single electron tunnelingspin/course/98f/091217.pdfsingle charge tunneling, coulomb blockade...

31
Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures NATO ASI Series, Vol. B edited by H Grabert and M H Devoret, Plenum Press New York, 1991 Single Electron Tunneling Gerd Schön Institut fur Theoretische Festkorperphysik Universit at Karlsruhe D Karlsruhe Germany Chapter of the book on Quantum Transport and Dissipation T Dittrich P Hanggi G Ingold B Kramer G Schon W Zwerger VCH Verlag revised version October, 1997 Single-Electron Devices and Their Applications, KONSTANTIN K. LIKHAREV, PROCEEDINGS OF THE IEEE, VOL. 87, NO. 4, APRIL 1999 Single Electron Tunneling [email protected]. http://www.phys.sinica.edu.tw/~quela/ 中央研究院 物理研究所 陳啟東

Upload: others

Post on 31-May-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

  • Single Charge Tunneling, Coulomb Blockade Phenomena in NanostructuresNATO ASI Series, Vol. B edited by H Grabert and M H Devoret, Plenum Press New York, 1991

    Single Electron TunnelingGerd SchönInstitut fur Theoretische FestkorperphysikUniversit at Karlsruhe D Karlsruhe GermanyChapter of the book onQuantum Transport and DissipationT Dittrich P Hanggi G Ingold B Kramer G Schon W ZwergerVCH Verlagrevised version October, 1997

    Single-Electron Devices and Their Applications, KONSTANTIN K. LIKHAREV,PROCEEDINGS OF THE IEEE, VOL. 87, NO. 4, APRIL 1999

    Single Electron [email protected]://www.phys.sinica.edu.tw/~quela/中央研究院 物理研究所 陳啟東

  • tunnel barrier

    N1 I N2)()( xtHxt

    ti Ψ=Ψ∂∂

    )()(2

    )( 222

    xtxExm

    xtE b Ψ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    ∂∂

    −=Ψh

    0)()()(2 2

    22=Ψ−+Ψ

    ∂∂ xEExxm xbx

    h

    )()()( txxt tx ΨΨ=Ψ

    )(xxΨ

    ikxikx BeAe −+kxkx DeCe +−

    )()( dxikeEAS −

    0 d x

    tunneling matrix element

    122

    )/1)(/(4)(sinh1)()(

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    +==bb EEEE

    kdESET

    for λ=2π/k

  • ( ) ( ) ( ) ( )[ ]dEeVEfeVENEfENTAI +−+= ∫∞

    ∞−→121

    2

    21

    ( ) ( )[ ] ( ) ( )dEeVEfeVENEfENTAI ++−= ∫∞

    ∞−→ 21

    2

    12 1

    ( ) ( ) ( ) ( )[ ]

    ( ) ( )[ ]dEeVEfEfeR

    dEeVEfEfeVENENTA

    III

    ∫∞

    ∞−

    ∞−

    →→

    +−≈

    +−+=

    −=

    121

    2

    1221

    Current from N1 to N2

    ⎟⎠⎞⎜

    ⎝⎛Δ−

    Δ−=

    TkEE

    eRI

    Bexp1

    1

    tunnel barrier

    N1 I

    TunnelingRules: 1. occupied state to empty state

    2. No associated energy change

    eV

    N2

  • eelectronreservoir

    C1

    C gC

    3

    C4C5C

    6

    C7

    CΣ ≡ C1 + C2 + ••• + C7

    Gap ΔV = e/CΣ

    Vg

    C1

    C 2C

    3

    C4C5

    C6

    Vb

    C7

    Vb

    Inject electrons via a tunnel junction

    I I

    Empty continuous states

    Filled continuous states

    ΔV = e/CΣ

    A neutral isolated dot Electron BoxElectron Box

    eelectronreservoir

    ΔV = e/CΣ

    Vb Vx= gg V

    CC

    Σ

    An applied gate voltage can lift up island potential

    particlerparticle rC επε02=

  • e

    Vg

    source drain

    gate

    e

    C1R1

    C2R2Cg

    +Vb/2 +Vb/2

    source I drain

    Vg-Vb/2 -Vb/2

    200 nm

    Island

    Gate

    DrainSource

    Junction

    +Vb/2Vg

    -Vb/2

    Circuit and a real sample

  • C C C C gΣ ≡ + +1 2

    E QC

    Q V

    eC

    nC V

    en

    E

    ii

    i i

    g g

    n

    = +

    = +⎡

    ⎣⎢

    ⎦⎥ +

    ∑ ∑2

    2 22

    2 Σterms independent of

    C C C C

    V V V

    Q Q Q Q

    i g

    i b g

    i g

    =

    = ±

    =

    1 2

    1 2

    2

    , ,

    ,

    , ,

    e

    +Vb/2Vg

    source drain

    gate

    eVC

    C1 C2Cg

    -Vb/2

    Single Electron TransistorSingle Electron Transistor

    ggcbcbci CVVCVVCVVQQ )(/2)(/2)( 21 −+++−==∑

    ΣΣ

    +−≡

    +=

    CVCne

    CVCQ

    V ggggc

    for C1=C2 and Vb=0

    Coulomb Blockade:Coulomb Blockade: V Vb g= =0 0;

    The characteristic energy scaleEc=e2/2CΣ

    Ec

    EcFermilevel

    source island drain

    occupied statesempty statesgap

    Rule for tunneling: from occupied states to empty states

  • V E e Vb c g≥ =2 0; Effect of a bias voltage:Effect of a bias voltage:

    Two possible tunneling sequences:

    Ec

    Ec

    +eVb -e

    2Ec

    Ec

    ( )V n E e C C Vc C g g= +2 Σ

    ( ) ....1 1 1 n n n n→ + → → + →

    n n→ + 1 n n+ →1

    note

    Ec

    Ec

    -eVb +e

    2Ec

    Ec

    ( ) ....2 1 1 n n n n→ − → → − →

    n n→ −1 n n− →1

    ISD

    Vb

    eEV Cth 2≡

    slope

    = 1/

    (R 1+R

    2)

  • Effect of a gate voltage:Effect of a gate voltage:

    ECn V Ee

    eC

    V eCc

    Cg

    g= = ± ± = ±0

    2 2, if = th en

    Σ

    ( )V n E e C C Vc C g g= +2 Σ

    Ec

    Ec

    +eVb

    -e2Ec

    Ec

    Ec

    n n→ + 1 n n+ →1

    ...1 = sequence tunneling;2 ;0 when →→→+=> nn+nCeVV ggb ~

    Ec

    Ec

    +eVb

    -e2Ec

    Ec

    Ec

    w hen ; tunneling sequence = ... V V e C n n nb g g> = − → − → →0 2 1;~n n→ −1 n n− →1

    T=4.2K

    bias voltage (mV)-40 -20 0 20 40

    5nA

    Vg2EC

    slope=1/2(R1+R2)for Vg= ne/2Cg;

    Vb< 4EC/e

    measuredIVb at various Vg

    IV V n e Cb g g for = ± +( ) /2 1 2

    IV V ne Cb g g for = ± /

  • Summary

    source draineVg > 0eVb < 2Ec

    ~eVb

    source drain

    eVbeVg = 0eVb > 2Ec

    T=4.2K

    bias voltage (mV)-40 -20 0 20 40

    2EC

    Vg =0

    -5nA

    5nA

    0

    source draineVg > αEceVb > 0~

    EC eVb

    source drain

    eVg > 2αEceVb > 0~

    eVb

    T=4.2K

    bias v o ltag e (m V )-4 0 -2 0 0 2 0 4 0

    2EC

    Vg = e/2Cg=+0.6 V

    -5nA

    5nA

    0

    Vb≠0, Vg=0 Vb≈0, Vg→EC

  • at Vb > 4EC/e and Vg=e/2Cg

    drain

    eVb

    Vg = αEceVb > 4Ec

    T=4.2K

    bias v o ltag e (m V )-4 0 -2 0 0 2 0 4 0

    2EC

    Vg = e/2Cg=+0.6 V

    -5nA

    5nA

    0

  • T=4.2K

    bias voltage (mV)-40 -20 0 20 40

    2EC

    Vg =0

    Vg =- e/Cg =-1.20 V

    Vg = e/Cg =+1.20 V

    curr

    ent (

    5nA

    /div

    isio

    n)

    Vg = e/2Cg

    Vg = -e/2Cg

    200 nmGate

    DrainSource

    T = 50 mK

    Sour

    c e-d

    r ai n

    curr e

    nt

    -1.0 -0.5 0.0 0.5 1.0

    -4

    -2

    0

    2

    4

    -1 0 1 2-2

    1nA

    Vb ( m

    V)

    Vg (V)

    n = Qg/e = CgVg/e

    中央島

    閘極

    源極

    接合

    -Vb/2

    Vg

    300 nm

    汲極

    +Vb/2

    ISD

    I(Vb) vs. I(Vg)

  • 的簡併態及 10n ≡ CgVg/eISD n=-2 -1 0 +1 +2

    -2 -1 0 1 2

    n=-2 -1 0 +1 +2

    En/

    EC

    0

    1

    1.5

    0.5

    T = 50 mK

    S our

    ce- d

    rain

    cur re

    n t

    -1.0 -0.5 0.0 0.5 1.0

    -4

    -2

    0

    2

    4

    -1 0 1 2-2

    1nA

    Vb (m

    V)

    Vg (V)

    n = Qg/e = CgVg/e

    Coulomb Oscillation

    Source

    VS

    DrainVDVg

    Cgn=0

    n=1

    n=3

    n=4 e/CΣ

    Each oscillation corresponds to a shift in the chemical potential of the island

    by an amount of e/CΣ

  • Current I eP G= ⋅$ $ $ , , , , , ,P P P P P P≡ − − + +L L2 1 0 1 2

    ∑ →++−−

    Γ≡Γ

    ΓΓΓΓΓ≡

    i

    fifn

    nnn

    G

    , ,,,,,,~̂

    21012 LL

    ΔE E n E n n n Vn n f i f i bi f→ ≡ − − −( ) ( ) ( ) 2

    Assumptions: 1. Sequential tunneling (no co-tunneling process)2. Global rule: Fast charge redistribution3. Fast energy relaxation

    Find out Pn :the probability of having n excess electrons in the islandMaster equation

    Calculate energy difference between two charge states

    Calculation of single electron tunneling current

    ( )TkEE

    Renn Bnn

    nn

    l

    l

    if

    f

    f→

    Δ−

    Δ−=Γ

    ι

    ι

    exp11 rate Tunneling 2 l = S, sourceD, drain

    states mequilibriuin 0 ,

    1,

    11 =Γ−Γ= ∑∑=

    ±→=

    ±→±DSl

    nl

    nnDSl

    nl

    nnn PP

    dtdP

    [ ] nn

    lnn

    lnn

    l peI 11∑ −→+→ Γ−Γ=Current

  • T=4.2K

    bias voltage (mV)-40 -20 0 20 40

    2EC

    Vg =0

    Vg =- e/Cg =-1.20 V

    Vg = e/Cg =+1.20 V

    curr

    ent (

    5nA

    /div

    isio

    n)

    Vg = e/2Cg

    Vg = -e/2Cg

    -40 -20 0 20 40

    5nA

    Vb (mV)

    Measurement vs. Simulation

    Asymptotic IVb ( )21

    2)(RR

    CeVsignVI bb+

    −→ Σ

  • Asymmetric SET Asymmetric SET (simulations)

    I SD

    (nA

    )

    VSD (mV)

    R1= 50 kΩ, R2= 1 MΩ, C1=0.2fF, C2=0.15fF, Cg=16aF, EC=2.54K, T=20mK

    Coulomb Staircase

    appears when R1C1≠R2C2Vg=0

    4EC/ee/Csmall

    e/(RC)large

    appears when R1≠R2

    slope

    = (C

    g/CΣ)/R

    1

    slop

    e =

    (Cg/C

    Σ)/R

    2

    I SD

    (pA

    )

    Vg (mV)

    VSD=e/CΣ=0.42mV

    e/Cg

  • Stability diagram:

    -1 -0.5 0.5 1Qg

    -6

    -4

    -2

    2

    4

    6

    Ecêe

    CB

    -0.6 -0.4 -0.2 0.2 0.4 0.6Qg

    -6

    -4

    -2

    2

    4

    6

    Ecêe

    CB

    Symmetrical Junctions

    Cr = 200CgCl = 100Cg

    ref “NewTrans.nb”

  • 80

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Vb (mV)25-25 -20 -15 -10 -5 0 5 10 15 20

    I (nA

    )IV characteristics for 1D array with C=100aF, R=20kΩ

    12

    3 4 56 7 8 9

    # of islands

    7

    0123456

    101 2 3 4 5 6 7 8 9

    Vth

    in m

    V

    # of islands

    e/C=0.8mV

  • e e e e

    Is=ef

    e e e(a)

    (b)A B C0 0 01 0 10 1 11 1 0

    f

    V I

    Josephson oscillations2eV = hf

    SET oscillationsI = ef

    Quantum Hall effectV = (h/2e2)I

    -Vb/2-Vb/2A B

    A B(c)

    +Vb/2-Vb/2

    Vx

    (d)

    +Vb/2-Vb/2

    Applications: Summary

  • other applications:other applications:ultra sensitive charge detector,

    a small change in the island charge causes large change in current,sensitivity ~ 10-5 e/√Hz (R.J.Schoelkopf et al, 98)

    memory cell,use number of charge stored in the island as an information bit,8×8 bit prototype room temperature memory cell array (K. Yano et al. 96)a non-volatile storage cell (C. D. Chen et al, 97)

    Current Standard,pumping charges one by one with an accuracy rf source, I = e × ferror = 15 parts in 109, or 15 ppb (John Martinis et al, 96)

    Primary thermometry,the full width at half maximum of the dI/dV⏐V~0 = αT, α = 10.878.. ×(kB/e)Good for KBT >> EC, experiment:T = 0.1~8 K, (J.P.Pekola et al, 94)

    logic gate element,forming AND, OR, NAND gates

    Computers: Making Single Electrons Compute, Science, v275, p. 303 (1997)

    an universal constant

  • Coulomb blockade

    Charging energy (e2/2C):Electrostatic energy associated with charging/discharging an isolated object

    Criteria Criteria (for a well defined charge number) :

    ⇒ sm all o r lo w C T

    R Rh

    eK≥ ≡ ≈2 26 kΩ

    electrical paths to charge/discharge the object

    C = total capacitance seen from the object

    R = total resistance seen from the object

    1. to surmount thermal fluctuations

    2. to surmount quantum fluctuations

    (tunneling transport -- not diffusion)

    (two resistance in parallel)

    isolated object

    ( )eC

    R C h

    Et

    2

    2

    ⎝⎜⎜

    ⎠⎟⎟ ≥ ⇒

    ΔΔ123

    123

    2eC

    k TB2

    >>

    Material:any conducting materials,

    including metal, semiconductor,

    conducting polymer, carbon nanotube, ...

    Structure:any structures with isolated

    objects accessible through tunnel junctions

    Single Electron Transistor (SET)

    The simplest structure:

  • T/EC=0(dashed steps), 0.02, 0.05, 0.1, 0.2, 0.4 and 1(nearly linear)

    Controlling and Detection of Charge number in a Box

    ∑∞

    −∞=

    −∞=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    =

    n B

    n B

    TknETknEn

    n)(exp

    )(exp

    At 20mK, this discrepancy is 40mK and is only partially understood.

    charge noise 10-4e/ Hz at 1Hz

    NATO, Single Charge Tunneling, p121

    ( )enQCC

    CQS

    −+

    =~

    ( ))(2

    ~)(

    2

    CCQnenE

    S +−

    =

  • -0.5 0.5 1 1.5Q1 = C1 U1

    -0.5

    0.5

    1

    1.5

    Q2 = C2 U2

    v=0,2�

    00 10

    01

    Control Gate 2

    Vg1Vg2

    Vgc1 Vgc1I2I1

    NATO, Single Charge Tunneling, p128

    Single Electron Pump

    ref “Q8Final&.nb”

  • NN--junctionjunction Electron PumpElectron Pump

    time

    CgVg0

    e

    Tunneling from I2 to I3 via J3

    e

    Vg1 Vg2 Vg3 Vg4 I

    J1 J2 J3 J4 J5

    I1 I2 I3 I4

    before tunneling: Q3 = - e/2, the rest = (+e/2)/4after tunneling: Q3 = +e/2, the rest = (- e/2)/4

    Cg2Vg2 = +e - Q(t)Cg3Vg3 = Q(t)

    Cg2Vg2 + Cg3Vg3 = e

    optimal operation condition

    QC = e/2

    Example:

    Ref: H. Dalsgaard Jensen and John M. Martinis PRB 46, 13407 (1992)

  • Accuracy of electron counting using a 7-junction electron pumpMark W. Keller and John M. MartinisNational Institute of Standards and Technology, Boulder, Colorado 80303Neil M. ZimmermanNational Institute of Standards and Technology, Gaithersburg, Maryland 20899Andrew H. SteinbachNational Institute of Standards and Technology, Boulder, Colorado 80303

    Appl. Phys. Lett. 69 (12), 1804 (1996)

    1) Current standard, (I=ef)error rate 15/109 (15 ppb)

    2) Capacitance standard (C=e/ΔV)3) hold time = 600 sec.

    pump ±e rate = 5.05MHz

    static

    C=e/ΔV=e/7.5μV~21fF

    pump ±e slowly

    Average time per error ~ 13 sec.

    pump ±e fast

  • 12

    222

    22

    24)!1()!12(22),(

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    −−=Γ

    NN

    T

    KN

    c CeeV

    RR

    NNN

    CeeVN

    ππh

    Co-tunneling

    NATO, Single Charge Tunneling, p115

    [ ] [ ][ ]Ω×=Γ−

    kV

    RVeVHz

    Tc

    μ4

    73105.2),4(

    For N=4

    NATO, Single Charge Tunneling, p218

  • P(E)

    E/ECI/R

    TEC

    V/EC

    AV

    RT, C RS=γRKΩ≈≡ k

    heRK 26

    2

    CeEC 2

    2

    Effect of shunt resistor on a small tunnel junction:

    P(E) ---- Probability for the tunneling electron to emit energy E to the environment.

    RS= 0.01RK

    0.1RK RK= 0

    .01R K

    RS= RK=0.1

    R K

    R S= 0

    R S= ∞

    Lower shunt resistance → lower junction resistanceH. Grabert and M. H. Devoret, ‘Single Charge Tunneling’, (Plenum Press, New York, 1992)

  • EC = e2/2C

    EK = level spacing = 1/D(EF)V

    n = 1022 cm-3m = meεr=410% tunnel barrier=2nm

    Additive energy for an oxideAdditive energy for an oxide--encapsulated nanoparticleencapsulated nanoparticle

    Likharev review article, Fig. 2

    EK

    EC

    RT

    2nm 19nm

    Single-Electron Devices and Their Applications, KONSTANTIN K. LIKHAREV,PROCEEDINGS OF THE IEEE, VOL. 87, NO. 4, APRIL 1999

  • eVC

    C2

    Σ

    eVC

    C1

    Σ

    J1 J2

    eVC

    C2

    Σ EC

    ECeV

    C

    C1

    Σ

    J1 J2

    eV eVafter tunneling

    EC

    Electron transfer through a quantum dot with charging energy EC

  • J1 J2

    What makes electrons flow?

    Fermi function:

    biasing: μ1-μ2=qVD

    [ ] )()(exp11)( 10

    11 μμ

    −=−+

    ≡ EfTkE

    EfB

    [ ] )()(exp11)( 20

    22 μμ

    −=−+

    ≡ EfTkE

    EfB

    Coupling strength for J1 and J2 = γ1 and γ2

    ( )pfeI −⎟⎠⎞

    ⎜⎝⎛= )( 1111 εγh

    ( )pfeI −⎟⎠⎞

    ⎜⎝⎛= )( 2222 εγh

    At steady state, I1=I2

    p = average number of electron in the QD 10 ≤≤ p

    21

    2211

    γγγγ

    ++

    =ffp

    )]()([ 2121

    2121 εεγγ

    γγ ffeIII −+

    =−==⇒h

    Handbook of Nanoscience, Engineering, and TechnologySection: 12.2.2 Current flow as a balancing actBy Magnus Paulsson, Ferdows Zahid and Supriyo Datta, Edited by William A. Goddard,III et al. CRC Press, 2003

    Quantum transport: atom to transistorSec. 1.2 What makes electrons flow

  • Filling electrons to an artificial atomn = 0 1 2 3 4 5

    Discrete energy levels in a dot

    Electronic Spins in nanoElectronic Spins in nano--particles: Zeeman Effectparticles: Zeeman Effect

    levels probedby tunneling

    filled levels

    Even number of electrons

    Ene

    rgy

    Magnetic field

    μ

    levels probedby tunneling

    filled levels

    Odd number of electrons

    Ene

    rgy

    Magnetic field

    μHz=σz(go/2) μΒΗσz=±1/2

    Hamiltonian:

    von Delft et al. PRL, 77, 3189 (96)

  • Kondo temperature( )

    ⎟⎠⎞

    ⎜⎝⎛

    Γ+

    Γ=U

    UexpUT 00Kεπε

    Duncan Haldane1978

    εo

    U

    EF

    εo= impurity level U = charging energy

    sour

    ce

    drai

    TK TK

    QD DOS electrode DOS

    metalfilm

    process time ~ h/⎪εo⎪Γ = level broadening

    Provide a new conduction channel in Coulomb blockade regime

    in Quantum dots with odd number of electronsSingle channel resonance

    Kondo resonance in Quantum Dot systems