simulation ammonia plant on pro ii

Upload: fabrizio-dugo

Post on 02-Jun-2018

307 views

Category:

Documents


10 download

TRANSCRIPT

  • 8/11/2019 simulation Ammonia plant on PRO II

    1/58

    PRO/II CASEBOOK

    Ammonia Synthesis

    ABSTRACTOver 100 million tons of ammonia are produced each year. The rewards for reducing costs, increasingefficiency and improving the profitability of ammonia plants are enormous. Computer simulation of the plantis the first step towards identifying which parameters control the conversion rate, the product purity, the energyusage and the production rate.

    This casebook demonstrates the use of PRO/II in the simulation of ammonia process. The entire plant ismodeled, from the reforming of the hydrocarbon feedstream to synthesis gas through its purification to itsconversion to ammonia in a synthesis reactor.

    The ammonia synthesis loop involves a large recycle compared to the feed and product rates. In additionthere are several thermal recycles and two control loops. Special thermodynamics are used to ensure thatthe separation of ammonia from the other components is predicted accurately.

    The casebook outlines the use of the model for parametric studies in the evolution of a control strategy.

    Casebook #3. Ammonia SynthesisRev. 0 January 1992

    PRO/II is a registered mark of SIMULATION SCIENCES INC.SM - SIMSCI is a service mark of SIMULATION SCIENCES INC.

    Copyright 1992, SIMULATION SCIENCES INC. ALL RIGHTS RESERVED

  • 8/11/2019 simulation Ammonia plant on PRO II

    2/58

  • 8/11/2019 simulation Ammonia plant on PRO II

    3/58

    INTRODUCTIONChemically combined nitrogen is essential for the growth of all living organisms. Neither animals nor (withone or two exceptions) plants can assimilate free nitrogen from the air; they depend upon nitrates, ammoniumsalts or other nitrogen compounds found in the soil.

    The natural supplies of fixed nitrogen were adequate for many centuries to satisfy the normal processes of

    nature. However, by the beginning of the nineteenth century, the increase in world population and the growthof big cities created a demand from the more industrialized countries for other supplemental sources of fixednitrogen.

    This supplement was first found in imported guano and sodium nitrate and later in ammoniacal solutions andammonium sulphate by-products from the carbonization of coal in gas-works and coke ovens.

    By the start of this century, with the demand for fertilizer nitrogen again having outstripped supply, necessityhad once again become the mother of invention and three different processes for the fixation of nitrogen werein commercial operation and adequate supplies of fertilizer nitrogen were assured.

    One of those three was the direct synthesis of ammonia from nitrogen and hydrogen by the Haber-Boschprocess. This was developed in Germany between 1905 and 1913 and virtually all fixed nitrogen is nowproduced by this process.

    The total world production in 1990 was over 100 million tons of fixed nitrogen and is increasing at the rate ofover 4% per annum. More than 90% of this is produced as ammonia and about 80% of the total fixed nitrogenproduction is used in fertilizers.

    Alternative Routes to AmmoniaThere are three principal licensors of ammonia synthesis processes 1: Braun, ICI and Kellogg. All produceammonia from hydrocarbon feedstocks and air. The hydrocarbon feedstock is usually a natural gas althoughothers, such as naphtha, are used where natural gas is not locally available.

    The processes are fundamentally similar: the feed hydrocarbon gas is desulfurized then converted tosynthesis gas in a reforming process followed by a CO shift and methanation. The resulting syngas, afterpurification, is a mixture of hydrogen and nitrogen in stoichiometric quantities (3:1). This is converted toammonia in a synthesis reactor which, because of a low conversion per pass, is in a recycle loop.

    Braun Process

    The key features of the Braun Purifier process are mild primary reforming, secondary reforming with excessair, cryogenic purification of Syngas and synthesis of ammonia in Braun converters.

    Twenty five single-train plants of Braun design have been contracted worldwide including the worlds largestat 2,000 tons/day. 1

    ICI Process

    There are two ICI processes. The AMV process is a large, world-scale process for ammonia production andhas a tightly integrated energy recovery system. The LCA process produces ammonia efficiently in smallscale plants of the order of 500 tons/day and uses pressure swing adsorption to remove nitrogen, carbonmonoxide and inerts from the syngas. 1

    ICI licenses its ammonia processes to Chiyoda and Mannesman/KTI.

    The Kellogg Process

    At almost 150 units worldwide, the Kellogg process has been installed in more ammonia plants than anyother process.

    1 Hydrocarbon Processing, March 1991

    3

  • 8/11/2019 simulation Ammonia plant on PRO II

    4/58

    Although the Kellogg process is a licensed process, operational benefits can be gained from changing anumber of the variable parameters: temperatures, recycle rates, air and steam quantities and so on. Recentlythere has been some work on lowering the steam to carbon ratio to the primary reformer and modifying thecatalysts used in the shift converters.

    The emphasis in ammonia plants today is for lower energy usage. New Kellogg plants claim 6.3Gcal/shortton for all energy requirements. This compares with 6.5 Gcal/ton claimed for the ICI AMV process and 7.0Gcal/ton for the ICI LCA process. 1

    PROCESS OVERVIEWThe ammonia process is a single train process and divides into four stages, which operate sequentially. Instage 1 the natural gas undergoes catalytic reforming to produce hydrogen from methane and steam. Thenitrogen required for the ammonia is introduced at this stage. In stage 2, the resulting syngas is purified bythe removal of carbon monoxide and carbon dioxide. Stage 3 consists of compression of the syngas up tothe pressure required in stage 4, the ammonia loop.

    Feedstocks and Products

    Main Feeds

    The main feedstock for this ammonia process is 6 million SCFD of natural gas at a temperature of 60 oF anda pressure of 340 psig. Its composition is shown in Table 1.

    Table 1Natural Gas Feed

    Component Mole %

    Carbon dioxide 2.95

    Nitrogen 3.05

    Methane 80.75

    Ethane 7.45

    Propane 3.25

    Butane 2.31

    Pentane 0.24

    Before entering the primary reformer, the natural gas is mixed with superheated steam at 334 psig and 950F.Nitrogen is supplied from the air which is fed to the secondary reformer at 289 psig and 330 F. Thecomposition of air is displayed in Table 2.

    Table 2Air Feed

    Component Mole %

    Oxygen 21.00

    Nitrogen 78.05

    Argon 0.95

    There is also a water feed which is used to saturate the syngas in the MEA plant.

    4

  • 8/11/2019 simulation Ammonia plant on PRO II

    5/58

    Products

    The main product of an ammonia plant is, of course, ammonia. The ammonia product stream must have apurity greater than 99.5%. The major impurities are hydrogen, nitrogen, argon and methane.

    The other product streams are:

    -- letdown gas from the final separator consisting of 45% ammonia, 30% hydrogen with the rest beingnitrogen, argon and methane

    -- purge gas from the ammonia loop consisting of 10% ammonia, 50% hydrogen plus nitrogen, argonand methane

    Ammonia is recovered from the letdown and purge gases in an absorber.

    Detailed descriptions of the product streams may be found at the end of the Simulation section in Table 3.

    Stage 1: Catalytic Reforming

    Following sulfur removal, the primary steam reformer converts about 70% of the hydrocarbon feed into rawsynthesis gas in the presence of steam using a nickel catalyst.

    The main reforming reactions are:

    CH 4 + H 2O CO + 3H 2CO + H 2O CO 2 + H 2

    In the secondary reformer, air is introduced to supply the nitrogen. The heat of combustion of the partiallyreformed gas raises the temperature and supplies the energy to reform most of the remaining hydrocarbonfeed.

    The reformer product stream is used to generate steam and to preheat the natural gas feed.

    STEAM

    AIR

    GAS

    AIR

    AIR COMPRESSOR

    PRIMARY REFORMER SECONDARY

    DESULFURIZER

    GAS HEATERINTERCHANGER

    WASTE HEAT

    NATURAL

    BOILER

    REFORMER

    GAS

    TO SHIFT REACTORS

    5

  • 8/11/2019 simulation Ammonia plant on PRO II

    6/58

    Stage 2: Shift and Methanation

    The shift conversion is carried out in two stages. The first uses a high temperature catalyst and the seconduses a low temperature one.

    The shift convertors remove the carbon monoxide produced in the reforming stage by converting it to carbondioxide by the reaction:

    CO + H 2O CO 2 + H 2

    This reaction also creates additional hydrogen for the ammonia synthesis.

    Shift reactor effluent is cooled and the condensed water is separated. The gas is then passed to thepurification section where carbon dioxide is removed from the synthesis gas in any one of a number of systemssuch as hot carbonate, MEA, Selexol etc.

    After the purification stage, the last traces of carbon monoxide and carbon dioxide are removed in themethanation reactions:

    CO + 3H 2O CH 4 + H 2CO 2 + 4H 2 CH 4 + 2H 2O

    6

  • 8/11/2019 simulation Ammonia plant on PRO II

    7/58

    Stage 3: Compression

    The purified synthesis gas is cooled and the condensed water is removed. The gas is then compressed ina three stage unit. The centrifugal compressors are driven by steam turbines using steam generated in theplant itself, reducing overall power consumption.

    Stage 4: Conversion

    The compressed synthesis gas is dried, mixed with a recycle stream and introduced into the synthesis loopafter the recycle compressor. The gas mixture is chilled and liquid ammonia is removed from the secondaryseparator. The vapor is heated and passed to the ammonia converter. The feed is preheated inside theconvertor before entering the catalyst bed.

    7

  • 8/11/2019 simulation Ammonia plant on PRO II

    8/58

    The ammonia synthesis reaction is:

    N 2 + 3H 2 2NH 3

    Very high pressures (typically in excess of 300 atmospheres) are required in order to obtain a reasonableconversion. The conversion of hydrogen per pass is still less than 30% and so a large recycle of unreactedgases is necessary.

    The convertor vapor product is cooled by ammonia refrigeration in the primary separator to condense theammonia product.

    A purge is removed from the remaining gases to prevent the build up of inerts in the loop. The molarconcentration of inerts (argon and methane) in the convertor feed is maintained at 12%.

    ENERGY INTEGRATIONThe process features a high level of energy integration. Nearly all the power and heating requirements ofthe process are met by the heat available elsewhere in the process.

    In the Reformer

    The primary reformer passes the natural gas and steam mixture through catalyst-packed tubes in a furnace.The furnace exhaust gases are used to generate steam in a series of boilers. This steam is then used todrive the compressors.

    The effluent from the secondary reformer is used in a waste heat boiler and then to preheat the feed to thedesulfurizer.

    In the Shift and MethanatorsThe methanator feed is preheated by exchanging with the methanator product and then further heated byexchange with the high temperature shift reactor effluent. Energy from this effluent is further recovered in awaste heat boiler.

    The effluent from the low temperature shift reaction is used in another reboiler.

    In the ConversionThe products from the ammonia converter are mixed with the synthesis gas from the compressors and cooledfor ammonia separation by exchange with the converter feed. The convertor feed is preheated by theproducts inside the convertor vessel.

    MATERIAL RECYCLEThe final stage, the Synthesis Loop, is a recycle operation. The conversion of nitrogen and hydrogen toammonia in the converter is very low - less than 30% of the hydrogen is converted per pass. Therefore therehas to be a large recycle in order to convert all the feed and ensure that the final ammonia product reachesthe required purity.

    The ratio of recycle to ammonia product is of the order of 3:1.

    8

  • 8/11/2019 simulation Ammonia plant on PRO II

    9/58

    PROCESS SIMULATIONThe full input for the simulation may be found in Appendix B. Fragments of the input are shown here toillustrate points of interest. For detailed explanations of all the input data, please refer to the PRO/II KeywordInput Manual, which may be obtained from SimSci.

    The Simulation Flowsheets shown below differ from the previous process flowsheets in that they include

    stream identifiers and show the way the simulation is solved. This is especially important for recycle solutions,both for thermal recycles and material recycles.

    A full flowsheet may be found in Appendix A.

    General DataBecause stage 4 of this process involves a loop which has a large recycle rate in comparison to the productrates, it is essential that the flowsheet balances. The normal stream recycle convergence tolerances musttherefore be tightened - in this case to 0.05%. The threshold mole fraction limit for trace components in therecycle is also reduced in order to ensure that all components are checked for the loop convergence.

    The maximum allowed number of recycle trials is increased to 100 and, to check the overall balance, PRO/II

    is asked to carry out an overall material balance (MBAL)

    PRINT INPUT=SEQUENCE, STREAM=PART, RATE=M, MBALCALC TRIAL=100TOLER STREAM=5e-4,-1.0,0.001,0.01

    Component DataAll the components in the simulation are in the PRO/II data bank.

    Thermodynamic DataFor most of the units in the flowsheet the Soave-Redlich-Kwong (SRK) equation of state is an excellentpredictor of phase equilibrium and thermal properties. However, in stage 4 where the ammonia is beingseparated from the recycle gas in flash units, a more accurate prediction is needed to represent the interactionbetween ammonia and the other components in the streams. For this, a second method is defined with SRKinteraction parameters:

    THERMO DATA METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=1, DEFAULT METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=2$ TEMPERATURE DEPENDENT KIJS FOR THE NH3 SEPARATORS

    KVALUE SRK(R) 5, 6, 0.0850 / & $ H2 - N2 5, 7, 0.0004 / & $ H2 - A 5, 8, -0.2079 / & $ H2 - C1 7, 8, 0.0204 / & $ A - C1 5, 13, 0.2760 / & $ H2 - NH3 6, 13, 0.3100 / & $ N2 - NH3 7, 13, 0.3383 / & $ A - NH3 8, 13, 0.1800 $ C1 - NH3

    9

  • 8/11/2019 simulation Ammonia plant on PRO II

    10/58

    The alternative data set is invoked in the ammonia separators by the instruction:

    METHODS SET=2

    Stream DataFeed Streams

    The main feed streams - natural gas, steam and air - are defined in the normal way by rate, composition,temperature and pressure. In addition there is a water feed to the MEA plant which ensures that the syngasleaves the plant saturated.

    Recycle Streams

    There is a recycle stream in stage 4. Because of the large flowrate of this stream relative to the flowsheetfeeds and products and because the ammonia species is created in the recycle, an initial estimate of the rateand composition of the recycle stream is supplied.

    $ RECYCLE GUESS PROP STRM=31R, TEMP=85, PRES=4660, * COMP=5,6000 / 6,2000 / 7,300 / 8,1000 / 13,700

    Other Streams

    There are several thermal recycles in this flowsheet. These may be simulated in several ways

    -- they can be input as they are and allowed to converge naturally

    -- they may be replaced by simpler units and solved rigorously after the flowsheet has solved

    -- they may be circumvented by using the REFERENCE STREAM facility.

    PROP STRM=13, REFS=11, TEMP=400, PRES=274 $ LTS SHIFT FEED PROP STRM=21, REFS=19, TEMP=675, PRES=254 $ METHANATOR FEED

    In stage 2, the feed to the low temperature shift reactor (stream 13) is referenced to the high temperatureshift product (stream 11). This defines all the properties of stream 13 except temperature and pressure,which are always as defined on this instruction. Similarly, stream 21 is referenced to stream 19. Thesereference streams allow the heat exchangers to be solved separately after converging the air flowratecontroller loop.

    Stream 13 is not defined as a product from a unit operation. However, in stage 4, stream 38B is a unitoperation product. Nevertheless, in order to eliminate a thermal recycle around the Ammonia Converter, itis referenced to stream 38.

    PROP STRM=38B, REFS=38, PRESS=4780, TEMP=575

    This means that stream 38B takes its composition and rate at all times from stream 38 but its temperatureand pressure are calculated by the heat exchanger from which it is a product.

    10

  • 8/11/2019 simulation Ammonia plant on PRO II

    11/58

    Unit Operations for Stage 1 - Catalytic Reforming

    Input

    Since there is no sulfur in the input, the Desulfurizer RX1 can be modeled as an isothermal flash to set the

    temperature and pressure of the reformer feed.Both the reformers, RX2 and RX3, are modeled as Gibbs Free Energy reactors with typical temperatureapproaches specified.

    The rate of air feed to the secondary reformer must be such that the syngas product from stage 2 has thecorrect nitrogen:hydrogen ratio. This is achieved by putting a controller on the stage 2 Methanator productand varying the air feed rate to the secondary reformer. This means that stages 1 and 2 are in a controllerloop.

    To satisfy the primary reformer, the molar ratio of steam (stream 5) to natural gas (stream 1) should be 6:1.The flow rate of the steam could be set to the correct value in the Stream Data Section. However, that wouldinvolve calculating the molar rate of natural gas (the stream is known only in volume units) before thesimulation begins. It is much easier to let the program do the calculation. Furthermore, now the natural gasstream can be changed at any time (for a turndown case or a different design case) and the steam rate is

    automatically recalculated.

    CALC UID=S1, NAME=STM-GAS FLOW SEQU STREAM=1,5 PROCEDURE R(1) = 6.0 * SMR(1) $ SET R(1) TO 6 * GAS RATE CALL SRXSTR(SMR,R(1),5) $ SET RATE OF STREAM 5 TO R(1) RETURN

    11

  • 8/11/2019 simulation Ammonia plant on PRO II

    12/58

    The secondary reformer product (stream 8) is used to preheat the desulfurizer feed (stream 2). This thermalrecycle is not a simple one in that the process demands a fixed temperature for both the products fromexchanger X-1. This is achieved by dividing the exchanger into two halves: the cold side is X-1A and issolved before the desulfurizer; the secondary reformed product is cooled in H-1, a combination of waste heatboiler WHB1 and the hot side of X-1.

    HX UID=X-1A COLD FEED=2, V=3, DP=2 SPEC COLD, TEMP=750

    ..............Solve DesulfurizerSolve Primary ReformerSolve Secondary Reformer..............

    HX UID=H-1, NAME=COOL REFGAS HOT FEED=8, M=10, DP=4 SPEC HOT, TEMP=675

    After stages 1 and 2 have solved, H-1 is divided into WHB1 and the hot side of X-1 (X-1B). This can beachieved because PRO/II allows streams to be feeds to more than one unit although care must be taken notto duplicate product stream names (hence stream 10X). This procedure also uses the facility to referenceduties from one exchanger to another.

    HX UID=WHB1 HOT FEED=8, V=9, DP=2 DEFI DUTY, AS, HX=H-1, DUTY, MINUS, HX=X-1A, DUTY

    HX UID=X1-B HOT FEED=9, V=10X, DP=1 DEFI DUTY, AS, HX=X-1A, DUTY, MULTIPLY, -1.0

    WHB1s duty is calculated as the difference between the duties of H-1 and X-1A. X1-Bs duty is simply thesame as that for X1-A but with the opposite sign.

    Results

    The stream calculator determines the steam flowrate as 3953 lb mole/hr which is six times the natural gasflowrate.

    Virtually all of the C2 and higher hydrocarbons are broken down in the primary reformer and converted tohydrogen, carbon monoxide and carbon dioxide. 58% of the methane in the feed is also converted. 95% ofthe residual methane is converted in the secondary reformer along with the remaining traces of ethane andpropane. All of the oxygen is consumed in the secondary reformer.

    The duties of WHB1 and X-1 are 53.7 and 4.2 MM Btu/hr respectively.

    12

  • 8/11/2019 simulation Ammonia plant on PRO II

    13/58

    Unit Operations for Stage 2 - Catalytic Shift and Methanation

    Input

    Both the High Temperature Shift Reactor (RX4) and the Low Temperature Shift Reactor (RX5) are modeledby the general reactor unit operation using built-in shift reaction equilibrium data. They operate adiabaticallyand the products are assumed to be at equilibrium.

    The MEA plant removes the bulk (99.92%) of the carbon dioxide from the shift reactor product and is modeledas a stream calculator (T-1). The treated gas is saturated with water in flash unit SAT and excess waterdischarged.

    The final part of stage 2 is the Methanator (RX6), modeled by the general reactor unit using built-in methanatorand shift reaction equilibrium data. The reactor operates adiabatically and equilibrium is assumed to beachieved.

    The syngas must have a hydrogen:nitrogen molar ratio of 3:1 to satisfy the stoichiometry of the ammoniareaction. This is accomplished by inserting a controller to measure that ratio in the Methanator product andvary the air feed to the Secondary Reformer until the required ratio is achieved. Thus there is a significantloop involving most of the units of stages 1 and 2. This makes it all the more important for any thermalrecycles within that loop to be eliminated if at all possible.

    The thermal recycle in stage 2 of the plant is a complex one, involving preheating the Methanator feed firstwith its own product and then with the RX4 product. This recycle is eliminated by referencing streams 13and 21 to bypass these exchangers completely.

    13

  • 8/11/2019 simulation Ammonia plant on PRO II

    14/58

  • 8/11/2019 simulation Ammonia plant on PRO II

    15/58

    Unit Operations for Stage 4 - Conversion

    InputThe fourth compressor (CP-4) is in the ammonia recycle loop. The loop starts at that unit, stream 31R beingthe main recycle stream. An initial estimate for this stream is needed, as discussed in the Stream DataSection above.

    The Ammonia Converter feed is preheated by exchanging inside the converter with its product stream. Thisexchanger is modeled separately in the flowsheet as FDEF. The exchangers before the separators do notappear on the simulation flowsheet as they are combined with the separators.

    There are two thermal recycles in the loop. The loop involving the convertor and feed preheater is split byreferencing the convertor feed (stream 38B) to the product from exchanger X-4 (stream 38) in the Stream

    Data Section. FDEF is then solved after the convertor when both feed streams have been calculated.The loop involving exchanger X-4 is solved explicitly as it appears in the flowsheet. This involves introducingan inner loop within the ammonia recycle loop. This loop could also be eliminated by using the devicesmentioned above.

    The Ammonia Converter (RX-7) is modeled using a general reactor model with supplied equilibrium data.

    REAC UID=RX-7, NAME=CONVERTER FEED 38B PROD V=29A OPER PHASE=V, ADIA, DP=30, TEMP=900 $ TEMP ESTIMATE RXCA EQUIL, REFTEMP=800 STOI 5,-3 / 6,-1 / 13,2 $ 3H2 + N2 = 2NH3

    BASE COMP=6, HEAT=-45.108 EQUI -32.975, 22930.4 $ LN(K) = A + B / DEG R APPR DT=20

    The reference condition for heat of reaction data is given as vapor at 800 F and the stoichiometry representsthe well-known ammonia synthesis reaction. The heat of reaction is given as -45.18 thousand energy unitsper mole of base component reacted, in this case nitrogen. The equilibrium constant is a function oftemperature according to the Arrhenius equation:

    Ln(K eq ) = A + B/T

    15

  • 8/11/2019 simulation Ammonia plant on PRO II

    16/58

    The equilibrium constant is computed at a temperature equal to the reaction temperature minus the approachtemperature difference given.

    The feed to the reactor has to contain 12 mole% of inerts (argon and methane). This is achieved by varyingthe rate of the recycle stream 31R using a controller (CTL1). Because this stream is also the recycle streamfor the main loop, the action of the controller could conflict with the recycle convergence. This is avoided bysolving the recycle before the controller is invoked.

    In order to maintain the inerts material balance, a purge stream is taken off the recycle stream. The rate ofthis stream is calculated in a calculator (BD-1).

    CALCULATOR UID=BD1, NAME=PURGE RATE DEFINE P(1) AS STREAM=28,COMP=7,RATE DEFINE P(2) AS STREAM=32A,COMP=7,RATE DEFINE P(3) AS STREAM=37A,COMP=7,RATE SEQUENCE STREAM=31X PROCEDURE V(1) = P(1) - P(2) - P(3) IF (V(1) .LE. 0.001) V(1) = 0.001 CALL SRXSTR(SMR, V(1), 31X)

    RETURN

    SPLIT UID=SP1, NAME=PURGE FEED 31 PROD V=31P, V=31R SPEC STRE=31P, COMP=7, RATE, RATIO, STRE=31X, VALUE=1

    The calculator builds a dummy stream 31X consisting of stream 28, the dry syngas feed to the loop, minusthe products from the loop, streams 32 and 37. The splitter SP1 operates such that the argon rate in thepurge stream 31P is equal to the argon rate in the dummy stream 31X - in other words equal to the net argoncoming in to the loop. Thus there is an exact argon balance in the loop and there will be no build up of inertsas the flowsheet recycle solves.

    ResultsThe synthesis loop solves with a production of 1546 lb mole/hr of 99.66% purity ammonia. The productcompositions are shown in Table 3.

    The overall conversion to ammonia is 99% with a reactor conversion per pass of 27%.

    The recycle stream rate is 10618 lb mole/hr giving a recycle:feed ratio of 3.2:1. The purge stream is73 lb mol/hr which is 0.69% of the recycle flowrate.

    16

  • 8/11/2019 simulation Ammonia plant on PRO II

    17/58

    Table 3Ammonia Plant Product Streams

    NH3 Product Let Down Gas Purge

    H2 1.46 21.25 41.7089

    N2 0.43 6.07 14.3781A 1.36 3.26 4.9649

    C1 1.95 7.52 5.9786

    NH3 1540.35 31.98 6.2537

    Rate (Lb mole/hr) 1545.55 70.08 73.3

    Temperature (o F) 78.9 78.9 85.0

    Pressure (psig) 350.0 350.0 4660.0

    USE OF THE MODEL IN PROCESS CONTROLVery clear benefits of using a computer model of a Kellogg Ammonia plant were demonstrated in a paperpublished in Hydrocarbon Processing, November 1980. The paper focuses on the design of control strategiesand uses a simulation model to derive the responses of the plant to different settings of various parameters.

    The parameters that were examined were:

    The ratio of synthesis loop recycle rate to fresh syngasIn many plants the fresh syngas feed to the synthesis loop is limited by front-end restric-tions such as insufficient synthesis compressor power or absorber capacity.

    The ratio of nitrogen to hydrogen in the syngasAt constant syngas make-up rates, ammonia production increased as H/N decreased, butsynthesis compressor loadings increased.

    Synthesis loop pressureProduction of ammonia increases with increased loop pressure. The design pressure,constrained by mechanical considerations, is the limiting factor and the purge systemshould be operated the keep the operating pressure just below the design pressure.

    The temperature of the synthesizer feedProduction is extremely sensitive to this parameter and an optimum temperature can befound. The control of this parameter is critical to the profitability of the plant.

    Methane content in syngasAmmonia production decreases with increasing methane. Improved primary reformer

    temperature control can alleviate this problem.The results of these simulations have been put into practice in a number of installations and these haveconsistently led to improved productivity and higher conversion efficiency.

    17

  • 8/11/2019 simulation Ammonia plant on PRO II

    18/58

    APPENDIX A - Complete Ammonia Plant Flowsheet

    18

  • 8/11/2019 simulation Ammonia plant on PRO II

    19/58

    WATER

    CONDENSATESEPARATOR

    SYN GAS COMPRESSORS

    DRIER

    WATER WATER WATER

    AMMONIA CONVERTER

    PURGE

    SPLITTERRECYCLE

    RECYCLECOMPRESSOR

    PRIMARYSEPARATOR

    DRY SYNGAS

    REACTOR FEED

    SECONDARYSEPARATOR

    NH3

    LETDOWNGAS

    PRODUCT

    GAS

    PRIMARY REFORMER SECONDARY

    INTERCHANGER

    REFORMER

    WASTE

    BOILERHEAT

    MEA

    PLANT

    CO2

    SHIFT REACTORS

    CONDENSATESEPARATOR

    METHANATOR

    HIGH

    WASTE

    REBOILER

    COOLER

    WATER

    TEMPSHIFT

    LOW

    TEMPSHIFT

    HEATBOILER

    INTERCHANGER

    COOLER INTERCHANGER

    AIRDESULFURIZER

    AIR COMPRESSOR

    STEAM

    AIR

    GAS

    NATURAL

    GAS

    HEATER

    19

  • 8/11/2019 simulation Ammonia plant on PRO II

    20/58

    APPENDIX B - PRO/II Input File

    TITLE PROJ=NH3 PLANT,PROB=AMMONIA,USER=SIMSCI,DATE=JAN 1992 PRINT INPUT=SEQUENCE, STREAM=PART, RATE=M, MBAL DIMEN ENGLISH, PRES=PSIG CALCU TRIAL=100, RECYCLE=TEAR

    TOLER STREAM=5.0e-4,-1.0,0.0001,0.01 SEQUENCE & HTR , X-1A , RX-1 , S1 , RX-2 , RX-3 , & H-1 , RX-4 , RX-5 , REB1 , CW-1 , D-1 , & T-1 , SAT , RX-6 , CT1 , X-3 , X-2 , & WHB2 , WHB1 , X1-B , CW2 , D-2 , CP-1 , & CP-2 , CP-3 , SEP1 , & REFC , CP-4 , X-4 , D-7 , DM2, , DM1, & RX-7 , FDEF , D-6 , DM3, DM4, BD1 , SP1 ,& DUM1 , CAL1 , DUM2 , CTL1 , D-8

    COMPONENT DATA LIBID 1,H2O / 2,O2 / 3,CO / 4,CO2 / 5,H2 / 6,N2 / 7,A / & 8,C1 / 9,C2 / 10,C3 / 11,NC4 / 12,NC5 / 13,NH3 THERMO DATA METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=1, DEFAULT METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=2 $ TEMPERATURE DEPENDENT KIJS FOR THE NH3 SEPARATORS KVALUE SRK(R) 5, 6, 0.0850 / & $ H2 - N2 5, 7, 0.0004 / & $ H2 - A 5, 8, -0.2079 / & $ H2 - C1 7, 8, 0.0204 / & $ A - C1 5, 13, 0.2760 / & $ H2 - NH3 6, 13, 0.3100 / & $ N2 - NH3 7, 13, 0.3383 / & $ A - NH3 8, 13, 0.1800 $ C1 - NH3 STREAM DATA OUTPUT FORMAT=1, NSTREAM=4 FORMAT IDNO=1, NAME, PHASE, CRATE, LINE, RATE(M), MW, RATE(W), LINE, & TEMP, PRES, ENTH, LINE, VAPOR, RATE (G,FT3/D), & DENS (LB/FT3), LINE, LIQUID, ARATE(V,GAL/M), DENS(LB/GAL) PROP STRM=1, TEMP=60, PRES=340, & COMP=4,2.95 / 6,3.05 / 8,80.75 / 7.45 / 3.25 / 2.31 / 0.24,& RATE(G)=250000 $ 6.0 MMSCFD PROP STRM=5, TEMP=950, PRES=334, COMP=1,1000 PROP STRM=7, TEMP=330, PRES=289, & COMP=2,21.0 / 6,78.05 / 7,0.95 / & RATE(G)=375000 $ GUESS OF RATE - ACTUAL RATE IS CALCULATED PROP STRM=WAT, TEMP=100, PRES=271, COMP=1,1000 $ WATER STREAM $ REFERENCE STREAMS FOR LOOP CALCULATIONS PROP STRM=13, REFS=11, TEMP=400, PRES=274 $ LTS SHIFT FEED PROP STRM=21, REFS=19, TEMP=675, PRES=254 $ METHANATOR FEED $ RECYCLE GUESS PROP STRM=31R, TEMP=85, PRES=4660, & COMP=5,6000 / 6,2000 / 7,300 / 8,1000 / 13,700 PROP STRM=31X, TEMP=85, PRES=4660, & COMP= 7,7

    20

  • 8/11/2019 simulation Ammonia plant on PRO II

    21/58

    $ REFERENCE STREAM TO ELIMINATE THERMAL RECYCLE PROP STRM=38B, REFS=38, TEMP=575, PRESS=4780 $$ FEED-EFFLUENT XCHG NAME 1, NAT GAS / 5, STEAM / 6, PR REF OUT / 7, AIR / & 8, SEC REF OUT / 11, HTS OUT / 14, LTS OUT / 17, MEA FEED / & 19, TRTD GAS / 22, METH PROD / 25, SYN GAS / 31R, RECYCLE / & 31P, PURGE / 31, PRI SEP / 36, SEC SEP / 38, RX FEED / & 39, LET DWN GAS / 40, NH3 PROD

    UNIT OPS DATA $ -------------------------------------------------------- -------- $ REFORMING SECTION $ -------------------------------------------------------- -------- FLASH UID=HTR, NAME=GAS HEATER FEED 1 PROD V=2 ADIA DP=2, DUTY=1.6, TEST=200 HX UID=X-1A COLD FEED=2, V=3, DP=2 SPEC COLD, TEMP=750 FLASH UID=RX-1, NAME=DESULFURIZER FEED 3 PROD V=4 ISOTHERMAL DP=2, TEMP=740 CALC UID=S1, NAME=STM-GAS FLOW SEQU STREAM=1,5 PROCEDURE R(1) = 6.0 * SMR(1) $ SET STEAM RATE CALL SRXSTR(SMR,R(1),5) $ STEAM/GAS RATIO = 6:1 RETURN GIBBS UID=RX-2, NAME=PRI REFORMER FEED 4,5 PROD V=6 OPER TEMP=1360, DP=45 CONV APPROACH=-35 ELEM REACTANTS=1/3/4/5/8/9/10/11/12 GIBBS UID=RX-3, NAME=SEC REFORMER FEED 6,7 PROD V=8 OPER ADIA, DP=5 CONV APPROACH=-35 ELEM REACTANTS=1/2/3/4/5/8/9/10/11/12 HX UID=H-1, NAME=COOL REFGAS HOT FEED=8, M=10, DP=4 SPEC HOT, TEMP=675 $ -------------------------------------------------------- -------- $ SHIFT AND METHANATION SECTION

    $ -------------------------------------------------------- -------- REACT UID=RX-4, NAME=H T SHIFT FEED 10 PROD V=11 RXCA MODEL=SHIFT, EQUILIBRIUM OPER ADIA, DP=2 REACT UID=RX-5, NAME=L T SHIFT FEED 13 PROD V=14

    21

  • 8/11/2019 simulation Ammonia plant on PRO II

    22/58

    RXCA MODEL=SHIFT, EQUILIBRIUM OPER ADIA, DP=2 FLASH UID=REB1, NAME=REBOILER FEED 14 PROD V=15 ADIA DUTY=-45, DP=4 HX UID=CW-1 HOT FEED=15, V=16, DP=2 SPEC HOT, TEMP=100 FLASH UID=D-1, NAME=COND SEP FEED 16 PROD W=18, V=17 ADIA STCALC UID=T-1, NAME=MEA COLUMN FEED 17 OVHD V=CO2, DEWT BTMS L=19A, TEMP=100, DP=12 FOVHD 1,3,0 / 4,4,0.9992 / 5,13,0 FLASH UID=SAT, NAME=H2O SAT FEED 19A, WAT PROD V=19, W=XS ISOTHERMAL TEMP=100 REACT UID=RX-6, NAME=METHANATOR FEED 21 PROD V=22 RXCA MODEL=METHAN, EQUILIBRIUM OPER ADIA, DP=2 $ CONTROL AIR TO HAVE STOICHIOMETRIC H2 TO N2 RATIO (3:1) CONTROL UID=CT1 SPEC STRM=22, COMP=5, RATE(M), RATIO, COMP=6, RATE(M), VALUE=3.0 VARY STRM=7, RATE $ -------------------------------------------------------- -------- $ NOW COMPLETE HEAT EXCHANGER CALCULATIONS $ -------------------------------------------------------- -------- HX UID=X-3 HOT FEED=22, M=23, DP=2 COLD FEED=19, V=20, DP=2 CONFIG U=90, AREA=1025 HX UID=X-2 HOT FEED=11, V=12, DP=2 COLD FEED=20, V=21X, DP=2 SPEC COLD, TEMP=675 HX UID=WHB2 HOT FEED=12, V=13X, DP=2 SPEC HOT, TEMP=400 HX UID=WHB1

    HOT FEED=8, V=9, DP=2 DEFI DUTY, AS, HX=H-1, DUTY, MINUS, HX=X-1A, DUTY HX UID=X1-B HOT FEED=9, V=10X, DP=1 DEFI DUTY, AS, HX=X-1A, DUTY, MULTIPLY, -1.0 FLASH UID=CW2 FEED 23 PROD M=24 ISO TEMP=100

    22

  • 8/11/2019 simulation Ammonia plant on PRO II

    23/58

    FLASH UID=D-2, NAME=COND SEP FEED 24 PROD W=24W, V=25 ADIA

    $ ------------------------------------ ---------------------------- $ SYNTHESIS LOOP COMPRESSORS $ -------------------------------------------------------- -------- COMP UID=CP-1, NAME=1ST STAGE FEED 25 PROD V=26, W=WA1 OPER POUT=700, EFF=95 COOL TOUT=95, DP=5 COMP UID=CP-2, NAME=2ND STAGE FEED 26 PROD V=27, W=WA2 OPER POUT=1950, EFF=95 COOL TOUT=95, DP=5 COMP UID=CP-3, NAME=3RD STAGE FEED 27 PROD V=28A OPER POUT=4960, EFF=95 COOL TOUT=95, DP=5

    STCA UID=SEP1, NAME=WATER REMOVL FEED 28A,1.0 OVHD TEMP=95 L=WA3 BTMS TEMP=95 V=28 FOVHD 1,1,1/2,13,0

    $ ------------------------------------ ---------------------------- $ START OF SYNTHESIS LOOP $ -------------------------------------------------------- -------- CALC UID=REFC NAME=REF_RATE SEQUENCE STREAM=31R DEFINE P(1) AS STREAM=31R, RATE(M) PROCEDURE IF (R(1) .GT. 0) GOTO 100 R(1) = P(1) 100 CALL SRXSTR(SMR,R(1),31R) RETURN

    COMP UID=CP-4, NAME=RECYCLE COMP FEED 31R PROD V=33 OPER POUT=4950, EFF=95 , WTOL=0.00001

    HX UID=X-4 COLD FEED=36A, V=38, DP=50 HOT FEED=28,33, M=34, DP=50 OPER CTEM=85 FLASH UID=D-7, NAME=SEC SEP FEED 34 PROD L=37, V=36 ISOTHERMAL TEMP=40, PRES=4840 METH SET=2

    23

  • 8/11/2019 simulation Ammonia plant on PRO II

    24/58

    FLASH UID=DM1 FEED 37 PROD L=37A ISOT TEMP=40 FLASH UID=DM2 FEED 36 PROD V=36A ISOT TEMP=40 $ SIMULATE THE REACTOR WITH AN EQUILIBRIUM MODEL REAC UID=RX-7, NAME=CONVERTER FEED 38B PROD V=29A OPER PHASE=V, ADIA, DP=30, TEMP=900 $ TEMP ESTIMATE RXCA EQUIL, REFTEMP=800 STOI 5,-3 / 6,-1 / 13,2 $ 3H2 + N2 = 2NH3 BASE COMP=6, HEAT=-45.108 EQUI -32.975, 22930.4 $ LN(K) = A + B / DEG R APPR DT=20 HX UID=FDEF, NAME=RX EFFL EXCH HOT FEED=29A, V=29, DP=30 COLD FEED=38, V=38B, DP=30 OPER HTEM=430 FLASH UID=D-6, NAME=PRI SEP FEED 29 PROD V=31, L=32 ISOTHERMAL TEMP=85, PRES=4660 METH SET=2 FLASH UID=DM3 FEED 31 PROD V=31A ISOT TEMP=85 FLASH UID=DM4 FEED 32 PROD L=32A ISOT TEMP=85 CALCULATOR UID=BD1, NAME=PURGE RATE DEFINE P(1) AS STREAM=28,COMP=7,RATE DEFINE P(2) AS STREAM=32A,COMP=7,RATE DEFINE P(3) AS STREAM=37A,COMP=7,RATE SEQUENCE STREAM=31X PROCEDURE V(1) = P(1) - P(2) - P(3) IF (V(1) .LE. 0.001) V(1) = 0.001 CALL SRXSTR(SMR, V(1), 31X) RETURN SPLIT UID=SP1, NAME=PURGE

    FEED 31A PROD V=31P, V=31RA SPEC STRE=31P, COMP=7, RATE, RATIO, STRE=31X, VALUE=1 , RTOL=0.00001 $ PURGE FLASH UID=DUM1 FEED 31RA PROD M=31RB ADIA CALC UID=CAL1 NAME=SET_RATE

    24

  • 8/11/2019 simulation Ammonia plant on PRO II

    25/58

    SEQUENCE STREAM=31RB DEFINE P(1) AS CALC=REFC, R(1) PROCEDURE CALL SRXSTR(SMR,P(1),31RB) RETURN FLASH UID=DUM2 FEED 31RB PROD M=31R ADIA $ END RECYCLE LOOP

    CONTR UID=CTL1 SPEC STRE=38, COMP=7,8, FRAC, VALUE=0.12,ATOL=1.0E-3 $ 12% INERTS IN RX FEED VARY CALC=REFC, R(1), EST2=10500,STEPSIZE=3.0E-4 $ ADJUST RECYCLE CPARA ITER=200, IPRINT

    FLASH UID=D-8, NAME=LETDOWN FEED 32A,37A PROD L=40, V=39 ADIA PRES=350 RECYCLE DATA LOOP NO=1, START=X-4, END=DM2,TOLE=0.000002 LOOP NO=2, START=CP-4, END=DUM2 , TOLE=0.0015 ACCEL TYPE=WEGS, STREAM=36A,31R

    $ CASE STUDY TO CHANGE INERT MOLE % IN RECYCLE TO 14%

    CASESTUDY OLDCASE=BASECASE,NEWCASE=14PT CHANGE CONTROLLER=CTL1,SPEC,VALUE=0.14

    25

  • 8/11/2019 simulation Ammonia plant on PRO II

    26/58

    APPENDIX C - PRO/II Output

    The following pages show selected parts of the output file from the ammonia plant simulation. A completecopy of the output can be obtained from SimSci.

    The order of the output is shown below:

    Plant material balanceCompressor CP-3Reactors

    RX-4RX-5RX-6RX-7RX-2RX-3

    Heat exchanger X-3Stream calculator T-1 (MEA Column)User defined output for all streams in the simulation

    26

  • 8/11/2019 simulation Ammonia plant on PRO II

    27/58

    SIMULATION SCIENCES INC. R PAGE P-1 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE PLANT MATERIAL BALANCE MAR 1992==============================================================================

    FEED STREAMS: 1 5 7

    WAT 13 21 8 19A 28

    PRODUCT STREAMS: 17 31P 39 40 18 XS 21X 13X 10X 24W WA1 WA2 28A

    OVERALL PLANT MOLAR BALANCE

    -------------------------------- LB-MOL/HR ----------------------------- PERCENT COMPONENT FEED +REACTION -PRODUCT =DEVIATION DEV -------------------------------------------- -------------------- ----------------- ----------------- ----------------- ---------------- 1 H2O 11121.489 -1072.243 10049.246 0.000 0.00 2 O2 211.874 -211.874 0.000 0.000 0.00 3 CO 408.041 0.000 408.041 0.000 0.00 4 CO2 1164.029 747.995 1912.024 0.000 0.00 5 H2 11784.837 57.594 11849.259 -6.828 -0.06 6 N2 4845.337 -788.920 4058.665 -2.248 -0.06 7 A 57.509 0.000 57.509 0.000 0.00 8 C1 589.934 -516.825 73.404 -0.295 -0.40 9 C2 49.080 -49.080 0.000 0.000 0.00 10 C3 21.411 -21.411 0.000 0.000 0.00 11 NC4 15.218 -15.218 0.000 0.000 0.00 12 NC5 1.581 -1.581 0.000 0.000 0.00 13 NH3 0.000 1577.793 1578.581 -0.788 -0.05

    TOTAL 30270.340 -293.769 29986.727 -10.156 -0.03

    OVERALL PLANT MASS BALANCE -------------------------------- LB-MOL/HR ----------------------------- PERCENT

    COMPONENT FEED +REACTION -PRODUCT =DEVIATION DEV -------------------------------------------- -------------------- ----------------- ----------------- ----------------- ---------------- 1 H2O 200353.63 -19316.46 181037.16 0.00 0.00 2 O2 6779.74 -6779.74 0.00 0.00 0.00 3 CO 11429.63 0.00 11429.63 0.00 0.00 4 CO2 51228.94 32919.26 84148.20 0.00 0.00 5 H2 23758.23 116.11 23888.11 -13.76 -0.06 6 N2 135732.44 -22100.02 113695.38 -62.96 -0.06 7 A 2297.35 0.00 2297.35 0.00 0.00 8 C1 9464.32 -8291.43 1177.63 -4.74 -0.40 9 C2 1475.83 -1475.83 0.00 0.00 0.00 10 C3 944.15 -944.15 0.00 0.00 0.00 11 NC4 884.53 -884.53 0.00 0.00 0.00

    12 NC5 114.08 -114.08 0.00 0.00 0.00 13 NH3 0.00 26871.40 26884.81 -13.42 -0.05

    TOTAL 444462.84 0.53 444558.22 -94.85 -0.02

    27

  • 8/11/2019 simulation Ammonia plant on PRO II

    28/58

    SIMULATION SCIENCES INC. R PAGE P-5 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE COMPRESSOR SUMMARY MAR 1992==============================================================================

    UNIT 24, CP-1, 1ST STAGE

    FEEDS 25

    PRODUCTS VAPOR 26

    WATER WA1

    OPERATING CONDITIONS

    INLET ISENTROPIC OUTLET ---------------- -------------------- -------------------- TEMPERATURE, F 100.00 283.71 293.34 PRESSURE, PSIG 250.00 700.00 700.00 ENTHALPY, MM BTU/HR -5.9524 -1.7168 -1.4938 ENTROPY, BTU/LB-MOL-F 31.0928 31.0928 31.1840 CP, BTU/LB-MOL-F 6.9731 7.0889 CV, BTU/LB-MOL-F 4.9419 5.0481 CP/(CP-R) 1.3982 1.3892 CP/CV 1.4110 1.4043 MOLE PERCENT VAPOR 100.0000 100.0000 100.0000 MOLE PERCENT LIQUID 0.0000 0.0000 0.0000 MOLE PERCENT H/C LIQUID 0.0000 0.0000 0.0000 MOLE PERCENT WATER 0.0000 0.0000 0.0000 ACT VAP RATE, M FT3/MIN 1.2463 ADIABATIC EFF, PERCENT 95.0000 POLYTROPIC EFF, PERCENT 95.6409 ISENTROPIC COEFFICIENT, K 1.3993 POLYTROPIC COEFFICIENT, N 1.4253 HEAD, FT ADIABATIC 116241.85 POLYTROPIC 117026.06 ACTUAL 122359.84

    WORK, HP THEORETICAL 1664.67 POLYTROPIC 1675.90 ACTUAL 1752.28 AFTERCOOLER DUTY, MM BTU/HR -4.73 TEMPERATURE, F 95.00 PRESSURE, PSIG 695.00

    NOTE: POLYTROPIC AND ISENTROPIC COEFFICIENTS CALCULATED FROM HEAD EQUATION

    28

  • 8/11/2019 simulation Ammonia plant on PRO II

    29/58

    SIMULATION SCIENCES INC. R PAGE P-9 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 8, RX-4, H T SHIFT

    OPERATING CONDITIONS

    REACTOR TYPE ADIABATIC SHIFT CONVERTER

    DUTY, MM BTU/HR -1.49948E-04 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -5.2517

    INLET OUTLET -------------------- -------------------- FEED 10 VAPOR PRODUCT 11 TEMPERATURE, F 675.00 758.58 PRESSURE, PSIG 280.0000 278.0000

    REACTION DATA

    -------------------- RATES, LB-MOL/HR -------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- -- --------------------- -------------------- --------------------- -------------------- 1 H2O 3220.2144 -296.8296 2923.3848 0.0922 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 348.6051 -296.8295 51.7756 0.8515 4 CO2 423.2684 296.8296 720.0980 5 H2 2093.5256 296.8296 2390.3552 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 0.0000 10.7034 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09

    TOTAL 6913.4580 0.0000 6913.4580

    LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) --------------------------------------- ----- ---------------- -------------------- ------------------------- 3 CO SHIFT 296.8295 0.8515

    (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

    29

  • 8/11/2019 simulation Ammonia plant on PRO II

    30/58

    SIMULATION SCIENCES INC. R PAGE P-10 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 8, RX-4, H T SHIFT (CONT)

    REACTOR MASS BALANCE

    ------------------------ RATES, LB/HR --------------------- FRACTION

    COMPONENT FEED CHANGE PRODUCT CONVERTED ----------------------------------------- --------------------- --------------------- --------------------- ----------------- 1 H2O 58012.1563 -5347.3789 52664.7773 0.0922 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 9764.7783 -8314.4922 1450.2860 0.8515 4 CO2 18628.0430 13063.4707 31691.5137 5 H2 4220.5479 598.4082 4818.9561 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 0.0000 171.7144 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07

    TOTAL 113802.2110 0.0000 113802.2110

    30

  • 8/11/2019 simulation Ammonia plant on PRO II

    31/58

    SIMULATION SCIENCES INC. R PAGE P-11 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 9, RX-5, L T SHIFT

    OPERATING CONDITIONS

    REACTOR TYPE ADIABATIC SHIFT CONVERTER

    DUTY, MM BTU/HR 6.16452E-05 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -0.8483

    INLET OUTLET -------------------- -------------------- FEED 13 VAPOR PRODUCT 14 TEMPERATURE, F 400.00 413.61 PRESSURE, PSIG 274.0000 272.0000

    REACTION DATA

    --------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- - --------------------- -------------------- ------------------------ --------------------- 1 H2O 2923.3848 -47.9456 2875.4392 0.0164 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 51.7756 -47.9456 3.8300 0.9260 4 CO2 720.0980 47.9456 768.0436 5 H2 2390.3552 47.9456 2438.3008 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 0.0000 10.7034 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09

    TOTAL 6913.4580 0.0000 6913.4580

    LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) ------------------------------------- -------------------- --------------------- ------------------------ 3 CO SHIFT 47.9456 0.9260

    (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

    31

  • 8/11/2019 simulation Ammonia plant on PRO II

    32/58

    SIMULATION SCIENCES INC. R PAGE P-12 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 9, RX-5, L T SHIFT (CONT)

    REACTOR MASS BALANCE

    --------------------- RATES, LB-MOL/HR ----------------- FRACTION

    COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- - --------------------- -------------------- ------------------------ --------------------- 1 H2O 52664.7773 -863.7422 51801.0352 0.0164 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 1450.2860 -1343.0044 107.2816 0.9260 4 CO2 31691.5137 2110.0879 33801.6016 5 H2 4818.9561 96.6582 4915.6143 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 0.0000 171.7144 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07

    TOTAL 113802.2110 0.0000 113802.2110

    32

  • 8/11/2019 simulation Ammonia plant on PRO II

    33/58

    SIMULATION SCIENCES INC. R PAGE P-13 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 15, RX-6, METHANATOR

    OPERATING CONDITIONS

    REACTOR TYPE ADIABATIC METHANATOR

    DUTY, MM BTU/HR -4.16521E-06 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -0.3832

    INLET OUTLET -------------------- -------------------- FEED 21 VAPOR PRODUCT 22 TEMPERATURE, F 675.00 692.54 PRESSURE, PSIG 254.0000 252.0000

    REACTION DATA

    --------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- - --------------------- -------------------- ------------------------ --------------------- 1 H2O 11.5273 5.0588 16.5861 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 3.8300 -3.8300 4.61974E-07 1.0000 4 CO2 0.6144 -0.6144 0.0000 1.0000 5 H2 2438.3010 -13.9478 2424.3533 5.72028E-03 6 N2 807.5562 0.0000 807.5562 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 4.4444 15.1478 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09

    TOTAL 3282.1172 -8.8889 3273.2283

    LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) ------------------------------------- --------------------- -------------------- ------------------------ 3 CO METHANATION 4.4444 1.1604 3 CO SHIFT 1.5903 0.4152

    (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

    33

  • 8/11/2019 simulation Ammonia plant on PRO II

    34/58

    SIMULATION SCIENCES INC. R PAGE P-14 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 15, RX-6, METHANATOR (CONT)

    REACTOR MASS BALANCE

    --------------------- RATES, LB-MOL/HR ----------------- FRACTION

    COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- - --------------------- -------------------- ------------------------ --------------------- 1 H2O 207.6640 91.1342 298.7982 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 107.2816 -107.2816 1.29403E-05 1.0000 4 CO2 27.0402 -27.0402 0.0000 1.0000 5 H2 4915.6152 -28.1187 4887.4966 5.72027E-03 6 N2 22622.0723 0.0000 22622.0723 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 71.3013 243.0157 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07 TOTAL 28434.2813 0.0000 28434.2754

    34

  • 8/11/2019 simulation Ammonia plant on PRO II

    35/58

    SIMULATION SCIENCES INC. R PAGE P-15 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 34, RX-7, CONVERTER

    OPERATING CONDITIONS

    REACTOR TYPE ADIABATIC REACTOR

    DUTY, MM BTU/HR -2.29920E-04 TOTAL HEAT OF REACTION AT 800.00 F, MM BTU/HR -35.5866

    INLET OUTLET ---------------------------- ----------------------------- FEED 38B VAPOR PRODUCT 29A TEMPERATURE, F 568.10 924.35 PRESSURE, PSIG 4759.9995 4729.9995

    REACTION DATA

    ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ---------------------------- 2 O2 6.29842E-07 0.0000 6.29842E-07 3 CO 3.25999E-05 0.0000 3.25999E-05 5 H2 8465.1299 -2366.7593 6098.3706 0.2796 6 N2 2890.1084 -788.9202 2101.1882 0.2730 7 A 727.6616 0.0000 727.6615 8 C1 879.5477 0.0000 879.5477 9 C2 2.47163E-05 0.0000 2.47163E-05 10 C3 4.81262E-07 0.0000 4.81262E-07 11 NC4 3.61721E-07 0.0000 3.61721E-07 12 NC5 3.25164E-07 0.0000 3.25164E-07 13 NH3 528.3845 1577.7932 2106.1777

    TOTAL 13490.8320 -1577.8857 11912.9463

    LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) --------------------------------------- --------- ------------------------ ------------------------ -------------------------------- 6 N2 1 788.9198 0.2730

    (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

    REACTOR MASS BALANCE

    --------------------- RATES, LB/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED

    --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ---------------------------- 2 O2 2.01543E-05 0.0000 2.01543E-05 3 CO 9.13156E-04 0.0000 9.13156E-04 5 H2 17065.7012 -4771.3857 12294.3154 0.2796 6 N2 80960.6094 -22100.0195 58860.5898 0.2730 7 A 29068.6211 0.0000 29068.6211 SIMULATION SCIENCES INC. R PAGE P-16 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992

    35

  • 8/11/2019 simulation Ammonia plant on PRO II

    36/58

    ==============================================================================

    UNIT 34, RX-7, CONVERTER (CONT)

    ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ------------------------ 8 C1 14110.5830 0.0000 14110.5820 9 C2 7.43220E-04 0.0000 7.43220E-04 10 C3 2.12222E-05 0.0000 2.12222E-05 11 NC4 2.10247E-05 0.0000 2.10247E-05 12 NC5 2.34609E-05 0.0000 2.34609E-05 13 NH3 8998.9170 26871.3984 35870.3164

    TOTAL 150204.4380 0.0000 150204.4220

    36

  • 8/11/2019 simulation Ammonia plant on PRO II

    37/58

    SIMULATION SCIENCES INC. R PAGE P-17 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 5, RX-2, PRI REFORMER

    OPERATING CONDITIONS

    REACTOR TYPE ISOTHERMAL

    DUTY, MM BTU/HR 65.7106 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR 37.5384 MINIMUM DIMENSIONLESS GIBBS FREE ENERGY (G/RT) -12.1943

    INLET OUTLET ---------------------------- ---------------------------- FEED 4 5 VAPOR PRODUCT 6 TEMPERATURE, F 901.01 1360.00 PRESSURE, PSIG 334.0000 289.0000

    REACTION DATA

    ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 3952.7412 -907.2722 3045.4690 0.2295 3 CO 0.0000 171.4357 171.4357 4 CO2 19.4343 367.9181 387.3524 5 H2 0.0000 1842.1045 1842.1045 6 N2 20.0931 0.0000 20.0931 8 C1 531.9731 -308.1938 223.7794 0.5793 9 C2 49.0799 -49.0751 4.735E-03 0.9999 10 C3 21.4107 -21.4107 3.199E-07 1.0000 11 NC4 15.2181 -15.2181 7.276E-09 1.0000

    12 NC5 1.5811 -1.5811 5.861E-09 1.0000 TOTAL 4611.5313 1078.7075 5690.2388

    REACTOR MASS BALANCE

    ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 71208.6250 -16344.5039 54864.1211 0.2295 3 CO 0.0000 4802.0845 4802.0845 4 CO2 855.3041 16192.0771 17047.3809 5 H2 0.0000 3713.6829 3713.6829 6 N2 562.8681 0.0000 562.8680

    8 C1 8534.4453 -4944.3535 3590.0920 0.5793 9 C2 1475.8319 -1475.6895 0.1424 0.9999

    37

  • 8/11/2019 simulation Ammonia plant on PRO II

    38/58

    SIMULATION SCIENCES INC. R PAGE P-18 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 5, RX-2, PRI REFORMER (CONT)

    ---------------------------- RATES, LB/HR ---------------------------- FRACTION

    COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ------------------------ ---------------------------- 10 C3 944.1470 -944.1470 1.41070E-05 1.0000 11 NC4 884.5342 -884.5342 4.22899E-07 1.0000 12 NC5 114.0777 -114.0777 4.22899E-07 1.0000

    TOTAL 84579.8281 0.5391 84580.3672

    38

  • 8/11/2019 simulation Ammonia plant on PRO II

    39/58

    SIMULATION SCIENCES INC. R PAGE P-19 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992==============================================================================

    UNIT 6, RX-3, SEC REFORMER

    OPERATING CONDITIONS

    REACTOR TYPE ADIABATIC

    DUTY, MM BTU/HR 4.678E-03 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -25.8425 MINIMUM DIMENSIONLESS GIBBS FREE ENERGY (G/RT) -12.0010

    INLET OUTLET ---------------------------- ------------------------ FEED 6 7 VAPOR PRODUCT 8 TEMPERATURE, F 1232.12 1634.44 PRESSURE, PSIG 289.0000 284.0000

    REACTION DATA

    ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ---------------------------- 1 H2O 3045.4690 174.7454 3220.2144 2 O2 211.8735 -211.8735 1.778E-08 1.0000 3 CO 171.4357 177.1695 348.6051 4 CO2 387.3524 35.9160 423.2684 5 H2 1842.1046 251.4210 2093.5256 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 223.7793 -213.0760 10.7034 0.9522 9 C2 4.735E-03 -4.735E-03 6.417E-07 0.9999

    10 C3 3.199E-07 -3.070E-07 1.290E-08 0.9597 11 NC4 7.276E-09 2.514E-09 9.790E-09 12 NC5 5.861E-09 2.025E-09 7.886E-09

    TOTAL 6699.1602 214.2979 6913.4580

    REACTOR MASS BALANCE

    ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 54864.1211 3148.0352 58012.1563 2 O2 6779.7397 -6779.7397 5.69011E-07 1.0000 3 CO 4802.0840 4962.6943 9764.7783

    4 CO2 17047.3809 1580.6621 18628.0430 5 H2 3713.6829 506.8650 4220.5479 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8917 0.0000 382.8918 8 C1 3590.0918 -3418.3774 171.7144 0.9522 9 C2 0.1424 -0.1424 1.92963E-05 0.9999 SIMULATION SCIENCES INC. R PAGE P-20 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992==============================================================================

    39

  • 8/11/2019 simulation Ammonia plant on PRO II

    40/58

    UNIT 6, RX-3, SEC REFORMER (CONT)

    ---------------------------- RATES, LB/HR ---------------------------- FRACTION

    COMPONENT FEED CHANGE PRODUCT CONVERTED --------------------------------------- --------- ------------------------ ---------------------------- ---------------------------- ------------------------ 10 C3 1.41070E-05 -1.35380E-05 5.69011E-07 0.9597 11 NC4 4.22899E-07 1.46112E-07 5.69011E-07 12 NC5 4.22899E-07 1.46112E-07 5.69011E-07

    TOTAL 113802.2030 0.0000 113802.2110

    40

  • 8/11/2019 simulation Ammonia plant on PRO II

    41/58

    SIMULATION SCIENCES INC. R PAGE P-23 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE HEAT EXCHANGER SUMMARY MAR 1992==============================================================================

    UNIT 17, X-3

    OPERATING CONDITIONS

    DUTY, MM BTU/HR 10.961 LMTD, F 118.819

    F FACTOR (FT) 1.000MTD, F 118.819U*A, BTU/HR-F 92250.070U, BTU/HR-FT2-F 90.000AREA, FT2 1025.000

    HOT SIDE CONDITIONS INLET OUTLET ---------------------------- ---------------------------- FEED 22

    VAPOR PRODUCT 23 VAPOR, LB-MOL/HR 3273.228 3273.228 M LB/HR 28.434 28.434 CP, BTU/LB-F 0.820 0.809 TOTAL, LB-MOL/HR 3273.228 3273.228 M LB/HR 28.434 28.434 CONDENSATION, LB-MOL/HR 0.000 TEMPERATURE, F 692.535 219.255 PRESSURE, PSIG 252.000 250.000

    COLD SIDE CONDITIONS INLET OUTLET ---------------------------- ---------------------------- FEED 19

    VAPOR PRODUCT 20 VAPOR, LB-MOL/HR 3282.117 3282.117 M LB/HR 28.434 28.434

    CP, BTU/LB-F 0.805 0.818 TOTAL, LB-MOL/HR 3282.117 3282.117 M LB/HR 28.434 28.434 CONDENSATION, LB-MOL/HR 0.000 TEMPERATURE, F 100.000 574.152 PRESSURE, PSIG 254.000 252.000

    41

  • 8/11/2019 simulation Ammonia plant on PRO II

    42/58

    SIMULATION SCIENCES INC. R PAGE P-29 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE STREAM CALCULATOR SUMMARY MAR 1992==============================================================================

    UNIT 13, T-1, MEA COLUMN

    NET DUTY, MM BTU/HR -0.99927

    FEEDS STREAM ID FACTOR

    17 1.000

    TOTAL RATE, LB-MOL/HR 4051.640TEMPERATURE, F 100.000PRESSURE, PSIG 266.000MOLECULAR WEIGHT 15.3633MOL FRAC VAPOR 1.00000MOL FRAC TOTAL LIQUID 0.00000MOL FRAC H/C LIQUID 0.00000MOL FRAC WATER 0.00000ENTHALPY, MM BTU/HR -1.49300

    PRODUCTS OVERHEAD BOTTOMS ALTERNATEPRODUCT

    MIXED 19AVAPOR CO2

    TOTAL RATE, LB-MOL/HR 767.429 3284.211 N/ATEMPERATURE, F -4.876 100.000 N/APRESSURE, PSIG 266.000 254.000 N/APRESSURE DROP, PSI 0.000 12.000 N/AENTHALPY, MM BTU/HR 3.49010 -5.98237 N/A

    42

  • 8/11/2019 simulation Ammonia plant on PRO II

    43/58

    SIMULATION SCIENCES INC. R PAGE P-32 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET JAN 1992==============================================================================

    STREAM ID CO2 WAT WA1 WA2

    NAME PHASE DRY VAPOR WATER WATER WATER

    NAME PHASE DRY VAPOR WATER WATER WATER COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 999.9999 7.9296 2.3755 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 0.0000 4 CO2 767.4293 0.0000 0.0000 0.0000 5 H2 0.0000 0.0000 0.0000 0.0000 6 N2 0.0000 0.0000 0.0000 0.0000 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 0.0000 0.0000 0.0000 0.0000 9 C2 0.0000 0.0000 0.0000 0.0000 10 C3 0.0000 0.0000 0.0000 0.0000 11 NC4 0.0000 0.0000 0.0000 0.0000 12 NC5 0.0000 0.0000 0.0000 0.0000 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 767.4293 999.9999 7.9296 2.3755 MOLECULAR WEIGHT 44.0100 18.0150 18.0150 18.0150 RATE, LB/HR 33774.5625 18014.9980 142.8509 42.7943

    TEMPERATURE, F -4.88 100.00 95.00 95.00 PRESSURE, PSIG 266.000 271.000 695.000 1945.000 ENTHALPY, M BTU/LB-MOL 4.5478 1.2387 1.1699 1.2290

    *** VAPOR PHASE *** RATE, M FT3/DAY 6989.4463 N/A N/A N/A DENSITY, LB/M FT3 3118.8838 N/A N/A N/A

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 36.2343 0.2870 0.0860 DENSITY, LB/GAL N/A 8.2864 8.2944 8.2944

    43

  • 8/11/2019 simulation Ammonia plant on PRO II

    44/58

    SIMULATION SCIENCES INC. R PAGE P-33 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET JAN 1992==============================================================================

    STREAM ID WA3 XS 1 2

    NAME NAT GAS PHASE WATER WATER DRY VAPOR DRY VAPOR

    NAME NAT GAS PHASE WATER WATER DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 1.3472 1002.0942 0.0000 0.0000 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 0.0000 4 CO2 0.0000 0.0000 19.4343 19.4343 5 H2 0.0000 0.0000 0.0000 0.0000 6 N2 0.0000 0.0000 20.0931 20.0931 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 0.0000 0.0000 531.9731 531.9731 9 C2 0.0000 0.0000 49.0799 49.0799 10 C3 0.0000 0.0000 21.4107 21.4107 11 NC4 0.0000 0.0000 15.2181 15.2181 12 NC5 0.0000 0.0000 1.5811 1.5811 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 1.3472 1002.0942 658.7902 658.7902 MOLECULAR WEIGHT 18.0150 18.0150 20.2966 20.2966 RATE, LB/HR 24.2690 18052.7266 13371.2080 13371.2080

    TEMPERATURE, F 95.00 100.00 60.00 282.86 PRESSURE, PSIG 4955.000 254.000 340.000 338.000 ENTHALPY, M BTU/LB-MOL 1.3705 1.2378 0.9590 3.3877

    *** VAPOR PHASE *** RATE, M FT3/DAY N/A N/A 6000.0039 6000.0039 DENSITY, LB/M FT3 N/A N/A 1388.8752 910.5820

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN 0.0488 36.3102 N/A N/A DENSITY, LB/GAL 8.2944 8.2864 N/A N/A

    44

  • 8/11/2019 simulation Ammonia plant on PRO II

    45/58

    SIMULATION SCIENCES INC. R PAGE P-34 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 3 4 5 6

    NAME STEAM PR REF OUT PHASE DRY VAPOR DRY VAPOR WATER VAPOR WET VAPOR

    NAME STEAM PR REF OUT PHASE DRY VAPOR DRY VAPOR WATER VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 3952.7412 3045.4690 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 171.4357 4 CO2 19.4343 19.4343 0.0000 387.3524 5 H2 0.0000 0.0000 0.0000 1842.1046 6 N2 20.0931 20.0931 0.0000 20.0931 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 531.9731 531.9731 0.0000 223.7794 9 C2 49.0799 49.0799 0.0000 4.7355E-03 10 C3 21.4107 21.4107 0.0000 3.1991E-07 11 NC4 15.2181 15.2181 0.0000 7.2758E-09 12 NC5 1.5811 1.5811 0.0000 5.8613E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 658.7902 658.7902 3952.7412 5690.2388 MOLECULAR WEIGHT 20.2966 20.2966 18.0150 14.8641 RATE, LB/HR 13371.2080 13371.2080 71208.6328 84580.3750

    TEMPERATURE, F 750.00 740.00 950.00 1360.00 PRESSURE, PSIG 336.000 334.000 334.000 289.000 ENTHALPY, M BTU/LB-MOL 9.7143 9.5598 26.9699 21.2011

    *** VAPOR PHASE *** RATE, M FT3/DAY 6000.0039 6000.0039 36000.0234 51824.4727 DENSITY, LB/M FT3 544.6247 546.1139 422.8545 231.2722

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

    45

  • 8/11/2019 simulation Ammonia plant on PRO II

    46/58

    SIMULATION SCIENCES INC. R PAGE P-35 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 7 8 9 10

    NAME AIR SEC REF OUT PHASE DRY VAPOR WET VAPOR WET VAPOR WET VAPOR

    NAME AIR SEC REF OUT PHASE DRY VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 3220.2144 3220.2144 3220.2144 2 O2 211.8735 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 0.0000 348.6051 348.6051 348.6051 4 CO2 0.0000 423.2684 423.2684 423.2684 5 H2 0.0000 2093.5256 2093.5256 2093.5256 6 N2 787.4632 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 0.0000 10.7034 10.7034 10.7034 9 C2 0.0000 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 0.0000 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 0.0000 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 0.0000 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 1008.9215 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 28.9634 16.4610 16.4610 16.4610 RATE, LB/HR 29221.8379 113802.2030 113802.2030 113802.2030

    TEMPERATURE, F 330.00 1634.44 747.58 675.00 PRESSURE, PSIG 289.000 284.000 282.000 280.000 ENTHALPY, M BTU/LB-MOL -0.2170 21.5924 13.8234 13.2206

    *** VAPOR PHASE *** RATE, M FT3/DAY 9188.8633 62965.0781 62965.0781 62965.0781 DENSITY, LB/M FT3 1029.2030 218.6197 378.4246 400.5077

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

    46

  • 8/11/2019 simulation Ammonia plant on PRO II

    47/58

    SIMULATION SCIENCES INC. R PAGE P-36 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 10X 11 12 13

    NAME HTS OUT PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR

    NAME HTS OUT PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 3220.2144 2923.3848 2923.3848 2923.3848 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 348.6051 51.7756 51.7756 51.7756 4 CO2 423.2684 720.0980 720.0980 720.0980 5 H2 2093.5256 2390.3552 2390.3552 2390.3552 6 N2 807.5563 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 10.7034 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 6913.4580 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 16.4610 16.4610 16.4610 16.4610 RATE, LB/HR 113802.2030 113802.2030 113802.2030 113802.2030

    TEMPERATURE, F 675.02 758.58 718.17 400.00 PRESSURE, PSIG 281.000 278.000 276.000 274.000 ENTHALPY, M BTU/LB-MOL 13.2206 13.3591 13.0193 10.3592

    *** VAPOR PHASE *** RATE, M FT3/DAY 62965.0781 62965.0781 62965.0781 62965.0781 DENSITY, LB/M FT3 401.8654 369.4207 379.7067 523.8746

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

    47

  • 8/11/2019 simulation Ammonia plant on PRO II

    48/58

    SIMULATION SCIENCES INC. R PAGE P-37 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 13X 14 15 16

    NAME LTS OUT PHASE WET VAPOR WET VAPOR MIXED MIXED

    NAME LTS OUT PHASE WET VAPOR WET VAPOR MIXED MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 2923.3848 2875.4390 2875.4390 2875.4390 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 51.7756 3.8300 3.8300 3.8300 4 CO2 720.0980 768.0436 768.0436 768.0436 5 H2 2390.3552 2438.3008 2438.3008 2438.3008 6 N2 807.5563 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 10.7034 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 6913.4580 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 16.4610 16.4610 16.4610 16.4610 RATE, LB/HR 113802.2030 113802.2030 113802.2030 113802.2030

    TEMPERATURE, F 400.00 413.61 267.51 100.00 PRESSURE, PSIG 274.000 272.000 268.000 266.000 ENTHALPY, M BTU/LB-MOL 10.3592 10.3815 3.8725 0.2967

    *** VAPOR PHASE *** RATE, M FT3/DAY 62965.0781 62965.0781 42818.0508 36900.7617 DENSITY, LB/M FT3 523.8745 511.0703 570.2701 718.6578

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A 85.2055 103.6961 DENSITY, LB/GAL N/A N/A 7.7951 8.2864

    48

  • 8/11/2019 simulation Ammonia plant on PRO II

    49/58

    SIMULATION SCIENCES INC. R PAGE P-38 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 17 18 19 19A

    NAME MEA FEED TRTD GAS PHASE WET VAPOR WATER WET VAPOR MIXED

    NAME MEA FEED TRTD GAS PHASE WET VAPOR WATER WET VAPOR MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 13.6215 2861.8179 11.5273 13.6215 2 O2 1.7782E-08 0.0000 1.7782E-08 1.7782E-08 3 CO 3.8300 0.0000 3.8300 3.8300 4 CO2 768.0436 0.0000 0.6144 0.6144 5 H2 2438.3010 0.0000 2438.3010 2438.3010 6 N2 807.5563 0.0000 807.5562 807.5562 7 A 9.5848 0.0000 9.5848 9.5848 8 C1 10.7034 0.0000 10.7034 10.7034 9 C2 6.4171E-07 0.0000 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 0.0000 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 0.0000 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 0.0000 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 4051.6404 2861.8179 3282.1172 3284.2114 MOLECULAR WEIGHT 15.3633 18.0150 8.6634 8.6694 RATE, LB/HR 62246.5703 51555.6445 28434.2793 28472.0078

    TEMPERATURE, F 100.00 100.00 100.00 100.00 PRESSURE, PSIG 266.000 266.000 254.000 254.000 ENTHALPY, M BTU/LB-MOL -0.3685 1.2384 -1.8235 -1.8216

    *** VAPOR PHASE *** RATE, M FT3/DAY 36900.7617 N/A 29892.2422 29892.2422 DENSITY, LB/M FT3 718.6578 N/A 384.3220 384.3220

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 103.6961 N/A 0.0759 DENSITY, LB/GAL N/A 8.2864 N/A 8.2864

    49

  • 8/11/2019 simulation Ammonia plant on PRO II

    50/58

    SIMULATION SCIENCES INC. R PAGE P-39 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 20 21 21X 22

    NAME METH PROD PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR

    NAME METH PROD PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 11.5273 11.5273 11.5273 16.5861 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 3.8300 3.8300 3.8300 4.6197E-07 4 CO2 0.6144 0.6144 0.6144 0.0000 5 H2 2438.3010 2438.3010 2438.3010 2424.3533 6 N2 807.5562 807.5562 807.5562 807.5562 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 15.1478 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 3282.1172 3282.1172 3282.1172 3273.2283 MOLECULAR WEIGHT 8.6634 8.6634 8.6634 8.6869 RATE, LB/HR 28434.2793 28434.2793 28434.2793 28434.2773

    TEMPERATURE, F 574.15 675.00 675.00 692.54 PRESSURE, PSIG 252.000 254.000 250.000 252.000 ENTHALPY, M BTU/LB-MOL 1.5161 2.2320 2.2319 2.3955

    *** VAPOR PHASE *** RATE, M FT3/DAY 29892.2422 29892.2422 29892.2422 29811.2871 DENSITY, LB/M FT3 206.8127 189.9177 187.1087 186.1654

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

    50

  • 8/11/2019 simulation Ammonia plant on PRO II

    51/58

    SIMULATION SCIENCES INC. R PAGE P-40 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 23 24 24W 25

    NAME SYN GAS PHASE WET VAPOR MIXED WATER WET VAPOR

    NAME SYN GAS PHASE WET VAPOR MIXED WATER WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 16.5861 16.5861 4.9339 11.6522 2 O2 1.7782E-08 1.7782E-08 0.0000 1.7782E-08 3 CO 4.6197E-07 4.6197E-07 0.0000 4.6197E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 2424.3533 2424.3533 0.0000 2424.3535 6 N2 807.5562 807.5562 0.0000 807.5562 7 A 9.5848 9.5848 0.0000 9.5848 8 C1 15.1478 15.1478 0.0000 15.1478 9 C2 6.4171E-07 6.4171E-07 0.0000 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 0.0000 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 0.0000 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 0.0000 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 3273.2283 3273.2283 4.9339 3268.2944 MOLECULAR WEIGHT 8.6869 8.6869 18.0150 8.6728 RATE, LB/HR 28434.2773 28434.2773 88.8840 28345.3926

    TEMPERATURE, F 219.26 100.00 100.00 100.00 PRESSURE, PSIG 250.000 250.000 250.000 250.000 ENTHALPY, M BTU/LB-MOL -0.9532 -1.8166 1.2376 -1.8213

    *** VAPOR PHASE *** RATE, M FT3/DAY 29811.2871 29766.3516 N/A 29766.3516 DENSITY, LB/M FT3 312.9745 379.0680 N/A 379.0680

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 0.1788 0.1788 N/A DENSITY, LB/GAL N/A 8.2864 8.2864 N/A

    51

  • 8/11/2019 simulation Ammonia plant on PRO II

    52/58

    SIMULATION SCIENCES INC. R PAGE P-41 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 26 27 28 28A

    NAME PHASE WET VAPOR WET VAPOR DRY VAPOR MIXED

    NAME PHASE WET VAPOR WET VAPOR DRY VAPOR MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 3.7226 1.3472 0.0000 1.3472 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 4.6197E-07 4.6197E-07 4.6197E-07 4.6197E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 2424.3535 2424.3535 2424.3535 2424.3535 6 N2 807.5562 807.5563 807.5562 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 15.1478 15.1478 15.1478 15.1478 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000

    RATE, LB-MOL/HR 3260.3650 3257.9895 3256.6423 3257.9895 MOLECULAR WEIGHT 8.6501 8.6433 8.6394 8.6433 RATE, LB/HR 28202.5430 28159.7480 28135.4785 28159.7480

    TEMPERATURE, F 95.00 95.00 95.00 95.00 PRESSURE, PSIG 695.000 1945.000 4955.000 4955.000 ENTHALPY, M BTU/LB-MOL -1.9132 -1.9287 -1.8808 -1.8764

    *** VAPOR PHASE *** RATE, M FT3/DAY 29694.1328 29672.4961 29660.2266 29665.0645 DENSITY, LB/M FT3 1007.7769 2655.5073 5954.0464 5955.4702

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A 0.0295 DENSITY, LB/GAL N/A N/A N/A 8.2944

    52

  • 8/11/2019 simulation Ammonia plant on PRO II

    53/58

    SIMULATION SCIENCES INC. R PAGE P-42 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 29 29A 31 31A

    NAME PRI SEP PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR

    NAME PRI SEP PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 6.2984E-07 6.2984E-07 6.1825E-07 6.1825E-07 3 CO 3.2600E-05 3.2600E-05 3.2391E-05 3.2391E-05 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 6098.3706 6098.3706 6079.1968 6079.1968 6 N2 2101.1882 2101.1882 2095.6528 2095.6528 7 A 727.6615 727.6615 723.6483 723.6483 8 C1 879.5476 879.5476 871.4004 871.4004 9 C2 2.4716E-05 2.4716E-05 2.4296E-05 2.4296E-05 10 C3 4.8126E-07 4.8126E-07 4.7263E-07 4.7263E-07 11 NC4 3.6172E-07 3.6172E-07 3.5508E-07 3.5508E-07 12 NC5 3.2516E-07 3.2516E-07 3.1995E-07 3.1995E-07 13 NH3 2106.1777 2106.1777 911.4990 911.4990

    RATE, LB-MOL/HR 11912.9453 11912.9453 10681.3975 10681.3975 MOLECULAR WEIGHT 12.6085 12.6085 12.1120 12.1120 RATE, LB/HR 150204.4220 150204.4220 129373.1090 129373.1090

    TEMPERATURE, F 430.00 924.35 85.00 85.00 PRESSURE, PSIG 4700.000 4730.000 4660.000 4660.000 ENTHALPY, M BTU/LB-MOL 2.8194 7.0395 -0.9457 -0.9726

    *** VAPOR PHASE *** RATE, M FT3/DAY 108498.4690 108498.4690 97281.9922 97281.9922 DENSITY, LB/M FT3 5574.7974 3661.2556 8445.1504 8494.1504

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

    53

  • 8/11/2019 simulation Ammonia plant on PRO II

    54/58

  • 8/11/2019 simulation Ammonia plant on PRO II

    55/58

    SIMULATION SCIENCES INC. R PAGE P-44 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 31X 32 32A 33

    NAME PHASE DRY VAPOR DRY LIQUID DRY LIQUID DRY VAPOR

    NAME PHASE DRY VAPOR DRY LIQUID DRY LIQUID DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 0.0000 1.1588E-08 1.1588E-08 6.1450E-07 3 CO 0.0000 2.0848E-07 2.0848E-07 3.2173E-05 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 0.0000 19.1734 19.1734 6044.3154 6 N2 0.0000 5.5356 5.5356 2083.5227 7 A 4.9649 4.0131 4.0131 718.6836 8 C1 0.0000 8.1472 8.1472 865.7172 9 C2 0.0000 4.1987E-07 4.1987E-07 2.4145E-05 10 C3 0.0000 8.6308E-09 8.6308E-09 4.6967E-07 11 NC4 0.0000 6.6437E-09 6.6437E-09 3.5283E-07 12 NC5 0.0000 5.2145E-09 5.2145E-09 3.1788E-07 13 NH3 0.0000 1194.6786 1194.6786 906.0308

    RATE, LB-MOL/HR 4.9649 1231.5481 1231.5481 10618.2705 MOLECULAR WEIGHT 39.9480 16.9147 16.9147 12.1094 RATE, LB/HR 198.3378 20831.3164 20831.3164 128580.3440

    TEMPERATURE, F 85.00 85.00 85.00 94.07 PRESSURE, PSIG 4660.000 4660.000 4660.000 4950.000 ENTHALPY, M BTU/LB-MOL -1.7133 1.0303 1.0093 -0.8987

    *** VAPOR PHASE *** RATE, M FT3/DAY 45.2184 N/A N/A 96707.0625 DENSITY, LB/M FT3 30750.1934 N/A N/A 8759.1260

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 71.0096 71.0096 N/A DENSITY, LB/GAL N/A 4.8893 4.8893 N/A

    55

  • 8/11/2019 simulation Ammonia plant on PRO II

    56/58

    SIMULATION SCIENCES INC. R PAGE P-45 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 34 36 36A 37

    NAME SEC SEP PHASE MIXED DRY VAPOR DRY VAPOR DRY LIQUID

    NAME SEC SEP PHASE MIXED DRY VAPOR DRY VAPOR DRY LIQUID COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 6.3229E-07 6.2984E-07 6.2984E-07 2.4445E-09 3 CO 3.2635E-05 3.2600E-05 3.2600E-05 3.4768E-08 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 8468.6689 8465.1289 8465.1289 3.5391 6 N2 2891.0789 2890.1082 2890.1082 0.9700 7 A 728.2684 727.6615 727.6615 0.6067 8 C1 880.8651 879.5476 879.5476 1.3171 9 C2 2.4787E-05 2.4716E-05 2.4716E-05 7.0651E-08 10 C3 4.8257E-07 4.8126E-07 4.8126E-07 1.3116E-09 11 NC4 3.6262E-07 3.6172E-07 3.6172E-07 9.0112E-10 12 NC5 3.2577E-07 3.2516E-07 3.2516E-07 6.0634E-10 13 NH3 906.0308 528.3845 528.3845 377.6484

    RATE, LB-MOL/HR 13874.9131 13490.8311 13490.8311 384.0815 MOLECULAR WEIGHT 11.2949 11.1338 11.1338 16.9532 RATE, LB/HR 156715.8280 150204.4380 150204.4380 6511.4072

    TEMPERATURE, F 54.90 40.00 40.00 40.00 PRESSURE, PSIG 4900.000 4840.000 4840.000 4840.000 ENTHALPY, M BTU/LB-MOL -1.4778 -1.7863 -1.7998 0.1345

    *** VAPOR PHASE *** RATE, M FT3/DAY 125550.4450 122869.2340 122869.2340 N/A DENSITY, LB/M FT3 8538.7656 8499.6279 8525.0176 N/A

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN 4.9682 N/A N/A 20.7735 DENSITY, LB/GAL 5.1201 N/A N/A 5.2241

    56

  • 8/11/2019 simulation Ammonia plant on PRO II

    57/58

    SIMULATION SCIENCES INC. R PAGE P-46 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 37A 38 38B 39

    NAME RX FEED LET DWN GAS PHASE DRY LIQUID DRY VAPOR DRY VAPOR DRY VAPOR

    NAME RX FEED LET DWN GAS PHASE DRY LIQUID DRY VAPOR DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 2.4445E-09 6.2984E-07 6.2984E-07 9.7714E-09 3 CO 3.4768E-08 3.2600E-05 3.2600E-05 2.1355E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 3.5391 8465.1289 8465.1289 21.2506 6 N2 0.9700 2890.1082 2890.1082 6.0712 7 A 0.6067 727.6615 727.6615 3.2630 8 C1 1.3171 879.5476 879.5476 7.5173 9 C2 7.0651E-08 2.4716E-05 2.4716E-05 2.8712E-07 10 C3 1.3116E-09 4.8126E-07 4.8126E-07 4.9529E-09 11 NC4 9.0112E-10 3.6172E-07 3.6172E-07 3.1406E-09 12 NC5 6.0634E-10 3.2516E-07 3.2516E-07 2.2444E-09 13 NH3 377.6484 528.3845 528.3845 31.9782

    RATE, LB-MOL/HR 384.0815 13490.8311 13490.8311 70.0804 MOLECULAR WEIGHT 16.9532 11.1338 11.1338 14.3904 RATE, LB/HR 6511.4072 150204.4380 150204.4380 1008.4857

    TEMPERATURE, F 40.00 85.00 567.41 78.89 PRESSURE, PSIG 4840.000 4790.000 4760.000 350.000 ENTHALPY, M BTU/LB-MOL 0.1229 -1.4413 2.2853 3.4674

    *** VAPOR PHASE *** RATE, M FT3/DAY N/A 122869.2340 122869.2340 638.2646 DENSITY, LB/M FT3 N/A 7779.4751 4269.7148 960.9985

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN 20.7735 N/A N/A N/A DENSITY, LB/GAL 5.2241 N/A N/A N/A

    57

  • 8/11/2019 simulation Ammonia plant on PRO II

    58/58

    SIMULATION SCIENCES INC. R PAGE P-47 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992==============================================================================

    STREAM ID 40

    NAME NH3 PROD PHASE DRY LIQUID

    NAME NH3 PROD PHASE DRY LIQUID COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 2 O2 4.2613E-09 3 CO 2.9692E-08 4 CO2 0.0000 5 H2 1.4619 6 N2 0.4344 7 A 1.3568 8 C1 1.9471 9 C2 2.0340E-07 10 C3 4.9894E-09 11 NC4 4.4042E-09 12 NC5 3.5765E-09 13 NH3 1540.3490

    RATE, LB-MOL/HR 1545.5492 MOLECULAR WEIGHT 17.0388 RATE, LB/HR 26334.2402

    TEMPERATURE, F 78.89 PRESSURE, PSIG 350.000 ENTHALPY, M BTU/LB-MOL 0.6775

    *** VAPOR PHASE *** RATE, M FT3/DAY N/A DENSITY, LB/M FT3 N/A

    *** LIQUID PHASE *** ACT.RATE, GAL/MIN 87.5369 DENSITY, LB/GAL 5.0139