontransformer

Power supply under test

( )H f

42 • Chris Basso

Run the SPICE Simulation

5

Vin100

3

X3XFMRRATIO = -250m

4

L3Lp

15

Cout11.36m

Resr18.5m

vout

Vout

10

B1Voltage

vc

(b+V(Vc)*a)/10k

vcac

PW

M s

witc

h C

Mp

duty

-cyc

le

X2PWMDCMCML = LpRi = Ri

dc

12 13

R2100m

14

X1AMPSIMP

V219

vout

7

CoL1kF

V1AC = 1

LoL1kH

R22R1

parameters

Vout=19P1=6.6R1=Vout^2/P1

Lp=600uRi=0.33

Fmax=65kFmin=26kVfold=1.5Vmin=0.35a2=(Fmax-Fmin)/(Vfold-Vmin)a=27.75kb=Fmin-Vmin*a

100V

-76.0V

19.0V

-14.2fV19.0V

3.84V

174mV

797mV

797mV

19.0V797mV

0V

Check operating points:

( ) ( )( ) ( )

38.6kHz bench 38.4kHz SPICE

0.71V bench 0.79V SPICE

sw

FB

F

V

=

=

Main contributor to errors is the capacitor ESR

ZL series RubyconVCO slope measured to 27.8 kHz/V

Page 22: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

43 • Chris Basso

Approximate ESR Extraction A triangular output shows that ESR is the main contributor

( )seci t

, 1Ap peakI =

( )outv t

outI

( )sec outi t I−N1:

,sec,

14A

0.25p peak

peak

II

N= = =

, sec,out peak peak CV I r≈

Cr

outC

,

sec,

358.75mΩ

4out pp

Cpeak

V mr

I≈ = =

0

DS says11.5 mΩ

44 • Chris Basso

Plant Frequency Response

( )H f

( )H f∠

38.6kHzswF =

2swF

Page 23: Small-Signal Analysis of the Constant Peak Current ...cbasso.pagesperso-orange.fr/Downloads/PPTs/Small signal frequency... · 1 • Chris Basso Small-Signal Analysis of the Constant

45 • Chris Basso

Conclusion

The transfer function in DCM frequency foldback has been derived

It can be approximated in low frequency as a 1st order system

Stability in this mode is not at stake with current designs

Besides the comprehensive PWM switch approach, the linearized output current gives good results too.

Bench measurements confirm the low-frequency results, high-frequency points start to diverge as we approach the switching frequency.