single phase darcy 2011

Upload: john-home

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Single Phase Darcy 2011

    1/59

    1

    Numerical simulation of two phaseporous media flow models with

    application to oil recovery

    Roland Masson

    IFP New energies

    ENSG course 2011

    18/04 - 19/04 -20/04 -21/04

  • 7/28/2019 Single Phase Darcy 2011

    2/59

    2

    Outline: 18-19/04

    Discretization of single phase flows

    Two Point Flux Finite Volume Approximation

    of Darcy Fluxes Homogeneous case

    Heterogeneous case

    Exercise: single phase incompressible Darcy

    flow in 1D (using Scilab)

  • 7/28/2019 Single Phase Darcy 2011

    3/59

    3

    Outline: 19-20/04 Discretization of two phase immiscible

    incompressible Darcy flows

    Hyperbolic scalar conservation laws IMPES discretization of water oil two phase flow

    Exercise: Impes discretization of water oil twophase flow in 1D (using Scilab)

  • 7/28/2019 Single Phase Darcy 2011

    4/59

    4

    Outline: 20-21/04 Discretization of wells

    Exercise: Five spots water oil simulation

    Description of the Research Project

  • 7/28/2019 Single Phase Darcy 2011

    5/59

    5

    Examination: 15/06 By binoms

    Written report on the Project

    Oral examination

    Presentation of the report Run tests of the prototype code

    Questions on numerical methods used in the

    simulation

  • 7/28/2019 Single Phase Darcy 2011

    6/59

    6

    Finite Volume Discretization of single

    phase Darcy flows

    Darcy law and conservation equation

    Two Point Flux Discretization (TPFA) of diffusion

    fluxes on admissible meshes

    Exercice: single phase incompressible Darcy

    flow in 1D

  • 7/28/2019 Single Phase Darcy 2011

    7/59

    7

    Oil recovery by water injection

    ( )

    ( )

    +=

    =

    gSPPKSk

    V

    gPKSkV

    owcw

    o

    oor

    o

    ww

    w

    wwr

    w

    )()(

    )(

    ,

    ,

    ( ) ( )( ) ( )

    =+

    =+

    0

    0

    oooo

    wwww

    Vdivt

    S

    Vdiv

    t

    S

    1=+ ow SS Capillary pressure PcRelative permeabilities kr,w and kr,o

  • 7/28/2019 Single Phase Darcy 2011

    8/59

    8

    1D test caseInjection of water in a reservoir

    prodpp=inj

    w

    ppS=

    =1

  • 7/28/2019 Single Phase Darcy 2011

    9/59

    9

    Water injection in a 1D reservoir

  • 7/28/2019 Single Phase Darcy 2011

    10/59

    10

    Five Spots simulation in 2D

    1000 m

    1000m

    Pressure

    Water front

  • 7/28/2019 Single Phase Darcy 2011

    11/59

    11

    Heterogeneities

    Water front Pressure

    Permeability

  • 7/28/2019 Single Phase Darcy 2011

    12/59

    12

    Heterogeneities

  • 7/28/2019 Single Phase Darcy 2011

    13/59

    13

    Coning: aquifer and vertical well

    Pressure

    Water front

    1000 m100m

    50m

    Aquifer

  • 7/28/2019 Single Phase Darcy 2011

    14/59

    14

    Coning: stratified reservoir

    Permeability

    Water front

    Pressure

  • 7/28/2019 Single Phase Darcy 2011

    15/59

    15

    SINGLE PHASE DARCY FLOWSINGLE PHASE DARCY FLOW

    ( ) ( ) qVdivt

    =+

    )( gP

    K

    V

    =

    K

  • 7/28/2019 Single Phase Darcy 2011

    16/59

    16

    Incompressible Darcy single

    phase flow Diffusion equation

    =

    =

    =

    N

    DD

    ongnp

    K

    onpp

    onfpKdiv

    .

    )(

    !

    "!#

    !

  • 7/28/2019 Single Phase Darcy 2011

    17/59

    17

    Compressible Darcy single phase flow

    Parabolic equation

    (linearized)

    =

    =

    =

    =+

    =onpp

    TongnpK

    Tonpp

    TonpK

    divpdp

    d

    t

    N

    DD

    t

    00

    0

    00

    0

    ),0(.

    ),0(

    ),0(0)()1

    (

    $%

    !

    "!#

    00 pp t ==

  • 7/28/2019 Single Phase Darcy 2011

    18/59

    18

    NOTATIONSobjectlgeometrica

    & "

    !'(!)(" !*

    21xx

    !)(" !*(*

    " !*

  • 7/28/2019 Single Phase Darcy 2011

    19/59

    19

    Finite Volume Discretization Finite volume mesh

    Cells Cell centers

    Faces

    Degrees of freedom:

    Discrete conservation law

    ===

    fdxdsnudxu

    '

    '.

    ' =

    x 'x

    u

    'n

  • 7/28/2019 Single Phase Darcy 2011

    20/59

    20

    Two Point Flux Approximation (TPFA)

    TPFA

    Flux Conservativity

    Flux Consistency

    ),(. '''

    uuFdsnu

    0),(),( '''' =+ uuFuuF

    ( ) +==

    )(.),( '''

    '' hOdsnuuu

    xx

    uuF

    ''' xx'xx

    'n

  • 7/28/2019 Single Phase Darcy 2011

    21/59

    21

    Two Point Flux Approximation Boundary faces

    xx '

    ( ) +==

    )(.),( hOdsnuuuxx

    uuF

    x

    xn

  • 7/28/2019 Single Phase Darcy 2011

    22/59

    22

    Two Point Flux Approximation

    Finite Volume Scheme

    '

    '

    '

    xx

    T =

    ( ) ( )

    fguxx

    uuxx

    bord

    =+ = int'

    '

    '

    =

    =

    surgu

    surfu

    xx

    T =

  • 7/28/2019 Single Phase Darcy 2011

    23/59

    23

    Exemples of admissible meshes

    "" 2/

    +

  • 7/28/2019 Single Phase Darcy 2011

    24/59

    24

    Corner Point Geometries and

    TPFA

    Assumption that the directions of the CPGare aligned with the principal directions ofthe permeability field

  • 7/28/2019 Single Phase Darcy 2011

    25/59

    25

    Corner Point Geometries

    Stratigraphic grids with erosions

    Examples of degenerate cells(erosions)

    Hexahedra

    Topologicaly Cartesian

    Dead cells

    Erosions

    Local Grid Refinement (LGR)

  • 7/28/2019 Single Phase Darcy 2011

    26/59

  • 7/28/2019 Single Phase Darcy 2011

    27/59

    27

    Cell Centered FV: MultiPoint Flux

    Approximation (MPFA)

    Example of the "O" scheme

    Exact on piecewise linear functions

    Account for discontinuous diffusion tensors

    Account for anisotropic diffusion tensors

    L

    L

    L

    uTF ='' '

    LL

    L

    L

    TTT ''' ,0==

  • 7/28/2019 Single Phase Darcy 2011

    28/59

    28

    2D example

    =

    =

    surgu

    surfu

    ( )yxeu += sin

    , "

    -

  • 7/28/2019 Single Phase Darcy 2011

    29/59

    29

    Comparison of MPFA "O" scheme and TPFA

    order 2

    + $

    Non convergent

  • 7/28/2019 Single Phase Darcy 2011

    30/59

    30

    Cell-Face data structure List of cells: m=1,...,N

    Volume(m) Cell center X(m)

    List of interior faces: i=1,...,Nint cellint(i,1) = m1, cellint(i,2)=m2

    surfaceint(i)

    Xint(i)

    List of boundary faces: i=1,...,Nbound cellbound(i)

    surfacebound(i)

    Xbound(i)

    '

    x

    x

    x

  • 7/28/2019 Single Phase Darcy 2011

    31/59

    31

    Computation of interior and

    boundary face transmissibilities

    Interior faces: i=1,...,Nint

    m1 = cellint(i,1)

    m2 = cellint(i,2)

    Tint(i) = surfaceint(i)/|X(m2)-X(m1)|

    Boundary faces: i=1,...,Nbound

    m = cellbound(i)

    Tbound(i) = surfacebound(i)/|X(m)-Xbound(i)|

    Computation of the Jacobian sparse

  • 7/28/2019 Single Phase Darcy 2011

    32/59

    32

    Computation of the Jacobian sparse

    matrix and the right hand side JU = B

    ( ) ( )

    fguTuuT

    bound

    =+ =

    int'

    ''

    ( )

    ( )

    =

    =

    uuTline

    uuTline

    ''

    ''

    :'

    :

    .

    ( ) guTline :

    .

    'uu

    u fline :

    .

    Computation of the Jacobian sparse

  • 7/28/2019 Single Phase Darcy 2011

    33/59

    33

    Computation of the Jacobian sparse

    matrix and the right hand side: JU = B

    ( ) ( )

    fguTuuT

    bound

    =+ = int'

    ''

    Cell loop: m=1,...,N B(m) = Volume(m)*f(X(m))

    Interior face loop: i=1,...,Nint m1 = cellint(i,1), m2 = cellint(i,2)

    J(m1,m1) = J(m1,m1) +Tint(i)

    J(m2,m2) = J(m2,m2) +Tint(i)

    J(m1,m2) = J(m1,m2) -Tint(i)

    J(m2,m1) = J(m2,m1) -Tint(i)

    Boundary face loop: i=1,...,Nbound m = cellbound(i)

    J(m,m) = J(m,m) +Tbound(i)

    B(m) = B(m) + Tbound(i)*g(Xbound(i))

    TPFA

  • 7/28/2019 Single Phase Darcy 2011

    34/59

    34

    TPFA

    Isotropic Heterogeneous media FV scheme

    )()(')(' ''''

    ''

    uuTuuxx

    Kuuxx

    KF ===

    =

    =

    surgu

    surfuKdiv )(

    'xx

    xK'K

    u

    'u

    u

    ''

    1

    '

    '

    '

    K

    xx

    K

    xx

    T+=

  • 7/28/2019 Single Phase Darcy 2011

    35/59

    35

    TPFA

    Isotropic heterogeneous permeability

    u

    '

    u

    u

    ''

    1

    '

    '

    '

    K

    xx

    K

    xx

    T+=

    '

    '

    '

    '

    '

    '

    '

    ''

    xxK

    xx

    K

    xx

    K

    xx

    xxT =

    +

    =

    'xxxK

    'K

  • 7/28/2019 Single Phase Darcy 2011

    36/59

    36

    Well discretization Radial stationary analytical solution for vertical wells in

    homogeneous porous media

    Numerical Peaceman well index for well discretization withimposed pressure

    Proof of Peaceman formula for uniform cartesian meshes

    Pressure drop for vertical single phase wells

  • 7/28/2019 Single Phase Darcy 2011

    37/59

    37

    Stationary radial analytical solution

    in homegeneous media

    =

    ==

    >=

    = wrr

    ww

    ww

    w

    qdsnpK

    rrpprrpK

    ).(

    0

    )/ln(2

    )( ww

    w rrK

    qprp

    =

    wp

    w

    q

    wrr=

    wn

    rqnrpKrq wr2

    ).()( ==

    )(rp

    wrr/1 100

  • 7/28/2019 Single Phase Darcy 2011

    38/59

    38

    Numerical well index Cartesian mesh

    x,y >> rw

    ( ) ( ) 0int'

    '' =++ ==

    wbord w

    wqppTppT

    Well w

    Well cell

    )/ln(2

    0 ww

    w rrK

    qpp

    w =

    2/1220 )(14.0 yxr +

    yx

    Pressure Numerical computation with specified well flow rate and pressure

    boundary condition given by the analytical solution

    with

    w

    w

    analytical solution

  • 7/28/2019 Single Phase Darcy 2011

    39/59

    39

    Well flow rate with specified pressure

    ( ) ( ) 0)(,

    ,

    '

    ''

    int

    =+ ==

    ii

    iwi ppWIppT

    / 0

    )(

    )/ln(

    2

    0

    w

    w

    w pp

    rr

    Kq

    w=

    )/ln(

    2

    0 wrr

    KWI

    = Well index

    C i f h J bi i d

  • 7/28/2019 Single Phase Darcy 2011

    40/59

    40

    Computation of the Jacobian matrix and

    right hand side JU = B with wells( ) ( ) 0

    )(,

    ,

    '

    ''

    int

    =+ ==

    ii

    iwi ppWIppT

    Loop on interior faces: i=1,...,Nint

    m1 = cellint(i,1), m2 = cellint(i,2)

    J(m1,m1) = J(m1,m1) +Tint(i)

    J(m2,m2) = J(m2,m2) +Tint(i)

    J(m1,m2) = J(m1,m2) -Tint(i)

    J(m2,m1) = J(m2,m1) -Tint(i)

    Loop on wells: i=1,...,Nwell m = cellwell(i)

    J(m,m) = J(m,m) + WI(i)

    B(m) = B(m) + WI(i)*pw(i)

  • 7/28/2019 Single Phase Darcy 2011

    41/59

    41

    Exercice: convergence of the scheme

    to an analytical well solution

    +

    =

    11

    2

    1

    1

    1

    1

    )/ln(2)/ln(2

    )/ln(2

    )(

    rrifrrK

    qrrK

    q

    rrrifrrK

    q

    prpw

    ww

    www

    w

    r

    qnrprKrq wr

    2).()()( ==

    )(rp

    wrr/1 1000

    )/ln(2

    )( ww

    w rrK

    qprp

    =

    rqnrpKrq wr2

    ).()( ==

    )(rp

    wrr /

    1 1000

    wr

    r1

    10/)( 12 KKrK ==

    1)( KrK =

    K

    Proof of Peaceman well index: uniform

  • 7/28/2019 Single Phase Darcy 2011

    42/59

    42

    Proof of Peaceman well index: uniform

    cartesian mesh, well at the center of the cell

    )(wprp=pqr=npK rq)(=

    wrxy >>=

    =

    w

    w

    rru

    rrppu

    0

    ruK = 0

    p

    =

    =

    wrr

    ww dsnpKq .

    wp

    1

    2

    $

    0.' '

    ' =+ =

    wqdsnpK

    )/ln(2

    )( ww

    w rrK

    qprp

    =

    wp

    wq

    wrr=

    wn

    r

    qnrpKrq wr

    2).()( ==

    'wp

  • 7/28/2019 Single Phase Darcy 2011

    43/59

    43

    Proof of Peaceman well index formula

    === += ''

    '

    '

    '

    ' .2..

    dsnnr

    q

    dsnuKdsnpK rw

    p nn

    4)(. '

    ''

    'wquu

    xxdsnpK +

    =

    4))/ln(

    2(0. '

    ''

    'w

    ww

    w

    qrx

    K

    qpp

    xxdsnpK +

    =

    ( )'''

    '.

    pp

    xxdsnpK

    =

    " ( )ww

    w rx

    K

    qpp /)2/exp(ln

    2

    +=

    'wp

    'n

    rn

  • 7/28/2019 Single Phase Darcy 2011

    44/59

    44

    Vertical well with hydrostatic pressure drop

    ( ))1()()1()( 2/1 = iZiZgipip iww

    22

    00 14.0),()/ln(

    ))((2

    )( yxriHrr

    imK

    iWI w+==

    !*(3334

    List of well perforations from bottom to top:i=1,...,Np

    m(i) = cell of perforation i

    WI(i) = Well index of perforation i pw(i) = pressure of perforation i

    BHPw pp =)1(15

    6 !*

    -

    1

    Analysis of TPFA discretization

  • 7/28/2019 Single Phase Darcy 2011

    45/59

    45

    Analysis of TPFA discretization

    Discrete norms: on each cell

    Discrete Poincar Inequality

    uu h =2/1

    2

    2

    =

    uulh

    2/1

    2

    )(

    )(

    2

    '

    ' ')(

    int

    10

    +=

    =

    u

    xxuu

    xxu

    bound

    hThh

    10

    2 )( hhlh uDu

    'xx

    Anal sis of TPFA discreti ation

  • 7/28/2019 Single Phase Darcy 2011

    46/59

    46

    Analysis of TPFA discretization

    A priori estimate:

    210

    )()( l

    hThhfDu

    h

    ( ) ( ) =

    +

    =

    ufuxx

    uuxx

    ubound

    0'

    '

    '

    ( )

    2/1

    2

    2/1

    2

    22

    ''

    '

    + =

    ufuxxuuxxbound

    ,(%(

    =

    =

    suru

    surfu

    0

  • 7/28/2019 Single Phase Darcy 2011

    47/59

    47

    Analysis of TPFA discretization

    Error estimate uxue = )(

    0')('

    '

    ''

    '

    =

    +

    Reexx

    dsnuxx

    xuxuR '

    ''

    '' .

    '

    1)()(

    =

    )(, ''' hORRR ==

    ( )

    fuuxx == ''

    '

    fdsnu = = '

    '

    '

    .

  • 7/28/2019 Single Phase Darcy 2011

    48/59

    48

    Analysis of TPFA discretization

    Error estimate uxue = )(

    0')(''

    ''

    '

    =

    +

    Reexx

    )(, ''' hORRR ==

    Che hThh

    )(10

    ( ) '''

    '

    2

    )(''1

    0

    ReeReehTh

    h ==

    hxxeCehh Th

    hThh

    ')(

    2)(

    '10

    10

  • 7/28/2019 Single Phase Darcy 2011

    49/59

    49

    TPFA discretization Discrete linear system:

    Coercivity:

    Symmetry:

    Monotonicity: ( Ah=M-Matrice)

    hhh FUA =

    T

    hh AA =

    01 hA

    2

    )(min 10),(

    hThhhhh uKUUA

    M- Matrice monotonicity

  • 7/28/2019 Single Phase Darcy 2011

    50/59

    50

    M Matrice monotonicity

    01 A

    >

    >

    j

    ji

    j

    ji

    ijiii

    Athatsuchi

    A

    AA

    0

    0

    0,0

    ,

    ,

    ,,

    0=+

    i

    ij

    jijiii SUAUA

    0min0

    j ij

    A

    ( )

    ( )

    fguxx

    uuxx

    bord

    =

    +

    =

    )(

    )(

    '

    '

    '

    78" %

  • 7/28/2019 Single Phase Darcy 2011

    51/59

    51

    Finite volume schemes

    Parabolic Equations: time discretizationImplicit Euler integration in time

    Stability analysis

  • 7/28/2019 Single Phase Darcy 2011

    52/59

    52

    Parabolic model

    =

    =

    =+

    =onuu

    TonnuK

    TonfuKdivu

    t

    t

    00

    ),0(0.

    ),0()(

    Finite volume space and time discretizations

  • 7/28/2019 Single Phase Darcy 2011

    53/59

    53

    Finite volume space and time discretizations

    ( )[ ] 0)(1

    = +n

    n

    t

    t

    t dxdtftuKdivu

    0).()()()(

    1

    '

    '

    1=

    ++

    +

    =

    +dtdsntuKtfdxtudxtu

    n

    n

    t

    t

    nn

    )()( 11

    +

    +

    n

    t

    t

    ttYdttY

    n

    n

    / $"

    )(tY

    ttttnn

    ==

    +10

    ,0

    +

    Finite volume space and time

  • 7/28/2019 Single Phase Darcy 2011

    54/59

    54

    Finite volume space and time

    discretizations

    ( )

    fuuT

    t

    uu nnnn

    =+

    =

    ++

    +

    '

    1

    '

    1

    '

    1

    Stability analysis: discrete energy

  • 7/28/2019 Single Phase Darcy 2011

    55/59

    55

    Stability analysis: discrete energy

    estimate

    ( ) ( )

    =+

    =

    ++

    +

    +

    fuuTtuuu nn

    nn

    n

    '

    1'

    1'

    1

    1

    22

    10

    222

    1

    2121221

    2

    2

    l

    n

    hl

    h

    h

    n

    hl

    n

    h

    n

    hl

    n

    hl

    n

    h

    uft

    utuuuu

    +

    +++

    ++

    222)()(2 bababaa +=

    Stability: discrete energy estimate

  • 7/28/2019 Single Phase Darcy 2011

    56/59

    56

    Stability: discrete energy estimate

    221221

    2222 lh

    l

    n

    h

    n

    hl

    n

    hl

    n

    h ftuuuu +++

    2202

    222 lh

    N

    lh

    l

    N

    h ftuu +

    , L2

    Stability analysis: discrete maximum principle

  • 7/28/2019 Single Phase Darcy 2011

    57/59

    57

    Stability analysis: discrete maximum principle

    (f=0, zero flux BC)

    nnn uuTt

    Tt

    u

    +

    =

    + +

    ==

    + 1''

    '

    '

    '

    1 1

    allforMumn

    Then allforMum n +

    1

    Stability analysis: discrete maximum principle(f fl BC)

  • 7/28/2019 Single Phase Darcy 2011

    58/59

    58

    (f=0, zero flux BC)

    Muuif

    nn>=

    ++ 11

    sup0 Proof:

    lead to a contradiction

    ( ) ( )MuuuTt

    Mu

    nnnn+

    =

    ++

    =

    +

    00

    0

    00

    11

    ''

    '0

    1

    Exercize: well test with

  • 7/28/2019 Single Phase Darcy 2011

    59/59

    59

    e c e e test t

    compressible Darcy single phase flow Parabolic equation

    (linearized)

    =

    =

    =

    =+

    =onpp

    TongnpK

    Tonpp

    TonpK

    divpdp

    d

    t

    N

    DD

    t

    00

    0

    00

    0

    ),0(.

    ),0(

    ),0(0)()1

    (

    $%

    !

    "!#

    00 pp t ==