sm 05 phase relationship

30
Soil Mechanics I CE222 CE 222 Chapter 2: Phase relationship of soils 1

Upload: muhammad-faizan-khan

Post on 18-Jan-2016

22 views

Category:

Documents


7 download

DESCRIPTION

Soil MechanicsBasics

TRANSCRIPT

Page 1: SM 05 Phase Relationship

Soil Mechanics ICE‐222CE 222

Chapter 2: Phase relationship of soils

1

Page 2: SM 05 Phase Relationship

Three phases of soil 2

Soil element  Three phases

Air VW = 0

in natural state of the soil element

ume

= V

. = W

Air

Water Vw

VaVv

VWw

Wa = 0To

tal v

olu

Tota

l wt.

Solids V

Vw

V

V

W

wW

To Solids VsVsWs

Page 3: SM 05 Phase Relationship

Weight‐Volume relationships 3

Weight Volume

Air Va

V

Wa = 0

Water Vw

Vv

VWw

W VW

Solids VsVsWs

Page 4: SM 05 Phase Relationship

Weight relationships 4

The common terms used for weight relationships 

are moisture content, wmoisture content, w

and unit weight γunit weight, γ. 

Page 5: SM 05 Phase Relationship

Moisture content, w 5

Weight

Moisture content is also known as water content, w, is expressed either in terms of weight or mass.

W

AirWa = 0

Weight%100×=

s

w

WWw

WaterWwW

%100×=s

w

MMw

SolidsWs

A small w indicates a dry soil, while a large w indicates a wet one.

Usual values: 3 to 70%

Moisture content values greater than 100% are found in soft soils below ground water table.

Page 6: SM 05 Phase Relationship

Unit weight, γ 6

Geotechnical engineers often need to know the unit weight, γ:

W=γ

V=γ

Two variations of unit weight are commonly used, the dry unit weight, γd, and  the unit weight of water, γw:

Ws wW

Vs

d =γw

ww V=γ

Normally we use γ = 9 81 kN/m3 = 62 4 lb/ft3 for fresh water andNormally we use γw = 9.81 kN/m = 62.4 lb/ft for fresh water, and γw = 10.1 kN/m3 = 64.0 lb/ft3 for sea water

Th i i h f il b l h d bl (GWT) iThe unit weight of soil below the ground water table (GWT) is called saturated unit weight, γsat.

Page 7: SM 05 Phase Relationship

7

Page 8: SM 05 Phase Relationship

Volume relationships 8

The common terms used for volume relationships 

are void ratio, e

andand porosity, n

andanddegree of saturation, S

Page 9: SM 05 Phase Relationship

Void ratio, e 9

Void ratio, e, is defined as the ratio of the volume of voids to the volume of solids.

Air Va

Volume

s

vVVe =

Water Vw

Vv

V

s

Densely packed soils have low void ratios

Solids V Vs

Vhave low void ratios. 

Typical values in the field  Solids Vs syprange from 0.1 to 2.5.

Page 10: SM 05 Phase Relationship

Porosity, n 10

Porosity, n, is defined as the ratio of the volume of voids to the total volume.

Air Va

Volume

VVn v=

Water Vw

Vv

V

V

Typical values in the field f

Solids V Vs

Vrange from 0.09 to 0.7.

Solids Vs s

Page 11: SM 05 Phase Relationship

Degree of Saturation, S 11

Degree of saturation, S, is the percentage of the voids filled with water.

V

Air VaWa = 0

Weight Volume%100×=v

w

VVS

h l f

Water Vw

Vv

VWw

W

S has max. value of 100% when all of voids are filled with water. Such 

Solids V Vs

V

Ws

Wsoil are called saturated soils.

Solids Vs sWs

S values above GWT are usually 5 to 100%. 

S = 0 is found in very arid areas.

Page 12: SM 05 Phase Relationship

e – n relationship 12

nVV

VV

VVevv

vv =====n

VV

VVVVVV

evvvs −=

−=

−=

−==

11

eVV

VV

VV s

v

s

v

vve

VV

VVVVVV

n

s

vs

s

vss

vs

vv+

=+

=+

=+

==11

ne = en =n

e−

=1 e

n+

=1

Page 13: SM 05 Phase Relationship

γ – γd relation13

WWW ws ⎥⎤

⎢⎡

+

Moisture content, w

VWW

W

VWW

VW ss

sws

⎥⎦

⎢⎣

+=

+==γ

D it i ht

( ) ( ) ( )wwVW

VwW

dss +=+=

+= 111 γ

Dry unit weight , γd

VV

( )1( )wd += 1γγ

γ( )wd +

=1γγ

Page 14: SM 05 Phase Relationship

Specific gravity of solids, Gs14

The specific gravity of any material is the ratio of its density to that of water. 

In case of soils, we compute it for the solid phase only, and express the results as the specific gravity of solids, Gs:

ssss V

WVWGγγ

==wsw V γγ

This is quite different from the specific gravity of the entire soil hi h ld i l d lid d i h f dmass, which would include solid, water, and air. Therefore, do not 

make the common mistake of computing Gs as γ/γw.

For most of soils, Gs is from 2.60 to 2.80. 

Page 15: SM 05 Phase Relationship

Specific gravity of solids, Gs15

Page 16: SM 05 Phase Relationship

Typical values of e, w and γd16

Page 17: SM 05 Phase Relationship

γ‐e‐w relationship 17

ws

ss V

WGγ

= wsss VGW γ=Vs = 1

wss GW γ=wsγ

s

wWWw = sw wWW = wsw wGW γ=

Weight

Air

Volumes

ww

WVγ

=Air

Water Vw = wGs

Vv = e

Ww = wGsγw

sws wGwG==

γ

S lid

w s

V = 1+eW

swγ

wGV =Solids Vs = 1Ws = Gsγwsw wGV =

Page 18: SM 05 Phase Relationship

γ‐e‐w relationship 18

VW

=γeWW ws

++

=1

γe

wGG wsws++

=1

γγγ

( )eGw ws+

+=

11 γγ ( ) e

Gw

ws+

=+ 11

γγe

G wsd +=

1γγ

Weight

Air

Volumee+1

G wsγ Air

Water Vw = wGs

Vv = e

Ww = wGsγw

ews

d +=

1γγ

lid

w s

V = 1+eW

1−= wsGe γSolids Vs = 1Ws = Gsγw

1d

Page 19: SM 05 Phase Relationship

γ‐e‐w relationship 19

wVS wGS s wGe s= wGSe =v

wV

S =e

S s=S

e = swGSe =

Weight

Air

Volume

wGSe = Air

Water Vw = wGs

Vv = e

Ww = wGsγw

swGSe =

lid

w s

V = 1+eW

SwGe s=

Solids Vs = 1Ws = GsγwS

Page 20: SM 05 Phase Relationship

γ‐e‐w relationship 20

swGSe =As we know

d W WW ws + wGG wsws + γγandVW

=γeWW ws

++

=1

γe

wGG wsws++

=1

γγγ

Weight

Air

Volume

eeSG wws

++

=1

γγγAir

Water Vw = wGs

Vv = e

Ww = wGsγw

( )eSG ws +=1

γγ

lid

w s

V = 1+eW

e+1γ

Solids Vs = 1Ws = Gsγw

Page 21: SM 05 Phase Relationship

γ‐e‐w relationship (fully saturated) 21

wss GW γ= swGSe = At fully saturated conditionS = 1

wsw wGW γ= ww eSW γ= ww eW γ=

WW +Weight

V = V = e

VolumeV

WW swsat

+=γ

WaterVv = Vw = e

V = 1+e

Ww = eγw

eeG wws

sat ++

=1

γγγ

Solids V = 1

V = 1+e

W( )eG wssat

+=

γγ Solids Vs 1Ws = Gsγwesat +1

γ

Page 22: SM 05 Phase Relationship

γ‐n‐w relationship 22

sW

If V = 1, n = Vv/V   => Vv = n V = Vv + Vs =>   1 = n + Vs =>   Vs = 1–n 

( )ws

ss V

WGγ

= wsss VGW γ= ( )nGW wss −= 1γ

Weight

Air

Volumesw wWW =

Air

Water

Vv = n

Ww = wGsγw(1–n))1( nwGW wsw −= γ

S lidV = 1

Solids Vs = 1-nWs = Gsγw(1–n )

Page 23: SM 05 Phase Relationship

γ‐n‐w relationship 23

( ) ( )1

11 nwGnGV

WWVW wswsws −+−

=+

==γγγ

( )( )wnG ws +−= 11γγ

Weight

Air

Volume

Air

Water Vw = wGs

Vv = n

Ww = wGsγw(1–n)

Solids V 1V = 1

W G (1 ) Solids Vs = 1-nWs = Gsγw(1–n )

Page 24: SM 05 Phase Relationship

γ‐n‐w relationship 24

( ) ( )nGnGVW

wswss

d −=−

== 111 γγγ

( )nG wsd −= 1γγ

Weight

Air

Volume

Air

Water

Vv = n

Ww = wGsγw(1–n)

Solids V 1V = 1

W G (1 ) Solids Vs = 1-nWs = Gsγw(1–n )

Page 25: SM 05 Phase Relationship

γ‐n‐w relationship (fully saturated) 25

As we know that, S = 1 at saturation swGe = swG

nn

=−1

( )nGW wss −= 1γ ( ) sGnwn −= 1

Weight Volume ( ) sww GnwW −= 1γ

Water

Vw = wGs

Vv = nWw = nγw

nW γ=

S lid

w s

V = 1

ww nW γ=

Solids Vs = 1-nWs = Gsγw(1–n )

Page 26: SM 05 Phase Relationship

γ‐n‐w relationship (fully saturated) 26

( )1

1 wwswssat

nnGV

WWVW γγγ +−

=+

==

( )[ ] wssat nnG γγ +−= 1

Weight Volume

Water

Vw = wGs

Vv = nWw = nγw

S lid

w s

V = 1Solids Vs = 1-nWs = Gsγw(1–n )

Page 27: SM 05 Phase Relationship

γ‐n‐w relationship (fully saturated) 27

( )nGn

WWw ww

sat −==

1γγ

( )sat Ge

nGnw =−

=1( )nGW wss 1γ ( ) ss GnG 1

Weight Volume

Water

Vw = wGs

Vv = nWw = nγw

S lid

w s

V = 1Solids Vs = 1-nWs = Gsγw(1–n )

Page 28: SM 05 Phase Relationship

Summary 28

Page 29: SM 05 Phase Relationship

Relative density 29

Relative density (Dr) is commonly used to indicate the in‐situ denseness or looseness of granular soils.

ee

minmax

max

eeeeDr −

−=

Page 30: SM 05 Phase Relationship

Relative density 30

eG ws

d +=

1γγ 1−=

d

wsGeγγ 1

(min)max −=

d

wsGeγ

γ

1min −= wsGeγ

γ

(max)dγ

S b tit ti d i t ti f DSubstituting e, emin, and emax into equation of Dr

11

minmax

max

eeeeDr −

−= ⎥

⎤⎢⎣

⎥⎥⎦

⎢⎢⎣

−=

−=

d

d

dd

ddddrD

γγ

γγγγγγ (max)

(min)(max)

(min)(min)

11dd γγ (max)(min)