signal processing e051

Upload: dia8347928

Post on 08-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Signal Processing E051

    1/61

    Signal Processing - E051

    Professor Dr Ir Mostafa Afifi

    [email protected]

    mailto:[email protected]:[email protected]
  • 8/7/2019 Signal Processing E051

    2/61

    The Weekly Schedule

    3 HrsLectures every week (one week , twoconsecutive periods, # 1 (at S-MEC) & # 2 (at L1)ofThursdays, with otherThursday , period # 2

    2 Hours of exercises every week.4M2 on Wednesday , period 1 S154M1 on Wednesday , period 4 S144M3 on Sunday, period 3 S1

    1 Hour of Laboratory work every week 4M1,2 on Wednesday , period 3

    4M3 on Even Thursdays, period 2

  • 8/7/2019 Signal Processing E051

    3/61

    Grading

    Final exam is 60% Exercise works 10%

    Laboratory Works 20% Attendance 5% Midterm Exam 5%

  • 8/7/2019 Signal Processing E051

    4/61

    INTRODUCTION

    The handling of operating electric and processing circuits bymechanical engineers is proper for the advance of civilprosperity. In all aspects of our life; as electromechanicalintegration is now very evident.

    Mechanical engineers were the first to use electric motors tooperate and manipulate engine operations.

    Also they were the first to apply digital handling of informationusing rotating shafts and timing activities.

    This course ofSignal Processing introduces the practicalprocessing requirements for Mechanical Engineers, with toolsthat facilitate practical Supervisory Applications.

  • 8/7/2019 Signal Processing E051

    5/61

    Examples of many applications forProcessing and Engineering in Automobiles

    For Safety: Antiskid brakes, inflatable restraints, Collision warning andavoidance, Blind-zone detections, infrared night vision systems, Heads-updisplays and accident notifications.

    For Communications and entertainment: AM/FM Radios, Digital audioBroadcastings, CD / Tape players, Cellular phones, Computer /e-mail.

    For convenience: Electronic navigation, Personalized seat/mirror/radiosettings, electronic door locks.

    For Emission, performance & Fuel economy: Vehicle instrumentation,electronic ignition, Tire inflation sensors, computerized performance

    evaluation and maintenance scheduling and adaptable suspension systems. For alternative propulsion systems: Electric vehicles, advanced batteries

    and Hybrid vehicles.

  • 8/7/2019 Signal Processing E051

    6/61

    Output of a transducer for aKnocking Engine

  • 8/7/2019 Signal Processing E051

    7/61

    Other important applications are inHousehold Appliances (Mechatronics)

    with intimate integration and harmoniousblending of many different technologies

    Keypads for operator control

    Sensors Electronic displays Microcomputer Chips

    Electronic digital switches Heating Elements Motors

  • 8/7/2019 Signal Processing E051

    8/61

    Major application subdivisions Signal Processing:where transducers are used to convert physical

    phenomenon to electrical signals that can be processed for desiredperformance by computers. Major example of this is the control of ignition incars to optimize performance and avoid damaging knock of engines.

    Control Systems:gathering information with sensors and processing forphysical control, examples are the heating and air cooling in buildings,temperature and flow rates in chemical processes and control of motion intall buildings

    Electronics:applied in every field of engineering and science, many usefulcircuits are planned for this course to introduce and build major engineeringcapabilities.

    Computer Systems:Process and store of information in digital formats,Examples of wide scale applications is the control systems of modern cars,including more than 50 microcomputers in one car

    Communication systems: with major modern Information technology usingInternet broadcastings in ground and Satellite systems (including roadsidesensors and GPS global positioning Systems)

    Electromagnetism:using microwaves in ovens, manufacturing of plywood,cell phones and satellite applications.

    Power systems:for interchanging conversion of mechanical and electricalenergies with applications in transportation and increase of efficiency.

  • 8/7/2019 Signal Processing E051

    9/61

    Processing Procedures of signals

    the block diagram for the processing procedures ofsignals

    DigitalSignal

    Processing

    Digital toAnalog

    Converter

    Analog toDigital

    Converter(A/D)

    Analog Input Digital Input Digital Output Analog Output

  • 8/7/2019 Signal Processing E051

    10/61

    Fourier Signal HandlingThe Fourier series expansion has three formats:The trigonometric series 1

    f(x) = (ao / 2 ) + n = 1 n= [an cos (n x) + bn sin (n x) ]

    With an = (1 / ) 02 f(x) cos(n x) dx and bn = (1 / ) 02 f(x) sin(n x)

    Note that ao = (1 / )02 f(x) dx

    With cn = ( an2 + bn2 )1/2 , co = ao and n = tan-1 ( - bn / an )

    these can be transformed to the complex formatf(x) = (Co/2) + 1 Cn cos(n x + n ) = - dn e j n x

    with dn = (an j bn) / 2 = (cn /2 ) ej n , do = Co /2 = ao /2, and d n = dn*

    The average power= (1 / 2)02 f(x)2 dx =- dn2 = (Co /2)2 + n = 1 n= (cn2)/2

  • 8/7/2019 Signal Processing E051

    11/61

    Fourier Transform of Square Pulse,T= 0.02 Sec, = 0.01 Sec

    in sec pi T Pulse Amplitude

    Hz 0.01 3.1415927 0.02 1

    n f n / T ( / T)sinc( / 2) |sinc( / 2)|

    -8 -400 -12.566 0.000 0.000

    -7 -350 -10.996 -0.045 -0.091

    -6 -300 -9.425 0.000 0.000

    -5 -250 -7.854 0.064 0.127

    -4 -200 -6.283 0.000 0.000

    -3 -150 -4.712 -0.106 -0.212

    -2 -100 -3.142 0.000 0.000

    -1 -50 -1.571 0.318 0.637

  • 8/7/2019 Signal Processing E051

    12/61

    Fourier Transform of Square Pulse,T= 0.02 Sec, = 0.01 Sec

    Sinc Function & Fourier series (T/t=2)

    -0.400

    -0.200

    0.000

    0.200

    0.400

    0.600

    0.800

    1.000

    1.200

    -400

    -300

    -200

    -100 0

    100

    200

    300

    400

    Frequency in Hz

    RelativeAm

    plit

    Fourier Series of repeated pulse Fourier Transform "Sinc"

  • 8/7/2019 Signal Processing E051

    13/61

    Rectangular Wavef(t) = 0.5 + (2/pi) sin (100pi t)+ (2/3pi) sin (300pi t) + (2/5pi)sin (500pi t) +

    pi 3.141593

    t f1(t) f3(t) f5(t) f7(t)

    0 0.500 0.500 0.500 0.500

    0.001 0.697 0.868 0.996 1.069

    0.002 0.874 1.076 1.076 0.990

    0.003 1.015 1.081 0.953 0.981

    0.004 1.105 0.981 0.981 1.0340.005 1.137 0.924 1.052 0.961

    0.006 1.105 0.981 0.981 1.034

    0.007 1.015 1.081 0.953 0.981

    0.008 0.874 1.076 1.076 0.990

    0.009 0.697 0.868 0.996 1.069

    0.01 0.500 0.500 0.500 0.500

    0.011 0.303 0.132 0.004 -0.069

    0.012 0.126 -0.076 -0.076 0.010

  • 8/7/2019 Signal Processing E051

    14/61

    The Fourier Transform

    dn = (1/2 ) 02 f(x) cos(n x) dx - (j / 2 ) 02 f(x) sin(n x) dx

    dn = (1/ 2 ) 02 f(x) e-jnx dx

    for x = o t dn = (1/To) 02 f(ot) e-jnot dt = (1/To) F()

    f(t) = (1/To) - F() e j n ot = (o /2 ) - F() e j n ot ,

    with o = and = n o

    f(t) = (1/2) - F() e jt d and F() = - f(t) e - jt dt

    for a single square pulse of amplitude A we have F() = - /2 /2 A e - jt dt

    or F() = A sinc (/2) = A [sin (/2)] / (/2)

  • 8/7/2019 Signal Processing E051

    15/61

    The Sinc Function

  • 8/7/2019 Signal Processing E051

    16/61

    Basics of the Numbering Systems

    N = k=-r mAkbk ,

    Where b is an integer ( > 1 ), called the base (or Radix),

    Ak is an integer 0, 1, 2, ., b-1,

    m and r are determined by the extent of the numberN,

    r is not zero with existence of a decimal point(the decimal point exists between A0 and A-1).

    The most common basis are:

    Decimal (base 10)Binary (base 2)Octal (base 8)Hexadecimal (base 16)Duodecimal (base 12)

  • 8/7/2019 Signal Processing E051

    17/61

    The Decimal, the binary and theHex presentations of Numbers

    123.4510 = 1 x 102 + 2 x 101 + 3 x 100 + 4 x 10-1 + 5 x 10-2 123.452 = 0x27 + 1x26 + 1x25 + 1x24 + 1x23 + 0x22 +

    1x21 + 1x20 + 0x2-1 + 1x2-2 + 1x2-3 + 1x2-4 +

    0x2-5

    + 0x2-6

    + 1x2-7

    + 1x2-8

    + a remainder of 0.0007813

    = 01111011.011100112 + 0.0007813

    (a 16 bit representation)

    123.4516 = 7x161 + Bx160 + 7x16-1 + 3x16-2 + 3x16-3 + 0.0000488= 7B.73316 + 0.0000488.

  • 8/7/2019 Signal Processing E051

    18/61

    BCD Coded Numbers & Codes

    Decimal Octal OctalBCD

    Hexadecimal

    Hex BCD Excess 3 Self Ninecomplement ofexcess 3

    Gray Code

    0 0 000 0 0000 0011 1100 0000

    1 1 001 1 0001 0100 1011 0001

    2 2 010 2 0010 0101 1010 0011

    3 3 011 3 0011 0110 1001 0010

    4 4 100 4 0100 0111 1000 0110

    5 5 101 5 0101 1000 0111 0111

    6 6 110 6 0110 1001 0110 0101

    7 7 111 7 0111 1010 0101 0100

    8 8 1000 1011 0100 1100

    9 9 1001 1100 0011 1101

    10 A 1010 1111

    11 B 1011 1110

    12 C 1100 1010

  • 8/7/2019 Signal Processing E051

    19/61

    Negative binary, Max & Min andRules of addition and subtractionN- = 2n N+

    maximum positive number is (2n-1 1)and a minimum negative number is (-2n-1 )

    For n = 8 bits 128 N 127

    Addition 0 + 0 = 0 Subtraction 0 0 0

    0 + 1 = 1 0 1 = 1 with borrow of 11 + 0 = 1 1 1 = 11 + 1 = 0 carry 1 1 1 = 0

    1 + 1 + 1 = 1 carry 1

  • 8/7/2019 Signal Processing E051

    20/61

    USA Standard 7 Bit Code forInformation Interchange (ASCII)

    # 0 1 2 3 4 5 6 7

    3 MSBs 000 001 010 011 100 101 110 111 +4 LSB

    0 NUL DLE SP 0 @ P ` p 0000

    1 SOH DC1 ! 1 A Q a q 0001

    2 STX DC2 " 2 B R b r 0010

    3 ETX DC3 # 3 C S c s 0011

    4 EOT DC4 $ 4 D T d t 0100

    5 ENQ NAK % 5 E U e u 0101

    6 ACK SYN & 6 F V f v 0110

    7 BEL ETB ' 7 G W g w 0111

    8 BS CAN ( 8 H X h x 1000

    9 HT EM ) 9 I Y i y 1001

    10 LF SUB * : J Z j z 1010

    11 VT ESC + ; K [ k { 1011

    12 FF FS , < L \ l | 1100

    13 CR GS - = M ] m } 1101

    14 SO RS . > N ^ n ~ 1110

    15 SI US / ? O _ o DEL 1111

  • 8/7/2019 Signal Processing E051

    21/61

    Analog to Digital conversion Rules

    The number of used bits determines the resolution of theA/D converter.The number of digitized levels N = 2n

    The resolution as the minimum signal variation that can berecognized by the digital signal is determine by the analogrange divided by the number of digital recognizable levels.

    i.e. Resolution = Vrange

    / 2n,

    where n is the number of bits.If the voltage range is between 1 and 10 volts,

    then the Resolution = (10-1)/ 212 = 2.2 mV

  • 8/7/2019 Signal Processing E051

    22/61

    Graphical Coding Verify Ease of MMI andSupervisory Control and Data Acquisition

    Automation in present day technology made it difficult to havecompetitive production using the traditional Man Machine Interface(MMI) and Supervisory Control and Data Acquisition (SCADA).

    These named systems include much complex functionality withinvolved textual programming. In most of the cases theprogrammers have limited knowledge about the physical process.

    To overcome this complexity the graphical programming (G) was

    lately invented to permit the development of complex applicationswithout the requirement of advanced computer programmingknowledge.

    Graphical programming uses virtual instruments (VIs) resulting intointuitive MMI resembling a typical measurement and control blockdiagram.

  • 8/7/2019 Signal Processing E051

    23/61

    Use of LabVIEW to solve First OrderDifferential Equation; for step transition in a

    Simple High Pass Digital Filter

    Generate a G-code (for LabVIEW simulation) that implements theemulation of the output voltage Vout (n) for an input step voltage Vinof 10volts (starting at t= 0).

    Vout

    = Ri and Note that the current i = C d (Vin

    - Vout

    ) / dtWhen time is divided into equal small intervals, with equal separations of

    " t, starting at t=0, the voltages at any interval n, are related as follows:Vout (n) = (CR/ t) {[Vin (n) - Vin (n-1)] [Vout (n) Vout (n-1)]}

    Separating the output voltage (at instant n) and denoting the time constant (CR = ) yieldsVout (n) = K [ Vin(n) Vin(n-1) ] + K Vout (n-1),

    Where K = ( / t) / [1+( / t)] , with simulation shown asfollows:

  • 8/7/2019 Signal Processing E051

    24/61

    The Control and Indication Panel

  • 8/7/2019 Signal Processing E051

    25/61

    The ImplementationGraphical Code Connections

  • 8/7/2019 Signal Processing E051

    26/61

    Digital filters

    The Low Pass R-C filter has the differential equation:Vi - Vo = RC dVo/dt

    The Difference Equation at any two successive timeintervals separated by t is:Vo(n)=K Vo(n-1) + K1 Vi(n), Vi Vowith K = (RC/ t ) [1+ (RC/ t ) ]-1,and K1 = [1+ (RC/ t ) ]-1

    This difference equation describes the equivalent digitalform describing the action in discreet time intervals

    separated by the time interval (t ), or what is called thedigital filterof first order.The general equation for a digital filter is given by:Vo(n)=Ka a=1 N Vo(n-a) + Kb b=0 M Vi(n-b)

    in this 1st

    order filter N=1, M=0

    C

    R

  • 8/7/2019 Signal Processing E051

    27/61

    The Front Panelof the LPF simulation

    Front Panel

  • 8/7/2019 Signal Processing E051

    28/61

  • 8/7/2019 Signal Processing E051

    29/61

    Superposition ApplicationVoltage AddersSuperposition can be applied to

    generate the transfer function

    to vfrom v1and v

    2.

    vo1=v1RR2 /(RR1+RR2+R1R2),vo2=v

    2RR

    1/(RR

    1+RR

    2+R

    1R2)

    Then

    v = v1 RR2 / (RR1+RR2+R1R2)+ v

    2RR

    1/ (RR

    1+RR

    2+R

    1R2)

    =(v1R2+v

    2R1)R/(RR

    1+RR

    2+R

    1R2)

    When R1=R

    2=R

    o

    v= v +v R 2R+R

  • 8/7/2019 Signal Processing E051

    30/61

    Performance ofthe Differential Amplifier

    differential input voltage vd = Vcc / A

    = approximately (15 / 100000 = 0.15 mV)

  • 8/7/2019 Signal Processing E051

    31/61

    Non-Inverting OP-Amp

    V(-) = Vin

    Vin = Vout R1 /(R1+Ff)

    (Vout / Vin) = (R1+Ff) / R1

    The Unity Gain Op-Amp Circuit

  • 8/7/2019 Signal Processing E051

    32/61

    Negative Feed Backin Car Power Steering

  • 8/7/2019 Signal Processing E051

    33/61

    Inverting Op-Amp

    Vout / V1 = - Rf/ R1

    i1 = V1 / R1 = - if

  • 8/7/2019 Signal Processing E051

    34/61

    Difference Op-Amp Circuit

    V+ = V2 [ Rf/ (R1+ Rf) ]

    i1= [V1-V+] / R1if = - [ Vout - V+ ] / Rf

    if

    = - i1

    Vout = (Rf / R1)(V2 - V1)

  • 8/7/2019 Signal Processing E051

    35/61

    Discharge of the Capacitor

    C dvc /dt + vc /R = 0

    vc= K es t

    RCK s e s t + K e s t = 0RC s + 1 = 0 s = - 1/RC

    K = Vi

    vc = Vi e t / RC

  • 8/7/2019 Signal Processing E051

    36/61

    Charging of a Capacitor

    RC d vc / d t + vc = Vs

    vc= K1 + K2es t

    )1+RC s K2es t + K1 = Vs

    )1+RC s= 0 s = - 1/ RC K1 = Vs

    Vc= Vs Vs e t / RC = Vs (1 e t / RC

    )

  • 8/7/2019 Signal Processing E051

    37/61

    Integrator and differentiatorUsing the Capacitors

    Vo

    0

    t

    tVin

    R C

    d:=iin = vin / R

    iin =C d vin / dt

    vo = - RC d vin / dt

  • 8/7/2019 Signal Processing E051

    38/61

    Reactance of Capacitor andInductor with Alternating Voltage

    For the Capacitor v(t) = Vm sin (t) and for the Inductor

    i(t) = - Vm cos (t) / L

    = -Vm sin (t+/2) / L

    = - j Vm sin (t) / L

    i(t) = Vm sin (t) / j L

    i(t)= C dv / dt = C Vm cos (t)

    = Vm cos (t) / (1 / C)

    = - j Vm sin (t) /(1 / C).

    i(t)= Vm sin (t) / (1 /jC)

    Capacitor reactance = 1 /jC = XC

    Inductor reactance = jL = XLi(t) = Vm sin (t) / Xi(t) = Vm sin (t) / X

    v(t) = Vm sin (t)

  • 8/7/2019 Signal Processing E051

    39/61

    RLC Circuitsand its Mechanical Analogy

    L d2 Q / d t2 + R dQ / d t + (1/C) Q = Vsm d2 x / d t2 + K d x / d t + Cm x = F

    X = D + A e s1 t + B e s2 t Qc= D + A es1 t + B e s2 t

    the mass (m) equivalent to the inductance (L),

    spring action (Cm) equivalent to the inverted capacity (1/C)

    viscous damping (K) equivalent to the Resistance (R)

    Displacement xis equivalent to the

    Charge Q

  • 8/7/2019 Signal Processing E051

    40/61

  • 8/7/2019 Signal Processing E051

    41/61

    The Digital form of the 2nd order DE

    Vc(n) = K1 Vc(n-1) +K2 Vc(n-2) +Ko Vi (n),

    with K1 = (2LC/t2 + RC/ t) (LC/t2 + RC/ t)-1,

    K2 = - (LC/t2) (LC/t2 + RC/ t)-1 ,

    andKo = 1 / (LC/t2 + RC/ t)

    This can be G programmed with LabVIEW dual for loops.

  • 8/7/2019 Signal Processing E051

    42/61

    The Base Operating lines and the

  • 8/7/2019 Signal Processing E051

    43/61

    The Base Operating lines and theCollector Inversion Swing,

    Av

    = - 4/0.8 =-5

  • 8/7/2019 Signal Processing E051

    44/61

    AC Circuit of the BJT

    The AC resistance at the input of the base ( for vb < vT) isgiven by IB+ ib = Is e(VB+ vb)/vT = Is eVB/vTevb/vT

    = IB ( 1 + vb/vT) and VT=k T/q

    kis Boltzman constant = 1.38x10-23 J/Ko, q = 1.6x10-19C, T in Ko

    meaning ib = IBvb/vT i.e. r = vT/IB & RB=R1//R2

  • 8/7/2019 Signal Processing E051

    45/61

    AC Circuit of the MOSFET

    ID + id = K (VGS + vgs Vto)2

    = ID+ 2K (VGS Vto) vgs

    or id

    =2K (ID/K)1/2v

    gs=2 )K I

    D)1/2v

    gs=g

    mv

    gs

    gm = 2 (K ID)1/2

  • 8/7/2019 Signal Processing E051

    46/61

    Bode Patterns and Frequency Response ofLP, HP, BS & BP Filters

    V1cij i R C

    1 j i R C+: =

    Vci1

    1 j i C R+:=

    0 1 2 3 4 5 6 7 8 9 100

    0. 1

    0. 2

    0. 3

    0. 40. 5

    0. 6

    0. 7

    0. 8

    0. 91

    1

    10 104

    Voii

    V1oii

    9.9011 10 3 i

    V o bij i C R

    1 i( )2

    L C j i C R+

    : =

    V o si1 i( ) 2L C

    1 i( ) 2 L C j i C R+: =

    0 1 2 3 4 5 6 7 8 9 100

    0.1

    0.2

    0.3

    0.40.50.6

    0.7

    0.8

    0.91

    1

    1 103

    Vobi

    Vosi

    9.9011 10 3 i

  • 8/7/2019 Signal Processing E051

    47/61

    The Frequency Bandwidth of Filters

    Qii L

    R:= Q503 3.16=

    0 100 200 300 400 500 600 700 800 900100

    80

    60

    40

    20

    0

    20

    40

    60

    80

    100

    1i

    2i

    0 100 200 300100

    80

    60

    40

    20

    0

    20

    40

    60

    80

    100

    1i

    2if2 f1 159.155=

    o

    Q503 2 1 5 9 . 2 4 7=

    v03i 1

    1 i( )2

    L C j i C R+:=

    v04ii( ) 2 C L

    1 i( )2

    L C j i C R+:=

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00

    0 . 4

    0 . 8

    1 . 2

    1 . 6

    2

    2 . 4

    2 . 8

    3 . 2

    3 . 6

    43 . 2 0 3

    3 . 948106

    v 0 3i

    v 0 5i

    v 0 4i

    31 i

    R

    2 L:=

    o1

    L C: =

  • 8/7/2019 Signal Processing E051

    48/61

    Combinational Logic Networks

    A B A B (AB) (A+B) A B AA BB0 0 0 0 0 00 1 0 AND OR NOT (Invert) 0 1 11 0 0 1 0 11 1 1 1 1 1

    001001

    0 1 1 NAND NOR 0 1 01 0 1 1 0 01 1 0 1 1 0

    Monitoring of closing car doors using a CLN.

    An XOR Gate

    Th H lf Add L i d It

  • 8/7/2019 Signal Processing E051

    49/61

    The Half Adder Logic and ItsCombinational Logic Network

    The AND, the XOR and HA logics

    A B A .B A B A B A + B C S0 0 0 0 0 0 0 + 0 = 0 00 1 0 0 1 1 0 + 1 = 0 11 0 0 1 0 1 1 + 0 = 0 11 1 1 1 1 0 1 + 1 = 1 0

    S = AB + AB

    C = A.B

  • 8/7/2019 Signal Processing E051

    50/61

    The Full Adder

    S =A B C +A B C +A B C +A B C

    C = AB + AC + BC

  • 8/7/2019 Signal Processing E051

    51/61

  • 8/7/2019 Signal Processing E051

    52/61

    Karnaugh map and the simplification ofcombinational logic expressions

    The combinational logic expression F = A B D + A B D + B C D +A B CCan be simplified to:

    F = F1 = A D + B C D + A B CWhich can also be simplified to:

    F = F2 = A D +A B C

    the four variable KARNAUGH mapeasily show the validity of the shortexpression

    K h M Si lifi th

  • 8/7/2019 Signal Processing E051

    53/61

    Karnaugh Map Simplifies theCombinational Logic Expressions

    Z = W X Y + W X Y + W X Y + W X YD = A B C + A B C + A B C + A BE = A B C D + A B C D + A B C D + A B C D

    A G l P Fli Fl

  • 8/7/2019 Signal Processing E051

    54/61

    A General Purpose Flip-FlopRegister Memory Unit

  • 8/7/2019 Signal Processing E051

    55/61

    Laboratory Experiments

    Diode Characteristics Light Emitting Diode (LED) Characteristics Bipolar Junction Transistor (BJT) Characteristics

    BJT Collector-Base Current Relation First Order Digital Filter LabVIEW Experiment Inversion-Non Inversion Op Amp switching

    4-bit Digital to Analog Op Amp conversion Bi-stable Op Amp Multi-vibrator

  • 8/7/2019 Signal Processing E051

    56/61

    Diode Experiment - 1

    Vd Id R K-Ohm r K-Ohm

    Volt mA Vd / Id dV/dI

    0.5 0.1 5.000

    0.53 0.2 2.650 0.3

    0.547 0.3 1.823 0.17

    0.56 0.4 1.400 0.13

    0.57 0.5 1.140 0.1

    0.585 0.6 0.975 0.15

    0.587 0.7 0.839 0.02

    0.59 0.8 0.738 0.03

    0.596 0.9 0.662 0.06

    0.6 1 0.600 0.04

    0.62 1.5 0.413 0.04

    0.63 2 0.315 0.02

    0.65 3 0.217 0.02

    0.7 16 0.044 0.004

    0

    2

    46

    8

    10

    12

    14

    16

    18

    0.5

    0.54

    70.57

    0.58

    7

    0.59

    60.62

    0.65

    Voltage (Volts

    Currentin

    mA/orRinOhm

    Diode V oltage currents

    rasistance

    Dynamic rasistance K-O

  • 8/7/2019 Signal Processing E051

    57/61

    Light Emitting Diode Experiment

    Vd Id R K-Ohm r K-Ohm

    Volt mA Vd / Id dV/dI

    1.76 0.22 8.000 8

    1.8 1 1.800 0.0513

    1.87 2 0.935 0.07

    1.9 3 0.633 0.03

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    1.76 1.8 1.87 1 .9

    Diode V ol ta

    DildeCurrentin"mA"/RinOhm

    Light Em i t t ing Diode Resis tance - K O

    Dynami c Res i s tance

  • 8/7/2019 Signal Processing E051

    58/61

    Digital to Analog Experiment

    b 1

    1 6 R

    V o

    b 0

    V i

    b 3 2 R

    8 R

    O P A M P

    +

    -

    O U T

    Rb 2 4 R

    R is 7.2K PredominaingResistance for

    tolerance

    2R is replaced by 10K

    4R ie replaced by 22K

    8R is replaced by 47K

    16R is replaced by 100K

    Computations are based on the replaceable values

    Measurements indicate the tolerances of the resistor values( 10%)

    ConclusionResistor values and its tolerances are important for building this kind of D/A converter

  • 8/7/2019 Signal Processing E051

    59/61

    Digital to Analog ExperimentVo/Vi = - (R/Ro)bo - (R/R1)b1 - (R/R2)b2 - (R/R3)b3

    R in K Ohm 10 22 47 100 7.2 Vo Vo Ass Bin

    Bin Value b3 b2 b1 bo Vo / Vi Measured Output

    0 0 0 0 0 0.000 0.000 0.000 0.000

    1 0 0 1 -0.072 -0.360 -0.416 -0.313

    2 0 0 1 0 -0.153 -0.766 -0.875 -0.625

    3 0 0 1 1 -0.225 -1.126 -1.291 -0.938

    4 0 1 0 0 -0.327 -1.636 -1.857 -1.250

    5 0 1 0 1 -0.399 -1.996 -2.273 -1.563

    6 0 1 1 0 -0.480 -2.402 -2.732 -1.875

    7 0 1 1 1 -0.552 -2.762 -3.148 -2.188

    8 1 0 0 0 -0.720 -3.600 -4 -2.500

    9 1 0 0 1 -0.792 -3.960 -4.416 -2.813

    10 1 0 1 0 -0.873 -4.366 -4.875 -3.125

    11 1 0 1 1 -0.945 -4.726 -5.291 -3.438

    12 1 1 0 0 -1.047 -5.236 -5.857 -3.750

    13 1 1 0 1 -1.119 -5.596 -6.273 -4.063

    14 1 1 1 0 -1.200 -6.002 -6.732 -4.375

    15 1 1 1 1 -1.272 -6.362 -7.148 -4.688

    Lab Verification for the Inversion

  • 8/7/2019 Signal Processing E051

    60/61

    Lab Verification for the Inversion-Non-Inversion Op Amp Operations

  • 8/7/2019 Signal Processing E051

    61/61

    Bi-stable Op Amp Multi-vibrator

    f= 1 / R1 C