silviu s. pufu, princeton universitysilviu pufu (princeton university) 10-26-2018 5 / 32 in 11d, we...

65
M-theory S-Matrix from 3d SCFT Silviu S. Pufu, Princeton University Based on: arXiv:1711.07343 with N. Agmon and S. Chester arXiv:1804.00949 with S. Chester and X. Yin arXiv:1808.10554 with D. Binder and S. Chester Also: arXiv:1406.4814, arXiv:1412.0334 with S. Chester, J. Lee, and R. Yacoby arXiv:1610.00740 with M. Dedushenko and R. Yacoby Trieste, October 17, 2018 Silviu Pufu (Princeton University) 10-26-2018 1 / 32

Upload: others

Post on 22-Feb-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

M-theory S-Matrix from 3d SCFT

Silviu S. Pufu, Princeton University

Based on:

arXiv:1711.07343 with N. Agmon and S. Chester

arXiv:1804.00949 with S. Chester and X. Yin

arXiv:1808.10554 with D. Binder and S. Chester

Also:

arXiv:1406.4814, arXiv:1412.0334 with S. Chester, J. Lee, and R. Yacoby

arXiv:1610.00740 with M. Dedushenko and R. Yacoby

Trieste, October 17, 2018

Silviu Pufu (Princeton University) 10-26-2018 1 / 32

Page 2: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Silviu Pufu (Princeton University) 10-26-2018 1 / 32

Page 3: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Learn about (reconstruct?) gravity / string theory / M-theory fromCFT using AdS/CFT.

Work toward a constructive proof of AdS/CFT.

Most well-established examples:

4d SU(N) N = 4 SYM at large N and large ’t Hooft coupling / typeIIB strings on AdS5 × S5

3d U(N)k × U(N)−k ABJM theory at large N / M-theory onAdS4 × S7/Zk .

Both have maximal SUSY (for ABJM only when k = 1 or 2).

I’ll focus on the ABJM example in the case k = 1.

Silviu Pufu (Princeton University) 10-26-2018 2 / 32

Page 4: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Learn about (reconstruct?) gravity / string theory / M-theory fromCFT using AdS/CFT.

Work toward a constructive proof of AdS/CFT.

Most well-established examples:

4d SU(N) N = 4 SYM at large N and large ’t Hooft coupling / typeIIB strings on AdS5 × S5

3d U(N)k × U(N)−k ABJM theory at large N / M-theory onAdS4 × S7/Zk .

Both have maximal SUSY (for ABJM only when k = 1 or 2).

I’ll focus on the ABJM example in the case k = 1.

Silviu Pufu (Princeton University) 10-26-2018 2 / 32

Page 5: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Last 10 years: progress in QFT calculations

using supersymmetric localization;

using conformal bootstrap in CFTs.

Example: using SUSic loc., the S3 partition function of ABJMtheory can be written as a 2N-dim’l integral [Kapustin, Willett, Yaakov ’09]

Z =

∫dNλdNµ

∏i<j 4 sinh2(λi − λj) sinh2(µi − µj)∏

i,j cosh2(λi − µj)ei k

π

∑i (λ

2i −µ

2i ) .

Expand at large N to find F = − log Z = π√

23 k1/2N3/2 + O(N1/2).

N3/2 scaling matches # of d.o.f.’s on N coincident M2-branes ascomputed using 11d SUGRA.

Subleading corrections contain info beyond 11d SUGRA. Whatexactly can we learn from them??

Silviu Pufu (Princeton University) 10-26-2018 3 / 32

Page 6: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Last 10 years: progress in QFT calculations

using supersymmetric localization;

using conformal bootstrap in CFTs.

Example: using SUSic loc., the S3 partition function of ABJMtheory can be written as a 2N-dim’l integral [Kapustin, Willett, Yaakov ’09]

Z =

∫dNλdNµ

∏i<j 4 sinh2(λi − λj) sinh2(µi − µj)∏

i,j cosh2(λi − µj)ei k

π

∑i (λ

2i −µ

2i ) .

Expand at large N to find F = − log Z = π√

23 k1/2N3/2 + O(N1/2).

N3/2 scaling matches # of d.o.f.’s on N coincident M2-branes ascomputed using 11d SUGRA.

Subleading corrections contain info beyond 11d SUGRA. Whatexactly can we learn from them??

Silviu Pufu (Princeton University) 10-26-2018 3 / 32

Page 7: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Last 10 years: progress in QFT calculations

using supersymmetric localization;

using conformal bootstrap in CFTs.

Example: using SUSic loc., the S3 partition function of ABJMtheory can be written as a 2N-dim’l integral [Kapustin, Willett, Yaakov ’09]

Z =

∫dNλdNµ

∏i<j 4 sinh2(λi − λj) sinh2(µi − µj)∏

i,j cosh2(λi − µj)ei k

π

∑i (λ

2i −µ

2i ) .

Expand at large N to find F = − log Z = π√

23 k1/2N3/2 + O(N1/2).

N3/2 scaling matches # of d.o.f.’s on N coincident M2-branes ascomputed using 11d SUGRA.

Subleading corrections contain info beyond 11d SUGRA. Whatexactly can we learn from them??

Silviu Pufu (Princeton University) 10-26-2018 3 / 32

Page 8: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Motivation

Last 10 years: progress in QFT calculations

using supersymmetric localization;

using conformal bootstrap in CFTs.

Example: using SUSic loc., the S3 partition function of ABJMtheory can be written as a 2N-dim’l integral [Kapustin, Willett, Yaakov ’09]

Z =

∫dNλdNµ

∏i<j 4 sinh2(λi − λj) sinh2(µi − µj)∏

i,j cosh2(λi − µj)ei k

π

∑i (λ

2i −µ

2i ) .

Expand at large N to find F = − log Z = π√

23 k1/2N3/2 + O(N1/2).

N3/2 scaling matches # of d.o.f.’s on N coincident M2-branes ascomputed using 11d SUGRA.

Subleading corrections contain info beyond 11d SUGRA. Whatexactly can we learn from them??

Silviu Pufu (Princeton University) 10-26-2018 3 / 32

Page 9: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

M-theory S-matrix

This talk: Reconstruct M-theory S-matrix perturbatively at smallmomentum.

scatter gravitons and superpartners in 11d.

Equivalently, reconstruct the derivative expansion of the M-theoryeffective action. Schematically,

S =

∫d11x

√g[R + Riem4 + · · ·+ (SUSic completion)

].

Restrict momenta to be in 4 out of the 11 dimensions.

Silviu Pufu (Princeton University) 10-26-2018 4 / 32

Page 10: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

M-theory S-matrix

This talk: Reconstruct M-theory S-matrix perturbatively at smallmomentum.

scatter gravitons and superpartners in 11d.

Equivalently, reconstruct the derivative expansion of the M-theoryeffective action. Schematically,

S =

∫d11x

√g[R + Riem4 + · · ·+ (SUSic completion)

].

Restrict momenta to be in 4 out of the 11 dimensions.

Silviu Pufu (Princeton University) 10-26-2018 4 / 32

Page 11: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

M-theory S-matrix

This talk: Reconstruct M-theory S-matrix perturbatively at smallmomentum.

scatter gravitons and superpartners in 11d.

Equivalently, reconstruct the derivative expansion of the M-theoryeffective action. Schematically,

S =

∫d11x

√g[R + Riem4 + · · ·+ (SUSic completion)

].

Restrict momenta to be in 4 out of the 11 dimensions.

Silviu Pufu (Princeton University) 10-26-2018 4 / 32

Page 12: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles.Momenta within 4d =⇒ can use 4d N = 8 language. We scatter:

graviton (1);gravitinos (8);gravi-photons (28);gravi-photinos (56);scalars (70 = 35 + 35)

At leading order in small momentum (i.e. p2), scatteringamplitudes are those in N = 8 SUGRA at tree level. Examples:

ASUGRA, tree(h−h−h+h+) =〈12〉4[34]4

stu,

ASUGRA, tree(S1S1S2S2) =tus,

where s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2.Amplitudes depend on the particles being scattered, but they’re allrelated by SUSY. (See Elvang & Huang’s book.)

Silviu Pufu (Princeton University) 10-26-2018 5 / 32

Page 13: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles.Momenta within 4d =⇒ can use 4d N = 8 language. We scatter:

graviton (1);gravitinos (8);gravi-photons (28);gravi-photinos (56);scalars (70 = 35 + 35)

At leading order in small momentum (i.e. p2), scatteringamplitudes are those in N = 8 SUGRA at tree level. Examples:

ASUGRA, tree(h−h−h+h+) =〈12〉4[34]4

stu,

ASUGRA, tree(S1S1S2S2) =tus,

where s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2.Amplitudes depend on the particles being scattered, but they’re allrelated by SUSY. (See Elvang & Huang’s book.)

Silviu Pufu (Princeton University) 10-26-2018 5 / 32

Page 14: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles.Momenta within 4d =⇒ can use 4d N = 8 language. We scatter:

graviton (1);gravitinos (8);gravi-photons (28);gravi-photinos (56);scalars (70 = 35 + 35)

At leading order in small momentum (i.e. p2), scatteringamplitudes are those in N = 8 SUGRA at tree level. Examples:

ASUGRA, tree(h−h−h+h+) =〈12〉4[34]4

stu,

ASUGRA, tree(S1S1S2S2) =tus,

where s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2.Amplitudes depend on the particles being scattered, but they’re allrelated by SUSY. (See Elvang & Huang’s book.)

Silviu Pufu (Princeton University) 10-26-2018 5 / 32

Page 15: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles.Momenta within 4d =⇒ can use 4d N = 8 language. We scatter:

graviton (1);gravitinos (8);gravi-photons (28);gravi-photinos (56);scalars (70 = 35 + 35)

At leading order in small momentum (i.e. p2), scatteringamplitudes are those in N = 8 SUGRA at tree level. Examples:

ASUGRA, tree(h−h−h+h+) =〈12〉4[34]4

stu,

ASUGRA, tree(S1S1S2S2) =tus,

where s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2.Amplitudes depend on the particles being scattered, but they’re allrelated by SUSY. (See Elvang & Huang’s book.)

Silviu Pufu (Princeton University) 10-26-2018 5 / 32

Page 16: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Momentum expansion

Momentum expansion takes a universal form (independent of thetype of particle):

A = ASUGRA, tree

(1 + `6pfR4(s, t) + `9pf1-loop(s, t)

+ `12p fD6R4(s, t) + `14

p fD8R4(s, t) + · · ·).

fD2nR4 = symmetric polyn in s, t ,u of degree n + 3

Known from type II string theory + SUSY [Green, Tseytlin, Gutperle,

Vanhove, Russo, Pioline, . . . ] :

fR4(s, t) =stu

3 · 27 , fD6R4(s, t) =(stu)2

15 · 215 .

`10p fD4R4 allowed by SUSY, but known to vanish.

This talk: Reproduce fR4 and fD4R4 = 0 from ABJM theory.Silviu Pufu (Princeton University) 10-26-2018 6 / 32

Page 17: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Flat space limit of CFT correlators

Idea: Flat space scattering amplitudes can be obtained as limit ofCFT correlators [Polchinski ’99; Susskind ’99; Giddings ’99; Penedones ’10;

Fitzpatrick, Kaplan ’11] .

For a CFT3 operator φ(x) with ∆φ = 1,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉conn =1

x212x2

34g(U,V )

with U =x2

12x234

x213x2

24, V =

x214x2

23x2

13x224

, go to Mellin space

g(U,V ) =

∫ds dt

(4πi)2 U t/2V (u−2)/2Γ2(

1− s2

)Γ2(

1− t2

)Γ2(

1− u2

)M(s, t)

where s + t + u = 4.

From the large s, t limit of M(s, t) one can extract 4d scatteringamplitude A(s, t) [Penedones ’10; Fitzpatrick, Kaplan ’11] .

Silviu Pufu (Princeton University) 10-26-2018 7 / 32

Page 18: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Flat space limit of CFT correlators

Idea: Flat space scattering amplitudes can be obtained as limit ofCFT correlators [Polchinski ’99; Susskind ’99; Giddings ’99; Penedones ’10;

Fitzpatrick, Kaplan ’11] .

For a CFT3 operator φ(x) with ∆φ = 1,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉conn =1

x212x2

34g(U,V )

with U =x2

12x234

x213x2

24, V =

x214x2

23x2

13x224

, go to Mellin space

g(U,V ) =

∫ds dt

(4πi)2 U t/2V (u−2)/2Γ2(

1− s2

)Γ2(

1− t2

)Γ2(

1− u2

)M(s, t)

where s + t + u = 4.

From the large s, t limit of M(s, t) one can extract 4d scatteringamplitude A(s, t) [Penedones ’10; Fitzpatrick, Kaplan ’11] .

Silviu Pufu (Princeton University) 10-26-2018 7 / 32

Page 19: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Flat space limit of CFT correlators

If L is the radius of AdS (and L/2 is the radius of S7), then

A(s, t) = limL→∞

NL7

`9p

∫ c+i∞

c−i∞dα eαα−1/2M

(− L2

4αs,− L2

4αt)

Expect M(s, t) to have a series expansion in `p/L ∝ N−1/6.

At leach order in `p/L, it is only the large s, t behavior of M(s, t)that contributes to A(s, t).

In order for A(s, t) to have an expansion in `p times momentum,we need

M =∞∑

k=1

(`pL

)7+2k

(function that grows as k th power of s, t ,u)

Instead of 1/N or `p/L I will use 1/cT , where 〈TµνTρσ〉 ∝ cT .Silviu Pufu (Princeton University) 10-26-2018 8 / 32

Page 20: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Flat space limit of CFT correlators

If L is the radius of AdS (and L/2 is the radius of S7), then

A(s, t) = limL→∞

NL7

`9p

∫ c+i∞

c−i∞dα eαα−1/2M

(− L2

4αs,− L2

4αt)

Expect M(s, t) to have a series expansion in `p/L ∝ N−1/6.

At leach order in `p/L, it is only the large s, t behavior of M(s, t)that contributes to A(s, t).

In order for A(s, t) to have an expansion in `p times momentum,we need

M =∞∑

k=1

(`pL

)7+2k

(function that grows as k th power of s, t ,u)

Instead of 1/N or `p/L I will use 1/cT , where 〈TµνTρσ〉 ∝ cT .Silviu Pufu (Princeton University) 10-26-2018 8 / 32

Page 21: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

To obtain scattering amplitude of graviton + superpartners inM-theory, look at stress tensor multiplet in k = 1 ABJM theory:

Stress tensor multiplet of any N = 8 SCFT (R-symm is so(8)):

focus on this −→

focus on this −→

dimension spin so(8)R couples to1 0 35c scalars

3/2 1/2 56v gravi-photinos2 0 35s pseudo-scalars2 1 28 gravi-photons

5/2 3/2 8v gravitinos3 2 1 graviton

Easier to look at scalars than at operators with spin.

There are 35 ∆ = 1 scalars SIJ (traceless symmetric) and 35∆ = 2 pseudo-scalars PAB (traceless symmetric).

Task: find the Mellin amplitudes MSSSS (6 fns), MSSPP (3 fns),MPPPP (6 fns) in the 1/cT expansion, and then take flat space limit.

Silviu Pufu (Princeton University) 10-26-2018 9 / 32

Page 22: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Ward identity

〈SSSS〉 = 1x2

12x234× 6 functions Si(U,V ), i = 1, . . .6

〈SSPP〉 = 1x2

12x434× 3 functions Ri(U,V ), i = 1, . . .3

〈PPPP〉 = 1x4

12x434× 6 functions Pi(U,V ), i = 1, . . .6

The Si(U,V ) obey differential relations [Dolan, Gallot, Sokatchev ’04] .Example:

∂US4(U,V ) =1US4(U,V ) +

(1U− ∂U − ∂V

)S2(U,V ) +

(1U

+ (U − 1)∂U + V∂V

)S3(U,V ) ,

∂VS4(U,V ) = −1

2VS4(U,V )−

1V

(1− U∂U + (U − 1)∂V )S2(U,V )− (∂U + ∂V )S3(U,V ) .

One can derive differential relations relating Ri and Pi to Si [Binder,Chester, SSP ’18] . (Pretty hard!) Example:

R1(U,V ) =14

[4 +

(U2 − 4U

)∂U +

(4 + U − 2U2 + 7UV − 4V 2

)∂V

+ 2U(2V − U + 2)(U∂2U + (U + V − 1)∂U∂V + V∂2

V )

]S1(U,V ) .

Silviu Pufu (Princeton University) 10-26-2018 10 / 32

Page 23: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Ward identity

〈SSSS〉 = 1x2

12x234× 6 functions Si(U,V ), i = 1, . . .6

〈SSPP〉 = 1x2

12x434× 3 functions Ri(U,V ), i = 1, . . .3

〈PPPP〉 = 1x4

12x434× 6 functions Pi(U,V ), i = 1, . . .6

The Si(U,V ) obey differential relations [Dolan, Gallot, Sokatchev ’04] .Example:

∂US4(U,V ) =1US4(U,V ) +

(1U− ∂U − ∂V

)S2(U,V ) +

(1U

+ (U − 1)∂U + V∂V

)S3(U,V ) ,

∂VS4(U,V ) = −1

2VS4(U,V )−

1V

(1− U∂U + (U − 1)∂V )S2(U,V )− (∂U + ∂V )S3(U,V ) .

One can derive differential relations relating Ri and Pi to Si [Binder,Chester, SSP ’18] . (Pretty hard!) Example:

R1(U,V ) =14

[4 +

(U2 − 4U

)∂U +

(4 + U − 2U2 + 7UV − 4V 2

)∂V

+ 2U(2V − U + 2)(U∂2U + (U + V − 1)∂U∂V + V∂2

V )

]S1(U,V ) .

Silviu Pufu (Princeton University) 10-26-2018 10 / 32

Page 24: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

CFT 4-pt correlators at large N

In general, one cannot compute 4-pt functions using SUSiclocalization.

However, the requirementsThe Mellin amplitudes obey SUSY Ward identities;

The Mellin amplitudes are consistent with crossing symmetry;

At order 1/c79 + 2

9 nT , the Mellin amplitude grows at most as the nth

power of s, t ,u;

The Mellin amplitudes have the analytic properties appropriate fortree-level Witten diagrams

determine MSSSS, MSSPP , MPPPP up to a few constants whosenumber depends on n.

Silviu Pufu (Princeton University) 10-26-2018 11 / 32

Page 25: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Number of solutions:

degree in s, t , u 1 2 3 4 5 6 7 . . .

11D vertex R R4 D4R4 D6R4 . . .

scaling c−1T c

− 53

T (0×)c− 19

9T c

− 73

T# of params 1 2 3 4 . . .

(degree 1 in [Zhou ’18] ); degree ≥ 2 in [Chester, SSP, Yin ’18] .)

The number of solutions matches number of solutions to the Wardidentity for the flat space scattering amplitudes.So:

To determine M(s, t) to order 1/cT we should compute one CFTquantity.

To determine M(s, t) to order 1/c5/3T we should compute two CFT

quantities. Etc.

Luckily, we can compute three CFT quantities (one being cT ) andrelate them to M(s, t).

Silviu Pufu (Princeton University) 10-26-2018 12 / 32

Page 26: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Number of solutions:

degree in s, t , u 1 2 3 4 5 6 7 . . .

11D vertex R R4 D4R4 D6R4 . . .

scaling c−1T c

− 53

T (0×)c− 19

9T c

− 73

T# of params 1 2 3 4 . . .

(degree 1 in [Zhou ’18] ); degree ≥ 2 in [Chester, SSP, Yin ’18] .)

The number of solutions matches number of solutions to the Wardidentity for the flat space scattering amplitudes.So:

To determine M(s, t) to order 1/cT we should compute one CFTquantity.

To determine M(s, t) to order 1/c5/3T we should compute two CFT

quantities. Etc.

Luckily, we can compute three CFT quantities (one being cT ) andrelate them to M(s, t).

Silviu Pufu (Princeton University) 10-26-2018 12 / 32

Page 27: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Number of solutions:

degree in s, t , u 1 2 3 4 5 6 7 . . .

11D vertex R R4 D4R4 D6R4 . . .

scaling c−1T c

− 53

T (0×)c− 19

9T c

− 73

T# of params 1 2 3 4 . . .

(degree 1 in [Zhou ’18] ); degree ≥ 2 in [Chester, SSP, Yin ’18] .)

The number of solutions matches number of solutions to the Wardidentity for the flat space scattering amplitudes.So:

To determine M(s, t) to order 1/cT we should compute one CFTquantity.

To determine M(s, t) to order 1/c5/3T we should compute two CFT

quantities. Etc.

Luckily, we can compute three CFT quantities (one being cT ) andrelate them to M(s, t).

Silviu Pufu (Princeton University) 10-26-2018 12 / 32

Page 28: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Number of solutions:

degree in s, t , u 1 2 3 4 5 6 7 . . .

11D vertex R R4 D4R4 D6R4 . . .

scaling c−1T c

− 53

T (0×)c− 19

9T c

− 73

T# of params 1 2 3 4 . . .

(degree 1 in [Zhou ’18] ); degree ≥ 2 in [Chester, SSP, Yin ’18] .)

The number of solutions matches number of solutions to the Wardidentity for the flat space scattering amplitudes.So:

To determine M(s, t) to order 1/cT we should compute one CFTquantity.

To determine M(s, t) to order 1/c5/3T we should compute two CFT

quantities. Etc.

Luckily, we can compute three CFT quantities (one being cT ) andrelate them to M(s, t).

Silviu Pufu (Princeton University) 10-26-2018 12 / 32

Page 29: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

What to compute

What to compute: mass deformed S3 partition functionZ (m1,m2) = e−F (m1,m2) as a function of two masses m1, m2.

How to compute: use SUSic localization to write Z (m1,m2) as anintegral [Kapustin, Willett, Yaakov ’09] ; then use statistical physicstechniques to extract F (m1,m2) to all orders in the 1/Nexpansion! [Marino, Putrov ’11; Nosaka ’15]

The following quantities

∂2F∂m2

1

∣∣∣∣m1=m2=0

,∂4F∂m4

1

∣∣∣∣m1=m2=0

,∂4F

∂m21∂m2

2

∣∣∣∣m1=m2=0

can be related to 〈SSSS〉, 〈SSPP〉, and 〈PPPP〉 and thus can beused to determine M(s, t) up to order 1/c19/9

T .

Silviu Pufu (Princeton University) 10-26-2018 13 / 32

Page 30: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Mass-deformed S3 partition function

ABJM theory at k = 1 (or 2) has so(8)R R-symmetry.

As an N = 2 SCFT, it has so(2)R R-symmetry as well as su(4)flavor symmetry.

So there exists an su(4) flavor current multiplet (conserved currentjµ, scalar J with ∆ = 1, pseudoscalar K with ∆ = 2, fermions).

Can couple it to an su(4) background vector multiplet (Aµ,D, σ,fermions): ∫

d3x tr(

Aµjµ + DJ + Kσ + fermions).

On S3, the following background preserves SUSY:

Aµ(x) = 0 , D(x) =imr, σ(x) = m , fermions = 0 .

The deformation∫

d3x tr m(

ir J + K

)is a real mass deformation.

Silviu Pufu (Princeton University) 10-26-2018 14 / 32

Page 31: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Two mass parameters

The Cartan of su(4) is 3-dimensional, so there are 3 independentmass parameters.

However, expanded to order m4, the S3 free energy takes the form

F (m) = f0 + f2 tr m2 + f3 tr m3 + f4,1(tr m2)2 + f4,2 tr m4 + O(m5) .

Up to order m4, we don’t lose any info by considering only 2 massparameters (instead of 3):

m = diagm1,−m1,m2,−m2 .

Silviu Pufu (Princeton University) 10-26-2018 15 / 32

Page 32: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Localization result

Using supersymmetric localization [Kapustin, Willett, Yaakov ’09] :

ZS3(m1,m2) =

∫dNλdNµ

eik∑

i (λ2i −µ

2i )∏

i<j sinh2(λi − λj) sinh2(µi − µj)∏i,j cosh(λi − µj + m1

2 ) cosh(λi − µj + m22 )

Small N: can evaluate integral exactly.

Large N: rewrite ZS3(m) as the partition function of non-interactingFermi gas of N particles with [Marino, Putrov ’11; Nosaka ’15]

U(x) = log(2 cosh x)−m1x , T (p) = log(2 cosh p)−m2p .

Resummed perturbative expansion [Nosaka ’15] :

ZS3(m) ∼ Ai (f1(m1,m2)N − f2(m1,m2))

for some known functions f1 and f2. (log Z ∝ N3/2)

Silviu Pufu (Princeton University) 10-26-2018 16 / 32

Page 33: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Localization result

Using supersymmetric localization [Kapustin, Willett, Yaakov ’09] :

ZS3(m1,m2) =

∫dNλdNµ

eik∑

i (λ2i −µ

2i )∏

i<j sinh2(λi − λj) sinh2(µi − µj)∏i,j cosh(λi − µj + m1

2 ) cosh(λi − µj + m22 )

Small N: can evaluate integral exactly.

Large N: rewrite ZS3(m) as the partition function of non-interactingFermi gas of N particles with [Marino, Putrov ’11; Nosaka ’15]

U(x) = log(2 cosh x)−m1x , T (p) = log(2 cosh p)−m2p .

Resummed perturbative expansion [Nosaka ’15] :

ZS3(m) ∼ Ai (f1(m1,m2)N − f2(m1,m2))

for some known functions f1 and f2. (log Z ∝ N3/2)

Silviu Pufu (Princeton University) 10-26-2018 16 / 32

Page 34: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Integrated correlators

Relate mass derivatives to 〈SSSS〉, 〈SSPP〉, 〈PPPP〉.

Recall that the mass deformations are

2∑i=1

mi

∫d3x

( irJi + Ki

)The ∆ = 1 operators Ji are linear combinations of the 35c scalarsSIJ .

The ∆ = 2 operators Ki are linear combinations of the 35spseudoscalars PIJ .

∂2F∂m2

i= −

⟨(∫ ir Ji +

∫Ki)2⟩

= integrated 2-pt fn.

∂4F∂m2

i ∂m2j

= −⟨(∫ i

r Ji +∫

Ki)2 (∫ i

r Jj +∫

Kj)2⟩

= integrated 4-pt fn.

Silviu Pufu (Princeton University) 10-26-2018 17 / 32

Page 35: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Integrated 2-pt function

Because S and P belong to the same multiplet as the stresstensor, 〈TµνTρσ〉 ∝ cT implies 〈SS〉 ∝ cT and 〈PP〉 ∝ cT .

Then 〈JJ〉 ∝ cT and 〈KK 〉 ∝ cT , and

∂2F∂m2

i=π2

32cT .

But what does this have to do with the 4-pt function?

(Super)Conformal block decomposition

〈SSSS〉 =1

x212x2

34

∑multipletsM

λ2MgM(U,V )

Then, in a normalization where λ2id = 1,

λ2stress =

〈SSTµν〉〈SSTρσ〉〈TµνTρσ〉

=256cT

.

Silviu Pufu (Princeton University) 10-26-2018 18 / 32

Page 36: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Integrated 2-pt function

Because S and P belong to the same multiplet as the stresstensor, 〈TµνTρσ〉 ∝ cT implies 〈SS〉 ∝ cT and 〈PP〉 ∝ cT .

Then 〈JJ〉 ∝ cT and 〈KK 〉 ∝ cT , and

∂2F∂m2

i=π2

32cT .

But what does this have to do with the 4-pt function?

(Super)Conformal block decomposition

〈SSSS〉 =1

x212x2

34

∑multipletsM

λ2MgM(U,V )

Then, in a normalization where λ2id = 1,

λ2stress =

〈SSTµν〉〈SSTρσ〉〈TµνTρσ〉

=256cT

.

Silviu Pufu (Princeton University) 10-26-2018 18 / 32

Page 37: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Four mass derivatives

Expressing the four mass derivatives in terms of cT :

− 1c2

T

∂4F∂m4

1=

3π2

641cT

+(3π)4/3

210/31

c5/3T

+(· · · )c2

T− (18π2)1/3 1

c7/3T

+ · · ·

− 1c2

T

∂4F∂m2

1∂m22

= −π2

641cT

+5π4/3

210/332/31

c5/3T

+(· · · )c2

T− 4(2π2)1/3

310/31

c7/3T

+ · · ·

Impose these constraints on the 4-pt functions 〈SSSS〉, 〈SSPP〉,〈PPPP〉 using

∂4F∂m2

i ∂m2j

= −

⟨(∫irJi +

∫Ki

)2(∫ irJj +

∫Kj

)2⟩

Silviu Pufu (Princeton University) 10-26-2018 19 / 32

Page 38: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Integrated 4-pt function

If 〈AABB〉 = 1x

2∆A12 x

2∆B34

G(U,V ) in flat space, then the integrated

correlator on S3 (with metric ds2 = Ω−2(~x)d~x2) is⟨(∫A)2(∫

B)2⟩

=

∫ 4∏i=1

d3~xi(Ω(~x1)Ω(~x2))∆A−3(Ω(~x3)Ω(~x4))∆B−3

x2∆A12 x2∆B

34

G

with Ω(~x) = 1 + x2

4r2 .

This non-conformal integral can be written as⟨(∫A)2(∫

B)2⟩∝∫

dU dV D3−∆A,3−∆A,3−∆B ,3−∆B (U,V )G(U,V )

U∆A.

where D function is the (Euclidean) AdS contact Witten diagramfor the 4-pt function of ops of dim 3−∆A, 3−∆A, 3−∆B, 3−∆B.

Silviu Pufu (Princeton University) 10-26-2018 20 / 32

Page 39: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Integrated 4-pt function

If 〈AABB〉 = 1x

2∆A12 x

2∆B34

G(U,V ) in flat space, then the integrated

correlator on S3 (with metric ds2 = Ω−2(~x)d~x2) is⟨(∫A)2(∫

B)2⟩

=

∫ 4∏i=1

d3~xi(Ω(~x1)Ω(~x2))∆A−3(Ω(~x3)Ω(~x4))∆B−3

x2∆A12 x2∆B

34

G

with Ω(~x) = 1 + x2

4r2 .

This non-conformal integral can be written as⟨(∫A)2(∫

B)2⟩∝∫

dU dV D3−∆A,3−∆A,3−∆B ,3−∆B (U,V )G(U,V )

U∆A.

where D function is the (Euclidean) AdS contact Witten diagramfor the 4-pt function of ops of dim 3−∆A, 3−∆A, 3−∆B, 3−∆B.

Silviu Pufu (Princeton University) 10-26-2018 20 / 32

Page 40: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

D functionNow for the 4 pt functions, we normally consider both contact andexchange diagrams:

They respectively yield the following contributions:

where ,J(X , X ) is the spin J bulk to bulk propagator.

Heng-Yu Chen National Taiwan University Spinning Witten Diagrams: From Geodesic to Mellin

= Dr1,r2,r3,r4(~xi) =∫ dz0dd~z

zd+10

∏4i=1 Gri

B∂(z0, ~z;~xi)

GriB∂(z0, ~z;~xi) =

(z0

z20 + (~z − ~xi)2

)ri

The D function is defined as

Dr1,r2,r3,r4 (U,V ) =x

12∑4

i=1 ri−r413 x r2

24

x12∑4

i=1 ri−r1−r414 x

12∑4

i=1 ri−r3−r434

2∏4

i=1 Γ(ri )

πd2 Γ

(−d+

∑4i=1 ri

2

)Dr1,r2,r3,r4 (xi )

The reason why D functions appear in the integrated 4-ptfunctions on S3 is that SO(4,1)/SO(4) = H4.

Silviu Pufu (Princeton University) 10-26-2018 21 / 32

Page 41: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Summary of computation

Superconformal Ward id + asymptotic growth in Mellin space +crossing symmetry + analytic structure of Mellin tree amplitudes=⇒ determine Mellin amplitudes MSSSS, MSSPP , MPPPP in 1/cTexpansion up to a few undetermined constants at each order

SUSic localization =⇒ ZS3(m1,m2) =⇒ F (m1,m2) in 1/cTexpansion =⇒ 2nd and 4th derivatives of F (m1,m2) in 1/cTexpansion =⇒ conditions on integrated correlators 〈SSSS〉,〈SSPP〉, 〈PPPP〉.

Combine above =⇒ determine tree-level MSSSS, MSSPP , MPPPP upto 1/c19/9

T =⇒ take flat space limit to determine scatteringamplitudes in 11d.

Silviu Pufu (Princeton University) 10-26-2018 22 / 32

Page 42: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Summary of computation

Superconformal Ward id + asymptotic growth in Mellin space +crossing symmetry + analytic structure of Mellin tree amplitudes=⇒ determine Mellin amplitudes MSSSS, MSSPP , MPPPP in 1/cTexpansion up to a few undetermined constants at each order

SUSic localization =⇒ ZS3(m1,m2) =⇒ F (m1,m2) in 1/cTexpansion =⇒ 2nd and 4th derivatives of F (m1,m2) in 1/cTexpansion =⇒ conditions on integrated correlators 〈SSSS〉,〈SSPP〉, 〈PPPP〉.

Combine above =⇒ determine tree-level MSSSS, MSSPP , MPPPP upto 1/c19/9

T =⇒ take flat space limit to determine scatteringamplitudes in 11d.

Silviu Pufu (Princeton University) 10-26-2018 22 / 32

Page 43: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Summary of computation

Superconformal Ward id + asymptotic growth in Mellin space +crossing symmetry + analytic structure of Mellin tree amplitudes=⇒ determine Mellin amplitudes MSSSS, MSSPP , MPPPP in 1/cTexpansion up to a few undetermined constants at each order

SUSic localization =⇒ ZS3(m1,m2) =⇒ F (m1,m2) in 1/cTexpansion =⇒ 2nd and 4th derivatives of F (m1,m2) in 1/cTexpansion =⇒ conditions on integrated correlators 〈SSSS〉,〈SSPP〉, 〈PPPP〉.

Combine above =⇒ determine tree-level MSSSS, MSSPP , MPPPP upto 1/c19/9

T =⇒ take flat space limit to determine scatteringamplitudes in 11d.

Silviu Pufu (Princeton University) 10-26-2018 22 / 32

Page 44: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Precision test of AdS/CFT

The flat space limit implies fR4(s, t) = stu3·27 and fD4R4 = 0, as

expected.

This is a precision test of AdS/CFT beyond supergravity!!

Silviu Pufu (Princeton University) 10-26-2018 23 / 32

Page 45: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Precision test of AdS/CFT

The flat space limit implies fR4(s, t) = stu3·27 and fD4R4 = 0, as

expected.

This is a precision test of AdS/CFT beyond supergravity!!

Silviu Pufu (Princeton University) 10-26-2018 23 / 32

Page 46: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Beyond fR4 and fD4R4?

Can one go beyond reconstructing fR4 and fD4R4?

More SUSic localization results for ABJM theory are available,e.g. partition function on a squashed sphere.

It is likely that one can also determine fD6R4 in a similar way.

Another approach: conformal bootstrap.

Generally, we obtain bounds on various quantities.

If the bounds are saturated, then we can solve for the CFT data.

Silviu Pufu (Princeton University) 10-26-2018 24 / 32

Page 47: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Beyond fR4 and fD4R4?

Can one go beyond reconstructing fR4 and fD4R4?

More SUSic localization results for ABJM theory are available,e.g. partition function on a squashed sphere.

It is likely that one can also determine fD6R4 in a similar way.

Another approach: conformal bootstrap.

Generally, we obtain bounds on various quantities.

If the bounds are saturated, then we can solve for the CFT data.

Silviu Pufu (Princeton University) 10-26-2018 24 / 32

Page 48: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Beyond fR4 and fD4R4?

Can one go beyond reconstructing fR4 and fD4R4?

More SUSic localization results for ABJM theory are available,e.g. partition function on a squashed sphere.

It is likely that one can also determine fD6R4 in a similar way.

Another approach: conformal bootstrap.

Generally, we obtain bounds on various quantities.

If the bounds are saturated, then we can solve for the CFT data.

Silviu Pufu (Princeton University) 10-26-2018 24 / 32

Page 49: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Exact OPE coefficients

As already mentioned, in the superconformal block decomposition

〈SSSS〉 =1

x212x2

34

∑multipletsM

λ2MgM(U,V )

λ2stress = 256/cT can be computed to all orders in 1/N because cT

is proportional to ∂2F∂m2

1

∣∣∣m1=m2=0

.

There is another OPE coefficient λ2(B,2) of a 1/4-BPS multiplet

“(B,2)” that can be related to ∂4F∂m4

1

∣∣∣m1=m2=0

and hence can be

computed to all orders in 1/N.

Silviu Pufu (Princeton University) 10-26-2018 25 / 32

Page 50: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Exact OPE coefficients

As already mentioned, in the superconformal block decomposition

〈SSSS〉 =1

x212x2

34

∑multipletsM

λ2MgM(U,V )

λ2stress = 256/cT can be computed to all orders in 1/N because cT

is proportional to ∂2F∂m2

1

∣∣∣m1=m2=0

.

There is another OPE coefficient λ2(B,2) of a 1/4-BPS multiplet

“(B,2)” that can be related to ∂4F∂m4

1

∣∣∣m1=m2=0

and hence can be

computed to all orders in 1/N.

Silviu Pufu (Princeton University) 10-26-2018 25 / 32

Page 51: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Topological sector

3d N = 4 SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP,

Yacoby ’16] defined on a line (0,0, x) in R3.

〈O1(x1) . . .On(xn)〉 depends only on the ordering of xi on the line.

Ops in 1d are 3d 1/2-BPS operators O(~x) placed at ~x = (0,0, x)and contracted with x-dependent R-symmetry polarizations.

The operators O(x) are in the cohomology of a superchargeQ = “Q + S′′ cohomology s.t. translations in x are Q-exact.

The topological sector is defined either on a line in flat space or ona great circle of S3.

In ABJM, construct 1d operators Sα(x) from SIJ , α = 1,2,3. Their2-pt function depends only on cT ; their 4-pt function depends onlyon cT and λ2

(B,2).Silviu Pufu (Princeton University) 10-26-2018 26 / 32

Page 52: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Topological sector

3d N = 4 SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP,

Yacoby ’16] defined on a line (0,0, x) in R3.

〈O1(x1) . . .On(xn)〉 depends only on the ordering of xi on the line.

Ops in 1d are 3d 1/2-BPS operators O(~x) placed at ~x = (0,0, x)and contracted with x-dependent R-symmetry polarizations.

The operators O(x) are in the cohomology of a superchargeQ = “Q + S′′ cohomology s.t. translations in x are Q-exact.

The topological sector is defined either on a line in flat space or ona great circle of S3.

In ABJM, construct 1d operators Sα(x) from SIJ , α = 1,2,3. Their2-pt function depends only on cT ; their 4-pt function depends onlyon cT and λ2

(B,2).Silviu Pufu (Princeton University) 10-26-2018 26 / 32

Page 53: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Topological sector

3d N = 4 SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP,

Yacoby ’16] defined on a line (0,0, x) in R3.

〈O1(x1) . . .On(xn)〉 depends only on the ordering of xi on the line.

Ops in 1d are 3d 1/2-BPS operators O(~x) placed at ~x = (0,0, x)and contracted with x-dependent R-symmetry polarizations.

The operators O(x) are in the cohomology of a superchargeQ = “Q + S′′ cohomology s.t. translations in x are Q-exact.

The topological sector is defined either on a line in flat space or ona great circle of S3.

In ABJM, construct 1d operators Sα(x) from SIJ , α = 1,2,3. Their2-pt function depends only on cT ; their 4-pt function depends onlyon cT and λ2

(B,2).Silviu Pufu (Princeton University) 10-26-2018 26 / 32

Page 54: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Topological sector

3d N = 4 SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP,

Yacoby ’16] defined on a line (0,0, x) in R3.

〈O1(x1) . . .On(xn)〉 depends only on the ordering of xi on the line.

Ops in 1d are 3d 1/2-BPS operators O(~x) placed at ~x = (0,0, x)and contracted with x-dependent R-symmetry polarizations.

The operators O(x) are in the cohomology of a superchargeQ = “Q + S′′ cohomology s.t. translations in x are Q-exact.

The topological sector is defined either on a line in flat space or ona great circle of S3.

In ABJM, construct 1d operators Sα(x) from SIJ , α = 1,2,3. Their2-pt function depends only on cT ; their 4-pt function depends onlyon cT and λ2

(B,2).Silviu Pufu (Princeton University) 10-26-2018 26 / 32

Page 55: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

From ZS3(m1) to OPE coefficients

One can argue ZS3(m1) = ZS1(m1), and so derivatives of the ZS3

w.r.t. m1 corresponds to integrated correlators in the 1d theory.

From 2 derivatives of ZS3 w.r.t. m1 we can extract cT .

From 4 derivatives of ZS3 w.r.t. m1 we can extract λ2(B,2).

So the (resummed) perturbative expansion of cT , λ2B,2 can be

written in terms of derivatives of the Airy function!

Eliminating N gives

λ2B,2 =

323− 1024(4π2 − 15)

9π21cT

+ 40960(

29π8

) 13 1

c5/3T

+ · · ·

(Tangent: For 2d bulk dual of the 1d topological sector of ABJMtheory, see [Mezei, SSP, Wang ’17] . The 1d theory is exactly solvable,and its 2d bulk dual is 2d YM.)

Silviu Pufu (Princeton University) 10-26-2018 27 / 32

Page 56: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

From ZS3(m1) to OPE coefficients

One can argue ZS3(m1) = ZS1(m1), and so derivatives of the ZS3

w.r.t. m1 corresponds to integrated correlators in the 1d theory.

From 2 derivatives of ZS3 w.r.t. m1 we can extract cT .

From 4 derivatives of ZS3 w.r.t. m1 we can extract λ2(B,2).

So the (resummed) perturbative expansion of cT , λ2B,2 can be

written in terms of derivatives of the Airy function!

Eliminating N gives

λ2B,2 =

323− 1024(4π2 − 15)

9π21cT

+ 40960(

29π8

) 13 1

c5/3T

+ · · ·

(Tangent: For 2d bulk dual of the 1d topological sector of ABJMtheory, see [Mezei, SSP, Wang ’17] . The 1d theory is exactly solvable,and its 2d bulk dual is 2d YM.)

Silviu Pufu (Princeton University) 10-26-2018 27 / 32

Page 57: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

From ZS3(m1) to OPE coefficients

One can argue ZS3(m1) = ZS1(m1), and so derivatives of the ZS3

w.r.t. m1 corresponds to integrated correlators in the 1d theory.

From 2 derivatives of ZS3 w.r.t. m1 we can extract cT .

From 4 derivatives of ZS3 w.r.t. m1 we can extract λ2(B,2).

So the (resummed) perturbative expansion of cT , λ2B,2 can be

written in terms of derivatives of the Airy function!

Eliminating N gives

λ2B,2 =

323− 1024(4π2 − 15)

9π21cT

+ 40960(

29π8

) 13 1

c5/3T

+ · · ·

(Tangent: For 2d bulk dual of the 1d topological sector of ABJMtheory, see [Mezei, SSP, Wang ’17] . The 1d theory is exactly solvable,and its 2d bulk dual is 2d YM.)

Silviu Pufu (Princeton University) 10-26-2018 27 / 32

Page 58: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Known N = 8 SCFTs

A few families of N = 8 SCFTs:A1,A2

B1,B2

k −k

G1 G2

With holographic duals:

ABJMN,1: U(N)1 × U(N)−1 ←→ AdS4 × S7.

ABJMN,2: U(N)2 × U(N)−2 ←→ AdS4 × S7/Z2.

ABJN,2: U(N)2 × U(N + 1)−2 ←→ AdS4 × S7/Z2.

Without known holographic duals:

BLGk : SU(2)k × SU(2)−k .

Silviu Pufu (Princeton University) 10-26-2018 28 / 32

Page 59: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Bootstrap bounds [Agmon, Chester, SSP ’17]

Bounds from conformal bootstrap applying to all N = 8 SCFTs.

BLGk

ABJMN,1int

ABJN

ABJMN,2

ABJM1,1

0.2 0.4 0.6 0.8 1.0

16cT

2

4

6

8

10

λ(B,2)2

SUGRA (leading large cT ) saturates bootstrap bounds.Conjecture: ABJMN,1 or ABJMN,2 or ABJN,2 saturate bound at allN in the limit of infinite precision.

λ2B,2 =

323− 1024(4π2 − 15)

9π21cT

+ 40960(

29π8k2

) 13 1

c5/3T

+ · · · .Silviu Pufu (Princeton University) 10-26-2018 29 / 32

Page 60: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Bootstrap bounds [Agmon, Chester, SSP ’17]

Bounds from conformal bootstrap applying to all N = 8 SCFTs.

BLGk

ABJMN,1int

ABJN

ABJMN,2

ABJM1,1

0.2 0.4 0.6 0.8 1.0

16cT

2

4

6

8

10

λ(B,2)2

SUGRA (leading large cT ) saturates bootstrap bounds.Conjecture: ABJMN,1 or ABJMN,2 or ABJN,2 saturate bound at allN in the limit of infinite precision.

λ2B,2 =

323− 1024(4π2 − 15)

9π21cT

+ 40960(

29π8k2

) 13 1

c5/3T

+ · · · .Silviu Pufu (Princeton University) 10-26-2018 29 / 32

Page 61: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Bound saturation =⇒ read off CFT data

On the boundary of the bootstrap bounds, the solution to crossingshould be unique =⇒ can find 〈SIJSKLSMNSPQ〉 and solve for thespectrum !! [Agmon, Chester, SSP ’17]

lowest spin 0

lowest spin 2

lowest spin 4

0.1 0.2 0.3 0.4 0.5 0.6 0.716/cT

1

2

3

4

5

6

Δ

Red lines are leading SUGRA tree level results [Zhou ’17; Chester ’18] .Lowest operators have the form SIJ∂µ1 · · · ∂µ`SIJ .

Silviu Pufu (Princeton University) 10-26-2018 30 / 32

Page 62: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

λ2(A,2)j

and λ2(A,+)j

from extremal functional

Semishort (A,2)j and (A,+)j OPE coefficients for low spin j in terms of16cT

from extremal functional:

j = 1

j = 3

j = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

16cT

5

10

15

20

25

λ(A,2) j2

j = 0

j = 2

j = 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

16cT

5

10

15

20

25

λ(A,+) j2

Red line is tree level SUGRA result [Chester ’18] .

λ2(A,+)j

appears close to linear in 16/cT .

More precision needed.Silviu Pufu (Princeton University) 10-26-2018 31 / 32

Page 63: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

λ2(A,2)j

and λ2(A,+)j

from extremal functional

Semishort (A,2)j and (A,+)j OPE coefficients for low spin j in terms of16cT

from extremal functional:

j = 1

j = 3

j = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

16cT

5

10

15

20

25

λ(A,2) j2

j = 0

j = 2

j = 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

16cT

5

10

15

20

25

λ(A,+) j2

Red line is tree level SUGRA result [Chester ’18] .

λ2(A,+)j

appears close to linear in 16/cT .

More precision needed.Silviu Pufu (Princeton University) 10-26-2018 31 / 32

Page 64: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Conclusion

A combination of techniques (supersymmetric localization, SUSYWard identities, Mellin space) can be used to recover gravitonscattering amplitudes (at small momentum) from ABJM theory.

We can reproduce the fR4(s, t) = stu3·27 term in the flat space

4-graviton scattering amplitude and show that fD4R4 = 0.

Bootstrap bounds are almost saturated by N = 8 SCFTs withholographic duals.

For the future:

Generalize to other dimensions, other 4-point function, lessSUSY. (See also [Chester, Perlmutter ’18] in 6d.)

Study other SCFTs from which one can compute scatteringamplitudes of gauge bosons on branes. (?)

Loops in AdS.Silviu Pufu (Princeton University) 10-26-2018 32 / 32

Page 65: Silviu S. Pufu, Princeton UniversitySilviu Pufu (Princeton University) 10-26-2018 5 / 32 In 11d, we can scatter: gravitons, gravitini, 3-form gauge particles. Momenta within 4d =)can

Conclusion

A combination of techniques (supersymmetric localization, SUSYWard identities, Mellin space) can be used to recover gravitonscattering amplitudes (at small momentum) from ABJM theory.

We can reproduce the fR4(s, t) = stu3·27 term in the flat space

4-graviton scattering amplitude and show that fD4R4 = 0.

Bootstrap bounds are almost saturated by N = 8 SCFTs withholographic duals.

For the future:

Generalize to other dimensions, other 4-point function, lessSUSY. (See also [Chester, Perlmutter ’18] in 6d.)

Study other SCFTs from which one can compute scatteringamplitudes of gauge bosons on branes. (?)

Loops in AdS.Silviu Pufu (Princeton University) 10-26-2018 32 / 32