sheetmetal forming

158
UNCLASSIFIED A D 294 9 4 9 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

Upload: sundar-sivam

Post on 04-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 1/158

UNCLASSIFIED

AD 294 949

ARMED SERVICES TECHNICAL INFORMATION AGENCY

ARLINGTON HALL STATIONARLINGTON 12, VIRGINIA

UNCLASSIFIED

Page 2: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 2/158

NOTICE: When government or other drawings, speci-

fications or other data are used for any purposeother than in connection with a definitely related

government procurement operation, the U. S.

Government thereby incurs no responsibility, nor any

obligation whatsoever; and the fact that the Govern-

ment may have formulated, furnished, or in any way

supplied the said drawings, specifications, or other

data is not to be regarded by implication or other-

wise as in any manner licensing the holder or any

other person or corporation, or conveying any rights

or permission to manufacture, use or sell any

patented invention that may in any way be related

thereto.

_______________________________

Page 3: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 3/158

ASD TR-7-871 (IV) ASD Interim Report 7-871 (IV)

December 1962

SHEET METAL FORMING TECHNOLOGY

W. W.WoodR.E.Goforth

D.L. orwoodC.H.Cole Jr.W. D.MooreC. R.CliftonJ. R.RussellW. A. BeckR.A. Ford

Aeronautics and Missiles DivisionCJ~ CHANCE VOUGHT CORP.

A Division of Ling- Temco-Vought, Inc.

Dallas 22, Texas

Contract AF 33(657)-7314

ASD Project No. 7-871 T.S1A A

Interim Technical Engineering Report

1 October 1962 to 31 December 1962

The purpose of this project is to determine the inherent limitations of sheetmetal forming processes, to develop the knowledge to significantly advancethese and to recommend the manner in which this can be accomplished. Thisreport represents the results of the fourth period, consisting of three months,and covers the final experimental work on tensile testing and forming undercombined conditions of high velocity, high temperature and high pressure.Results have been obtained on a projectile impact test fixture, a low-explosive closed system, a high-explosive open system, an electro-hydraulicopen system, an electromagnetic system and conventional presses.

FABRICATION BRANCH

MANUFACTURING TECHNOLOGY LABORATORY

AFSC Aeronautical Systems Division

United States Air ForceWright-Patterson Air Force Base, Ohio

Page 4: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 4/158

NOTICES

When Government drawings, specifications, or other data are used, forany purpose other than in connection with a definitely related Governmentprocurement operation, the United States Government thereby incurs noresponsibility nor any obligation whatsoever; and the fact that the Gov-

ernment may have formulated, furnished, or in any way supplied the said

drawings, specifications, or other data, is not to be regarded by implica-tion or otherwise as in any manner licensing the holder or any other personor corporation, or conveying any rights or permission to manufacture, use,or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from ASTIA, Docu-ment Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports should not be returned to the AFSCAeronautical Systems Division unless return is required by security con-siderations, contractual obligations, or notice on a specific document.

Page 5: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 5/158

ASD TR-7-871 (IV) ASD Interim Report 7-871December 1962

SHEET METAL FORMING TECHNOLOGY

W. W. WoodR. E. GoforthD. L.NorwoodC. H. Cole Jr.W. D. MooreC. R.CliftonJ. R. RussllW. A. BeckR.A. Ford

Aeronautics and Missiles Division

CHANCE VOUGHT CORP.A Division of Ling-Temco-Vought, Inc.

Dallas 22, Texas

Contract AF 33(657)-7314

ASD Project No. 7-871

Interim Technical Engineering Report

1 October 1962 to 31 December 1962

The purpose of this project is to determine the inherent limitations of sheetmetal forming processes, to develop the knowledge to significantly advancethese and to recommend the manner in which this can be accomplished. Thisreport represents the results of the fourth period, consisting of three months,and covers the final experimental work on tensile testing and forming undercombined conditions of high velocity, high temperature and high pressure.Results have been obtained on a projectile impact test fixture, a low-explosive closed system, a high-explosive open system, an electro-hydraulicopen system, an electromagnetic system and conventional presses.

FABRICATION BRANCHMANUFACTURING TECHNOLOGY LABORATORY

AFSC Aeronautical Systems Division

United States Air ForceWright-Patterson Air Force Base, Ohio

Page 6: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 6/158

ABSTRACT - SUMMY ASD I)TERI REPORT 7-871(IV)Interim Technical Progress Report December 1962

SHEET METAL FORMING TECHNOLOGM

W. W. Wood

et alAeronautics and Missiles Division

Chance Vought Corporation

The purpose of this project is to determine the inherent limitations ofsheet metal formin processes, to develop the knowledge to eignifica47y

advance these, and to recommend the manner in which this can be accomplished.Principal areas of investigation are concerned with the effect that primaryprocess variables such as velocity, temperature, and pressure have on various

classes of metals and alloys. This report presents the results of the fourthperiod, consisting of three months, which covers the final xperimentl work

on tensile testing and forming under combined conditions of high velocity,high temperature, and high pressure. Results have been obtained on a pro-

jectile impact test fixture, low explosive closed system, high explosive-

open system, electro-hydraulic-open system, and electrcagnetic systom andconventional presses.

Results have been obtained for the available ductility for the various

materials under ccubined conditions of velocity, temperature and pressure.In addition, optimum ranges of velocity have been obtained for each alloyand has been related to the high energy rate forming systems. This includescritical forming speeds beyond which neg ligble formability exists and

imediately below which optimum formability usually exists.

Generally, the ultra high speed systems utilizing shock wave for formingproduce superior formability when compared with lower speed systems such aslow explosive and conventional presses. However, the formabl~ty of sommaterials han been found to be unimproved at these high velocities. Okher

materials, such as the titaniume and refractory metalso are not suitble for

forming at high speeds except under suitable combined conditions withtemperature.

Page 7: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 7/158

Page 8: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 8/158

TABLE OF CONTENTS

Page No.

ABSTRACT ...... ...................... .. i

FORWARD .. ......... . . . ................ ii

INTRODUCTION ..... ....................... 21.

LONGITUDINAL HIGH VELOCITY TENSILE TESTING . . . . . . . . 4

Introduction . . . . . . . . . . . . . . . * . . * * 4

Test Procedure ......... .......... .. 4

Discussion . . . . . . . . . . . . . . . . 4

Results and Conclusions ................ 5

ELEVATED-TEMPERATURE LOW EXPLOSIVEFREE BULGE DOME AND TUBE TESTING. . .. ... .. .. .... 9.

Introduction . . . . . . . . . . . . . . . ..... 9

Test Apparatus .... ............... . . ....... 9

Results and Conclusions ... ............... . i0

FABRICATION OF PARTS . . . . . . . . . . .i

Introduction .. .. .. .. .. .. .... .. i

Test Apparatus and Equipment ... ......... . .. 11

Proceduresand Preparation of Tests.. ....... . ... 15

Discussion . . . . . . . . . . . 17

APPENDIX A . . . . . . . . . . . . . . 41

APPENDIX B ....... . . . . . . . . ....... 102

APPENDIX C... . . . . . . . . . . . . . . . 120

DISTRIBUTION LIST . . . . . . ......... . . . . . . 132

Page 9: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 9/158

LIST OF FIGURES

Figure I~

1 Combined Velocity - Temperature Effect on UniformStrain for Longitudinal Tensile Specimens .... 6

2 Static, Free Form Dome Setup ......... ... . 11

3 Static, Shallow Recessing Setup ...... . ... 12

4 Electro-Hydraulic Forming Setup .......... 13

5 Deep Recessing Die Configurations . . . .. . 14

6 Shallow Recessing Die Configuration ... ......... 14

7a Experimental Die Formed Parts - 17-7 PH . . . ... 21

7b Elongation Limit Curve Showing Experimental Points -17-7 PH ... ........... . . . . . . . . . . . 22

Elongation Limit Curve Showing Experimental Points -A-286 . . . . ................ . . 23

9 Elongation Limit Curve Showing Experimental Points -

Vascojet 1000 ...... ............... .... 24

10a Experimental Die Formed Parts - USS 12 MoV . . . . 25

10b Elongation Limit Curve Showing Experimental Points -

USS 12 MoV ... .................. . . 26

lla Experimental Die Formed Parts - Titanium (6A14V) . 27

lib Elongation Limit Curve Showing Experimenta Points -

Titanium (6A1-4V)........ . . . . . . . . . 28

12 Elongation Limit Curve Showing Experimental Points -

Titanium (13V-Cr-3Al) ......... ... 29

13 Elongation Limit Curve Showing Experimenta Points -L-605 ............. . . . . . . . . . 30

14 Elongation Limit Curve Showing Experimental Points -

Rene'41 ....... . . . . . . . . . . . 31

15 Elongation Limit Curve Showing Experimental Points -

2024-0 Aluminum .............. . .. 32

16 Elongation Limit Curve Showing Experimental Points -17-7 PH (Elevated Temperature - 1000F) . . . . . . 33

Page 10: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 10/158

LIST OF FIGURES (Continued)

FigurePage

17 Elongation Limit Curve Showing Experimental Points -A-286 (Elevated Temperature - 1000F) . .. . . . . 33

18 Elongation Limit Curve Showing Experimental Points -

Vascojet 1000 (Elevated Temperature - l00*F) . . .. 3419 Elongation Limit Curve Shoving Experimental Points -

USS 12 MoV (Elevated Temperature - 1000F) . . . . .. 34

20 Elongation Limit Curve Showing Experimental Points -

Titanium (6Al-4v) (Elevated Temperature - 1200 F).. 35

21 Elongation Limit Curve Showing Experimental Points -

Titanium (13V-llCr-3A1) (Elevated Temperture-1200F). 35

22 Elongation Limit Curve Showing Experimenta Points -L-605 (Elevated Temperature - 500F) . . . . . . . .. 36

23 Elongation Limit Curve Showing Experimental Points -Rene'l1 (Elevated Temperature - 500 0F) .... ........ 36

24 Elongation Limit Curve Showing Experimental Points -2024-0 Aluminum (Elevated Temperature - 200 F) . . . . 37

25 Comparison Between Draw (T) and No-Draw (U),

Static Formed 2024-0 Aluminum Parts . . ....... 38

26 Comparison Between Static Formed Titanium (6A1-4V)Parts at 1200OF (V) and Room Temperature (W) . . . . . 39

27 Example of Part Forming in the Shallow Recess

Dies #1(X), #2(Y), and #3 () ............ 40

LIST OF TABLES

Table Page

1 Free Bulge Dome - Low Explosive High Temperature

Tensile Testing Data ..... ................. .. 103

2 Free Bulge Tube - Low Explosive High Temperature

Tensile Testing Data ....... ............... .. 105

3 Deep Recessing - Draw-Static Forming(Room Temperature) ...... ................. .. 121

vi.

Page 11: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 11/158

LIST OF TABLES (Continued)

Table Page

1 Deep Recessing - Draw-Low Explosive Air

(Room Te m perature )..... .. .... ......... 121

5 Deep Recessing - Draw-High Explosive Water(Room Temperature) . . . . .......... .... 122

6 Deep Recessing - Draw-Electromagnetic(Room Temperature) . . . ........ . . . . . ... 123

7 Deep Recessing - No Draw - Static Forming(Room Temperature) ....... ... ......... 123

8 Deep Recessing - No Draw - Static Forming(Elevated Temperature) .... ................... 124

9 Deep Recessing - No Draw - Low Explosive Air

(Room Te m perature )..... .. . . . . . . . . . . . 124

10 Deep Recessing - No Draw - Low Explosive Air

(Elevated Temperature) .................... 125

11 Deep Recessing - No Draw - High Explosive Water(Room Temperature) .................. 126

12 Deep Recessing - No Draw - Electro-Hydraulic(Room Temperature) ............ ............. 127

13 Shallow Recessing - No Draw - Static Forming(Room Temperature) ..... ................. . 128

14 Shallow Recessing - No Draw - Low Explosive Air(Room Temperature) ..... .................... 128

15 Shallow Recessing - No Draw - Low Explosive Air

(Elevated Temperature) ... .............. . . . . 129

16 Shallow Recessing - No Draw - High Explosive Water

(Elevated Temperature) ............ . . . . 130

17 Shallow Recessing - No Draw - Electro-Hydraulic

(Room Temperature) ..... ................. . 131

vii

Page 12: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 12/158

LIST OF GRAPHS

Grah Page

1 Longitudinal Tensile Specimens Elongation Vs.

Position of .2 Inch Gage Length at Various Test

Temperatures and Velocities - 17-7 PH -

5 Gage Length ..... ............ ........ 42

2 Longitudinal Tensile Specimens Elongation Vs.

Position of .2 nch Gage Length at Various TestTemperatures and Velocities - A-286 -5 Gage

Length . . ......... ..... ..................... 48

3 Longitudinal Tensile Specimens Elongation Vs.Position of .2 Inch Gage Length at Various Test

Temperatures and Velocities - Rene'41 -

5 Gage Length ...... .. . ... . . . ... -5

4 Longitudinal Tensile Specimens Elongation Vs.

Position of .2 Inch Gage Length At Various Test

Temperatures and Velocities - Beryllium -

5" Gage Length .......... .................... 59

5 Longitudinal Tensile Specimens Elongation Vs.Position of .2 Inch Gage Length at Various Test

Temperatures and Velocities - Molybdenum .5 Ti) -5 Gage Length ......... ................... 62

6 Longitudinal Tensile Specimens Elongation Vs.

Position of .2 Inch Gage Length at Various Test

Temperatures and Velocities - Columbium (lOMo-lOTi)-

5" Gage Length ....... ................... 65

7 Longitudinal Tensile Specimens Elongation Vs.Position of .2 Inch Gage Length at Various Test

Temperatures and Velocities - Tungsten -

5" Gage Length ......... ................... 68

8 Uniform Elongation Vs. Forming Velocity for

Longitudinal Tensile Specimens at Various Tempera-

tures - 17-7 PH - 5" Gage Length ............ ... 69

9 Uniform Elongation Vs. Forming Velocity forLongitudinal Tensile Specimens at Various Tempera-

tures - A-286 - 5 Gage Length ... ........... 73

10 Uniform Elongation Vs. Forming Velocity forLongitudinal Tensile Specimens at Various Tempera-

tures - Rene'141 - 5" Gage Length ........... .... 77

viii

Page 13: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 13/158

LIST OF GRAPHS (Continued)

Graph

Ul Uniform Elongation Vs. Forming Velocity for

Longitudinal Tensile Specimens at Various Tempera-

tures - Beryllium - 5 Gage Length ... ........... .. 81

12 Uniform Elongation Vs. Forming Velocity for

Longitudinal Tensile Specimens at Various Tempera-

tures - Molybdenum (.5 Ti) - 5 age Length ... ...... 82

13 Uniform Elongation Vs. Forming Velocity forLongitudinal Tensile Specimens at Various Tempera-

tures - Columbium (10 Mo-lO Ti) - 5 Gage Length . . . . 83

14 Uniform Elongation Vs. Forming Velocity forLongitudinal Tensile Specimens at Various Tempera-

tures - Tungsten - 5" GageLength ... ........... ... 85

15 Longitudinal Tensile Specimens Elongation Vs. Position

of .2 Inch Gage Length at -320OF and Various TestVelocities -17-7 PH - 5" Gage Length .. ......... ... 86

16 Longitudinal Tensile Specimens Elongation Vs. Position

of .2 Inch Gage Length at -320*F and Various Test

Velocities - A-286 - 5" Gage Length ... .......... . 87

17 Longitudinal Tensile Specimens Elongation Vs. Position

of .2 Inch Gage Length at -320F and Various Test

Velocities - Vascojet 1000 - 5 age Length ....... ... 89

18 Longitudinal Tensile Specimens Elongation Vs. Positionof .2 nch Gage Length at -320*F and Various Test

Velocities - USS 12 MoV - 5 Gage Length .......... 90

19 Longitudinal Tensile Specimens Elongation Vs. Position

of .2 Inch Gage Length at -320*F and Various TestVelocities - L-605 - 5" Gage Length .......... 91

20 Longitudinal Tensile Specimens Elongation Vs. Positionof .2 Inch Gage Length at -320OF and Various TestVelocities - Rene'41 - 5 age Length . . . . . o . . . 92

21 Longitudinal Tensile Specimens Elongation Vs. Position

of .2 nch Gage Length at -320*F and Various Test

Velocities - 2024-0 Aluminum - 5 Gage Length ..... 94

22 Uniform Elongation Vs. Forming Velocity for LongitudinalTensile Specimens at -320OF - 17-7 PH - 5 Gage Length . 95

23 Uniform Elongation Vs. Forming Velocity for Longitudinal

Tensile Specimens at -320*F - A-286 - 5 Gage Length . . 96

ix

Page 14: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 14/158

LIST OF GRAPHS (Continued)

Graph Pg

24 Uniform Elongation Vs. Forming Velocity for LongitudinalTensile Specimens at -320*F - Vascojet 1000 -511 Gage length . . . . . . . . . . . . . . . . . . . . 97

25 Uniform Elongation Vs. Forming Velocity for LongitudinalTensile Specimens at -320F - USS 12 MoV - 5" GageLength . . . . . . . . . . . . . . . . . . . .. . 98

26 Uniform Elongation Vs. Forming Velocity for Lonitudinal

Tensile Specimens at -320F - L-605 - 5" Gage Length . . 99

27 Uniform Elongation Vs. Forming Velocity for Longitudial

Tensile Specimens at -320F - Rene'41 - 5" Gage Length . 100

28 Uniform Elongation Vs. Forming Velocity for Lonitudinal

Tensile Specimens at -320*F - 2024-0 Aluminum . . . . . 101

29 Explosive Free Bulge Dome -Average Strain Vs.Velocity -2024-0 Aluminum ... . ........... 106

30 Explosive Free Bulge Dome-Average Strain Vs.Velocity - 17-7 PH ...................... 107

31 Explosive Free Bulge Dome - Average Strain Vs.Velocity - A-286 . . . . . . . . . . . 108

32 Explosive Free Bulge Dome - Average Strain Vs.Velocity - Vascoet 1000 ........ . • •.• 109

33 Explosive Free Bulge Dome - Average Strain Vs.Velocity - USS 12 MoV . . . . . . . . . . . . . . . . . 110

34 Explosive Free Bulge Dome - Average Strain Vs.

Velocity - Titanium (6A1-4V) ... ... ........ 11.1

35 Explosive Free Bulge Do - Average Strain Vs. Velocity -

Rene'41 .#.. .. . . ... . ... e.. .... 112

36 Explosive Free Bulge Dome - Average Strain Vs. Velocity -L-605 . . .. ... . . . . . . .. 113

37 Explosive Free Bulge Dome - Average Strain Vs.Velocity - Titanium 13V-lCr-3A1) .... ...... 11

38 Explosive Free Bulge Dome - Average Strain Vs.

Velocity -Molybdenum (.5% Ti) . . . . . . . . . . . . . 115

39 Explosive Free Bulge Dome - Average Strain Vs.

Velocity - Columbium (10lMo-10 Ti ... . . . . . . . . 116

Page 15: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 15/158

LIST OF GRAPHS (Concluded)

GraphPage

40 Explosive Free Bulge Dome - Average Strain Vs.Velocity - Tungsten .... .................. 116

41 Explosive Free Bulge Tube - Average Strain Vs.Velocity - Rene'41 .. .............. . 117

42 Explosive Free Bulge Tube - Average Strain Vs.

Velocity - 17-7 PH ..... ................... . 118

43 Explosive Free Bulge Tube - Average Strain Vs .

Velocity - A-286 . ........................ . 118

44 Explosive Free Bulge Tube - Average Strain Vs.Velocity - Vascojet 1000 .... ................. 119

45 Explosive Free Bulge Tube - Average Strain Vs.Velocity - Titanium 6A-4V). . . . . . .... . . . 119

X1

Page 16: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 16/158

INTRODUCTION

Designers of advanced vehicles of the high velocity aeronautic and aerospace

types are placing greater demands on the sheet metal forming industry by

designing parts from the high strength thermal resistant alloys that wereonce made from more formable materials. Added to this are those forming

problems associated with the new thermal resistant alloys such as spring-

back and buckling, requiring greater controls in order to maintain thenecessary tolerances. A third type of current forming problem is therequirement for close tolerances in both thickness and contour for themore common materials.

These greater demands placed on the sheet metal forming industry hasgenerally resulted in increased activity in development of new formingsystems. This activity has been extremely great, with particular emphasisplaced on the high velocity system such as explosive, electro-hydraulic,

electromagnetic and gas expansion. Other high energy forming types such ashigh temperature, high rubber pressure, and vibration forming have receivedless attention. In addition, the development of the more conventional formingsystems by increasing pressures, addition of heat, and other methods of adaptation has received less attention than the more sophisticated systems. It is

now necessary to appraise the sheet metal forming systems by a systematicevaluation of the fundamental parameters governing formability of metals andalloys.

The primary purpose of this "Sheet Metal Forming Technology" program is todetermine the inherent limitations of sheet metal forming processes, to

develop the knowledge to significantly advance these, and to recommend th emanner in which this can be accomplished. The approach is to first assess

the current state-of-the-art for sheet metal forming by surveying literatureand the industry. After the systems were determined that indicate consider-

able deficiencies as to formability knowledge of the process, a comprehensiveexperimental program was initiated in order to gain systematic data that will

aid in overcoming these deficiencies. These data involve fundamental effectsof pressure, temperature and velocity, on a broad range of metals and alloys.

From this, recommendations can be made as to the forming systems which hold

maximum potential for further development.

The program covers the broad class of forming types shown below:

I. Conventional FormingA. Brake Bending

B. Rubber Forming

C. Linear Contouring

D. Plane Contouring

E. SpinningF. Bulging

G. Mechanical Die Drawing

H. Drop Hammer

I. Supplemental Forming

Page 17: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 17/158

II. Advanced Methods of FormingA. High Pressure Liquid

B. High Temperature

C. Explosive

D. Capacitor Discharge

E. Gas Expansion

F. Impact RubberG. Vibration

Analytical procedures are being utilized to determine the limitations of the

better known processes while experimental and analytical procedures arebeing used to establish the limitations of the more advanced processes,

about which less is known from a formability standpoint. The effect of

heat, velocity, and pressure is being investigated singularly and in combina-

tions in the following ranges;

1. Temperature: Room temperature - 2500*F2. Velocity: Static - 1000 Ft/sec.

3. Rubber pressure: Zero.- 100,000 psi

.Materials for the experimental part of the program have been selected froma broad class of alloys and metals as shown below:

1. Aluminum Alloy 2024-0

2. Stainless Steel 17-7 PH

A-286USS 12 MoV

3. Titanium 6A-4V

13V-llCr-3A14. Beryllium Pure Beryllium

5. Tool Steel Vascojet 1000

6. Super Alloys Rene'41

L-6057. Refractories Molybdenum

(j Ti)Columbium (10 Mo-1O Ti)Pure Tungsten

Previous effort has been in two directions: (1) securing state-of-the-artinformation from industry and others by personal interviews and a surveyof literature and (2) conducting an extensive experimental program that

will fill the gp between needed and existing informatim.

Longitudinal tensile specimens of three gage lengths, 1, 5, and 10 inchrespectively and three gages, .020, .063, and 0.125 were tested at tempera-tures and velocities noted above. Free forming tests were conducted atvarious combinations of temperatures and velocities for 2 inch diameter tubesand 2-1/2 inch diameter domes. Parts were formed to various depths utilizing

female dies at various combinations of temperature and velocity with 2 inchtubing, 6 inch diameter domes, and 6 inch diameter shallow recessed beaded

panels.

2

Page 18: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 18/158

Work in this quarter finalized the experimental phase of the program and

the results are reported herein. A Technical Report will be submitted as asummary of all previous work. The last period of the contract will be used

for finalizing a formability handbook and formulating a future development

report. This report will be submitted for a clarification of current sheet

metalforming processes and

recommendationsfor future

development workneeded to significantly advance sheet metal forming technology.

3

Page 19: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 19/158

LONGITUDINAL, HIGH VELOCITY TENSILE TESTING

Introduction

The test data contained in this report is in the velocity range from static t620 ft/sec. and the temperature range from cryogenic (-320*F) to 20000F.

Using only 5 gage length tensile specimen, these combined velocity-temperatu

tests were completed for seven materials in the temperature range from ambien

to 2000*F for all velocities. These seven materials are those which were not

previously reported.

Strain distribution curves and uniform elongation vs forming velocity curves

are shown in Appendix A, Graphs . through 14.

Cryogenic testing in the velocity range from static to 600 ft/sec. has been

completed. Six materials, Titanium (6A1-4V), Titanium (13V-11Cr-3A1),

Beryllium, Molybdenum (.5 Ti), Columbium (10 Mo-lO Ti), and Tungsten were

not tested because of their brittle nature at cryogenic temperatures. Straindistribution curves and uniform elongation vs forming velocity for the testedmaterials are shown in Appendix A, Graphs 15 through 28.

Test Procedure

Two machines were used for the high velocity tests. The Projectile Impact

Tester (CVC XMS 541.013) was used for all ambient and elevated temperaturehigh velocity tests and all cryogenic testing above 150 ft/sec. (See Interim

Report II, page 15.) For the cryogenic tests below 150 ft/sec. the Rotary

Impact test machine (CvC Xs 541.014) was used with a special chamber aroundthe test specimen for introducing liquid nitrogen as shown in Figure 24 onpage 20 of Interim Report No. III. Cryogenic testing with the ProjectileImpact Tester was accomplished by inserting the tensile specimens and their

coupling tup in a plastic bag which was then filled with liquid nitrogen.

The theoretical temperature of liquid nitrogen, -3200

F, was verified byusing a potentiometer.

Discussion

The data in this section is derived from the elongation vs. position curvesobtained by measuring the grid marks on the tensile specimens. These curvesare shown in Appendix A, Graphs 1-7 and 15-21. Because of the large number

of specimens tested, it as necessary to show selected curves representativeof the strain distribution found for the various velocities and temperatures.

Although the interpretation of the data is somewhat arbitrary, the following

rules were applied consistently throughout the test series.

i4

Page 20: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 20/158

(1) The uniform elongation is taken as the average value of elonga-

tion outside the necked area.

(2) The critical velocity region is established by the following

criteria:

a) a strain distribution curve that shows a reasonably good

reduction in area at fracture,

b) the fracture located at the impacted end of the specimen,

c) a small uniform strain value.

The critical velocity of the refractory metals, Columbium (10 Mo-lO Ti) and

Molybdenum (.5 Ti), was difficult to determine because of the low value of

elongation. For these two materials, particular weight was placed on theposition of the fracture rather than the value of the uniform elongation.

Due to the increased strength of some materials at cryogenic temperatures,

it was necessary to change the specimen size in order to insure a break in the

gage section. This was accomplished by machining a specimen with a 2 5 inchgage length and a .125 inch gage width. Tests were preformed which showed acorrelation of uniform elongation and maximum elongation between these

specimens and the standard specimens.

Results and Conclusions

Only those materials shown in Appendix A, Graphs 1 through 7 and 15 through 21

are considered in detail. Graphs 8 through 14, and 22 through 28 show the

results of plotting uniform elongation versus forming velocity with a composit

graph of the various temperatures given for each material. In Figure 1, theuniform static strain at various test temperatures is compared to the corres-

ponding dynamic strain values.

Based on Figure 1, (shown on the next two pages), the following conclusions

can be drawn concerning uniaxial deformation. Considering each material

separately, it can be seen that:

(1) Rene'41 and Columbium (10 Mo-10 Ti) show the same ductility for

static and dynamic loading. Rene'41 shows a ductility decreaseof approximately 25% from room temperature to cryogenic and asteady decrease from room temperature to 1000F. Columbium(10 Mo-10 Ti) decreases in ductility from room temperature to2000 F. Room temperature is the best forming temperature for

both Rene'41 and Columbium (10 Mo-lO Ti).

(2) 17-7 PH shows a ductility increase (dynamic loading compared to st

loading) of 100% at cryogenic, 50% at room temperature. Both

processes show the same ductility from 500'F to 10000F. There

is a ductility decrease of approximately 50% for both processes

from room temperature to cryogenic with steady decrease to 1000F.

Dynamic loading at room temperature is the best forming condition

for 17-7 PH.

5

Page 21: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 21/158

Material Combined Temperature. - Velocity Effect

6o

B/ -'- UY'i±.LC

40

17-7 PH

10

0 '"-320 0 500 1000 1500

Temperature (F)

60

50 -

0

V-4

A-286 30

20 0

Temperature ("'F)

10

01

Molybdenum Max J - ]--- I-

-320 500 1000 15002

Temperature (OF)

FIGURE 1: C0MB D VELOCITY T4PERATURE EFFECT ON UNIFOQW

STRAIN FOR LONGITUDINAL TENSILE SPECIMENS

6

Page 22: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 22/158

Material Combined Temperature - Velocity Effect

60

0 30

Renel'41

o 20

10

-320 0 500 1000 1500

Temperature (OF)

10

Columbium max.

 10 Mo-10 Ti) 0-320 o500 1000 1500

Temperature OF )

Beryllium 14sx.0

-320 0 500 1000 1500

Temperature (OF)

10 i

Max.Tungsten 0

-320 O 500 iOOO 1500

Temperature (OF)

FIGURE 1: 00MBINE) VELOCITY TWPERATURE EFFECT O N UNIFORK(Concluded) STRAIN FOR LONGITUDINAL TENSILE SPECIMENS

7

Page 23: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 23/158

(3) Dynamic and static loading presents the same ductility for A-286

except for a 15% increase of dynamic over static at room tempera-

ture. A-286 shows a maximum ductility at cryogenic with a steady

decrease thereafter. Dynamic or static loading at cryogenic

(-3200F) is the best forming condition for A-286.

(4) Tungsten and Beryllium show the same ductility for static and

dynamic loading. An increase in temperature does not increasethe ductility of Tungsten. The best ductility for Beryllium wasshown at 800OF for static loading. If it is desirable to form

Beryllium by a high ener, method, the temperature of the metal

should be raised to 1600F.

Four materials (Vascojet 1000, USS 12 MoV, 2024-0 Aluminum and L-605) were tesat cryogenic temperature during this period. Elevated temperature testing wa

completed during the last period and were reported in Interim Report III.

Graphs 24, 25, 26 and 28 in Appendix A show the uniform elongation as a functof forming velocity. In each case the uniform elongation is lower than thatroom and elevated temperatures as presented in Graphs 1, 2, 5 and 6 in InterimReport III.

8

Page 24: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 24/158

ELEVATED-TEMPERATURE LW EXPLOSIVE

FREE BULGE DOME AND TUBE TESTING

Introduction

The objective of this phase of testing is to extend the temperature range

of the previously determined room temperature data.

All materials tested are 0.020 in. and include:

Domes

(1) 17-7 PH (7) L-605(2) A-286 (8) Rene'41

(3) Vascojet 1000 (9) 2024-0 Aluminum(4) uss 12 oV (o) Molybdenum (.5% Ti)(5) Titanium (641-4v) (U) Columbium (lOMo-lOTi)(6) Titanium (13V-JlCr-3A1) (12) Tungsten

Tubes

(1) 17-7 PH (4) Titanium (6Al-4V)(2) A-286 (5) Rene'41

(3) Vascojet 1000

All tubing is annealed, welded two-inch I.D.

Since high explosive water forming is not readily adaptable to high tempera-

ture tests, the elevated temperature work is limited to low explosive testing.

Several of the dome materials exhibited a critical velocity in the lo w

explosive range at elevated temperature as shown in Graphs 29-40, Appendix B.Room temperature data, previously determined, are also shown. It should be

noted, however, that no critical velocity was reached in the tubing tests at

either room or elevated temperature. (See Graphs 41-45, Appendix B.)

Test Apparatus

The test specimens for both tubing and dome tests were resistance heated

using a 100 KVA low-voltage transformer. All remaining apparatus used in

room temperature testing is discussed in detail in previous Interim Reports.(See Interim Report II for tubing apparatus; Interim Report III for domeapparatus.)

9

Page 25: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 25/158

Results and Conclusions

Domes

Eleven of the twelve materials tested showed a definite decrease in elonga-

tion at a specific respective critical velocity. Although L-605 exhibited

no decrease in elongation, by comparison with'the test specimens of other

materials, it is felt that a critical velocity does exist approximtely100 fps above the highest L-605 test velocity. Additional conclusions can

be based upon the results shown in Table 1 and Graphs 29 through 40

in Appendix B. The average elongation of all test materials, except Titaniu

(13V-lICr-3A1), remains constant or increases with test temperature. Also

for the materials exhibiting a critical velocity in the elevated temperature

range, there is a definite decrease in critical velocity with increasing

temperature. The only exception to this is molybdenum, as shown in Graph 38

Appendix B. It is also evident that a range of increased elongation exists

immediately below the critical velocity for all materials except aluminum an

refractories.

Tubes

Of the five tubing materials tested, Titanium (6A1-4V) showed an increase in

elongation with temperature while 17-7 PH and A-286 decreased in elongation.

The remaining materials exhibited no change. (See Table 2 and Graphs 41

through 45 in Appendix B.) Throughout the tubing tests no evidence of a crit

velocity was observed.

10

Page 26: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 26/158

FABRICATION OF PARTS

Introduction

These series of tests are intended to study and compare the validity of tensile

testing and free forming against actual die forming operations. That is, when

tensile testing and free forming establishes a given uniform elongation limit

the formed part can be expected to fail when this limit is exceeded. Dies that

were used in this series were female type tube bulge dies, dome dies, shallow

recess dies, and free forming dome dies. Female type tube bulge die tests have

been completed and discussed in Interim Report No. III. Dome and shallow

recesses have now been completed. Elevated temperature tests, where applicable,

are included in this report.

Five energy sources are included in these series. They are:

(1) Low Explosive - Air(2) 'High Explosive - Water

(3) Electro-HYdraulic

(4) Electromagnetic

(5) Static (Conventional Presses)

Materials tested include all those available for the experimental part of the

program with the exceptions of those metals belonging to the Beryllium and

Refractory classes of alloys.

Test Apparatus and F4uipment

Forming Mediums:

Static - The punch and die setup shown below (Figure 2)

together witha

1,000 ton press was used to form static, free form domes.

FIGURE 2: STATIC FREE

FOI4 DOME

SETUP

11

Page 27: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 27/158

Static shallow recessed parts were formed using femle dies oil a 2,500 tonpress equipped with a trapped rubber head . (Figure 3 )

IMai-n Roin

Ruibber

Part

B~ase

Dolster

FIGURE 3: STATIC SHALLW RECESSING SETUP

Low Explosive -Air - Both shallow recessed ad domed parts were formedusing the low explosive chamber andl hold-down fixture In conjunction with theexplosive press. These tools are discussed in Interim Report No. II.

High Explosive - Water - Both shallow recessed and domed parts wereformed using the necessary tool and high explosive'forming facility shown in

Interim Report No. II.

Blectro -foramg - Both electrical forming methods utilized the capacitodischarge equipment shown in Interim Report No.* II. The capacitor bank has acapacity of 18,,4oo joules (n13.6 ufd at 20 kilovolts). Capacitance duringexperimental forming varied from 85.2 jitd to 113.6 /Lfd 'due to the explosiand subsequent replacement of two capacitors. Blectro-hyidraulic parts wereformed utilizing the explosive press in conjunction with the standpipe shownin Figure 4I. Electromgnetic parts were formed utilizing the explosivepress and a specially designed magntic coil.

12

Page 28: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 28/158

Eyp],osive Fre.,s

Water Fill

Electrode

Water Drain

ShallowRecess Die Ch .Vacuum Line

Tab~le of Explosivye Press

FIGURE 14: ELECTRO HYDRAULIC FOR14ING SETUflP

Dies:

Domes -High and low velocity forming of domes was performed in threedifferent femle dome dies with the following approximte elongations.

(See Figure. 5 )

Dome Die #1Dome Die #2 -2%Dome Die #3 - 57

Die Cavities were evacuated to approximate ly 28 inches of mercury for

all est.ose art ofthedie contacting the material to be formed werefaesprayed with alumina prior to high temperature testing.

Static forming of domes was accomplished with a six-inch diameter free

form dome die and plunger. Elevated temperature testing was accomplishedby heating the plunger and the part to the required temperature.

13

Page 29: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 29/158

"A" U"Alt

"All D14~ "All' 1 " l"ici-

3 3.000 - 2.000

FIGURE 5: DME RECESSING DIE CONFIGURATICS

Shallow Recessing - Parts were formed in three different fe=3le shallowrecessing dies with the following approximte elonations. (See Figure 6 )

Shallow Recess Die #1 - 5Shallow Recess Die #2 - 15

Shallow Recess Die #3 -30

DJFd X

gyp.$

FIGURE 6: SHALLUi RECESSING DIE C0NFIGURA3I0NS

14

Page 30: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 30/158

Die cavities were evacuated to approximately 28 inches of mercury for all

tests. Those parts of the die contacting the material to be formed were

flame sprayed with alumina prior to high temperature testing.

Procedures and Preparation of Tests

Static Velocity Forming

Dome shaped parts were formed at static velocity using a conventional presssetup in a Lake Erie 1,000 ton hydraulic press as shown in Figure 2.

Room temperature tests determined that depth to which the part could be recess

before fracture under conditions of ideal draw and complete clamping. For botdraw and no-draw tests a lubricant (700 Draw Wax) was used on the punch. Nolubricant was used on the drawing surfaces consistent with the experimentalconditions of the high velocity tests. The recess depth at fracture was obtaied by measuring the position of the main ram.

For the no-draw tests adequate blank size and/or hold down pressure was used tprevent drawing. On tests where the optimum draw pressure was used for con-current flange buckling and fracture of the part, a blank diameter was used nolarger than that required to provide material for the anticipated amount ofdraw.

For the elevated temperature tests, all parts were formed under no-draw condi-tions, heat was applied to the punch. Although the die and hold down ringwere cooler than the punch, which remained at the test temperature, during th eforming operation, it was found that a very slow forming rate (approximately 2inches/minute) was sufficient to allow the part to come up to temperature prioto contacting the punch. The surfaces of the punch, die and pressure ring werchrome plated to prevent changes in the surface condition of the tools during

the test series. No lubricant was used.

Shallow recessed, static velocity parts were formed under high pressure by atrapped rubber head, mounted in a single action hydraulic press. No lubrica-t ion was used on either the rubber to part interface or on the die. Strain

rate, as determined by the pressure build up in the rubber was on the order of5 in/min. in the vertical direction. Sufficient blank size was used to prevendrawing.

Low Explosive - Air

The afore mentioned series of dome and shallow recessed dies mounted on aspecial, mechanical explosive press were used to conduct the low explosive -

air tests. These tests were performed using Bullseye pistol powder contained

in a 700 grain capacity firing chamber. The firing chamber was locatedapproximately six-inches above the part. Explosive charges ranging from 100to 700 grains, depending on material and gage, were compressed by hand into thfiring chamber. Electrical detonation was achieved by use of an Atlas, M-100match assembly. Velocities were approximated to be in the 100 to 300 fps rang

15

Page 31: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 31/158

High Explosive - Water

Tests were conducted using the afore mentioned series of dome and shallow

recessed dies, and facilities. A high explosive powder, RDX, with a 2 wax

content, compressed to 18,000 psi was the energy force for all high explosive -

water dome and shallow recess part forming. An electrical blasting cap fired

by a dry cell battery was used to initiate this energy force. A series of

tests indicate that 2D/3 (where D = diameter of the formed part) was near the

optimum stand-off distance. Therefore, this 2D/3 value for stand-off distance

was held constant in all subsequent testing. All testing in this series was

conducted with the tool submerged approximately eight-feet under water.

Velocities were approximated to be in the 500 to 800 fps range.

Electro-Hydraulic

Forming was performed using the 3j-inch gap and 2-inch stad-off distance which

had been determined by previous testing. The initiating wire was a 0.030

diameter 5356 aluminum welding wire. Water head was 12 inches. Chargingvoltage varied from the absolute minimum of 6 kilovolts to the absolute maximumof 20 kilovolts. Energy can be calculated from:

E = 1/2 CV

where E is the energy in Joules

C is the capacitance in farads

V is he voltage.

Velocities attained are estimated to be in he lower portion of the high explos

range.

Electromagnet c

All electromagnetic forming was accomplished with a full complement of eightcapacitors. The coil is made up of 22 turns of #I AWG copper wire wound on a

three-inch core, to six-inches outside coil diameter. The coil is completelyenclosed in glass-filled epoxy, with a 1/16 inch sheet of epoxy-glass over the

coil face.

Initial attempts to form electromagnetically into a metal die were completely

unsuccessful because of the "nagnetic cushion" effect which returns th e

material to the coil face in a buckled condition. For this reason the free

form deep recess die was used, and a #2 shallow recessing die was constructed

of linen base phonolic. These dies eliminated the magnetic cushion" effect.

Additional difficulty was encountered with the materials of high electrical

resistivity; it as impossible to obtain sufficient force to deform the

material. This problem was solved by the use of a sheet of .063 gage 2024-0

aluminum overlay between the part to be formed and the coil. Using this

procedure it was possible to fracture the stainless steels and one titaniumalloy and to slightly form the super alloys. The remainder of the materialswere exhausted before this portion of the program was reached.

16

Page 32: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 32/158

Voltages used varied from 6 KV for aluminum to 12-18 K for the balance of

the materials.

Discussion

Deep Recessing:

Draw-Room Temperature - Part fabrication under draw conditions wasaccomplished by static, low explosive, high explosive, and electromagnetic

means. Parts were not formed by electro-hydraulic means because it proved

impossible to maintain a water head on one side of the part and a vacuum on

the other. If the hold down pressure was increased enough to hold the vacuum

then the part was not free to draw.

The best results were obtained from the static forming process becauseof slow loading and the ability to control draw. See Tables 3 through 6Appendix C for the results of the deep recessed, draw testing. High explosive

results approached those of static forming except in the Titanium alloys whichare sensitive to strain rate. Low explosive - air results are generally lower

than either static forming or high explosive results. This is partially

due to a powder burning of the part and excessive hold down pressure encounterin the use of the explosive press. Figure 25 illustrates the increase informability that may be gained by a part formed under a draw condition as oppo

to a no-draw condition. Electromagnetic parts were run under draw conditions.

because the coil employed in these tests could not withstand those pressures

necessary to prevent drawing. Coil design was the first major problem encount

ed in this part of the program. A useable coil for tube bulging was never

devised; however, a coil for recessing, which is marginal, evolved slowly.High flux concentrations in the center of the coil and especially coil dura-bili ty are still very pressing problems. The inability to form into metallic

dies because of the "cushioning effect" and the poor applicability of most

materials to this process place severe limitations on electromagnetic forming.Aluminum was best suited to this process due to its good conductivity. Howeve

all those materials that were formed using aluminum overlays yielded resultsthat were as good as the other forming processes. Much work must be done ifthis process is to become a useful tool of modern industry.

No Draw - Room Temperature - Part fabrication under no-draw conditions waaccomplished by static, low explosive, high explosive, and electro-hydraulic

means.. Figures 7 through 15 illustrate the results of the testing for thisportion of the program. The results also appear in Tables 7 through 12

The velocities shown for the different processes are based on those velocities

measured in free form, dome testing. These velocities, though not exact, arereasonably accurate and close enough for discussion purposes. The velocitiesshown for electro-hydraulic forming were estimated since it was impossible to

measure velocities electrically by an Eput Timer due to the extremely highvoltages used in this process. The percentage of elongation attainable in

each die is shown by a dashed line. Those parts,with the exception of static

parts, which fall off one of the die elongation lines do so because of aslight drawing of the part and subsequent correction as to actual elongation.The curve shown in each figure is that curve obtained in the dome free form-

ing portion of this program.

17

Page 33: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 33/158

Page 34: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 34/158

A graph of 2024-0 Aluminum is shown In Figure 15. Maximum elongation

from static to critical velocity is 18.5%. The static formed part falls onthe forming l imit curve. Low and high explosive formed parts as well as

the electro-hydraulic part all formed without splitting in the number one die.

The forming limit curve is based on uniform or average strain. Thus it is

possible to obtain a slightly greater strain than that shown. Such is. th e

case where the electro-hydraulic and high explosive processes yielded goodparts in an area where a split part would be expected.

No Draw - Elevated Temperature - Both static and low explosive results

closely parallel each other. (See Tables 8 through 10 ). The most note-

worthy increase in formability due to elevated temperature occurs in the two

titanium alloys. At elevated temperature (1200F) the titanium alloys are

capable of forming a good part in Die #1 as opposed to a split part at room

temperature. This is true for both static and low explosive forming. See

Figure 26 for an example of increase in formbility of titanium at elevated

temperatures. At elevated temperatures the low explosive process yielded an

increase in formability of .063 gage 17-7 Ph and A-286. Also an increase informability for .020 gage L-605 and Rene '41. See Figures 16. through 24for a comparison to free forming elevated temperature results.

Shallow Recessing:

Room Temperature - Part fabrication was accomplished by static forming,

low explosive, high explosive, electro-hydraulic and electromagnetic means.

High explosive forming yielded the better results. (See Tables 13 through 17

Appendix C). This was due to the better forming limits of some materials

at high velocities and due to a slight drawing of the part. On27 one electro-

magnetic shallow recessed part was formed due to a lack of power. That being

2024-0 Aluminum in the #2 phenolic die. The part failed. See Figure 27 fo r

an example of parts formed in Dies #1, 2, and 3.

Elevated Temperature - The only noteworthy increase in shallow recess

formability at elevated temperature occurs in the titanium alloys. These alloys

at 1200*F formed a good part in die #1, as opposed to a split part at roomtemperature. (See Table 15 Appendix C).

19

Page 35: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 35/158

FABRICATION OF P RTS

SMBOL CHART

FOR FIGURES 7 THRU 2

PROCESS RESULT SYKBOL

Good Part 0Static Forming

Split Part

Good Part /Low Explosive Air

Split Part A

Good Part

0Electro-Hydraulic

Split Part

Good Part IHigh Explosive - Water

Split Part

20

Page 36: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 36/158

~r a

-~ j~,i;P4

Page 37: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 37/158

-. 1 4 --4

14,-

4.-- I -- *  4I-

~ -- - - l

V

.* *;5 I-

TF\~ t

~74[740

'71

- T-1

' t

Page 38: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 38/158

I ~ 14 j~ w.~r~ 14

izITH'A*ji7i~

4 -3

1. T.

1;1

000

7 1 *2:5 t PT~~9S~~

231

Page 39: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 39/158

j IJ

tti.;

I ~ ~ 17,i'.

ri'~hv'

r-t 0

242

Page 40: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 40/158

0z

U2

Uag

IC0H

Iz4

25

Page 41: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 41/158

7-71 7

I i

44

00 *I

%- UTWXW 99WOAy

26

Page 42: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 42/158

77,

-~ -,,

270

Page 43: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 43/158

.....::w : : : :: :7.7, '774

.... ... ...

.... .. ... ... . -.. ... . .

.. . .... ..

......... .. .... ... ..: : : : ..::.

.. .. .. 4

............... .. .....

. . ........ .. ... . ......70 4: 7 .....

.... . ... . ... .. . -..... .. .. .

.. . . .....

. .. . ....

.. ~........ ...... ..

-H:728

Page 44: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 44/158

.T I.I'II

~~,~ HL.

ri ~ ~ ~ IiI"~;~. i I :ihiV~~~br

.4 r' F,~~444~~~; Tt (PtH~~j 4

F;I-:.

:11fitt t

S Ti.. l d t1~I~ ~1~ 1fT {

HL 0

-ITIR~ :yj -:

jjf. T 29

Page 45: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 45/158

*17

*1 .~7v

-j TI*,i.

C-I

I 30

Page 46: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 46/158

LP:L -7 T I-

l .tit iI ............................_ 7 J4

A -ml

7 JtLt71 i M:

M T M Ii-ig iFi-1.1p, t,.. ft MI-t -------1- Ell :t T H47

------------- - ..;o P- JV 1:1 T T. ------------

--------------T7---It H+ :14AN1, T:

14. RiiRJ 4 .. - 1: -. .i-jlj tit,-

Ht T f Wft it 44

Ait f l, T fj_, J,

.......... NOLT

q -4 Tri- _7

R-11 14

It 71 i

w,-4+ 4L

tg ET 9- +H +i+--A+H. +i+

T 11 T r4,

a

't- ErT +N 14 4

v

T:: X

1 4T

-4TT

+

4___ T-I 7 T ;i',.T 74, 1...

..T

P R E . . .

V4 -L-4+

++ iH

.21+ ITT; 444 i

4 +1

4+

T T 0:o T m TT.- fM 44-Z Z.-I T

TW 41+ 1HjE_

IT"+

31

Page 47: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 47/158

.. 7

-4 71.7,

+

7i~

74 n

-11ti-.4477_

ELIL- til4H,1

"'-f'-"rip I-ft 'h

L.- j. + ..- L.~~Fill

**vi. v~'-T __

it __4 ~'KfF77 I tZJ

r7: ILL -H

a i

.ZT.Z9OSZA

32

Page 48: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 48/158

Page 49: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 49/158

FIGURE 18EWNATIONI LDUTf CURVE

SHOWING EVERIJUTAL POINTS

GOOD PART -A2L1 it-i7 Lx~ 1 ~{30 T4 PLIT PA Ai~f RII 4l

1 4r;H

P U4

. * 1 7_f_

FIGURFR19

(LLEA1T LDPEM 100 OF,0 M2I0 rill___ __ _ _ _ __ _ _ __ _ _ _

SPLIT 42..IVID-TLUE1- _400

=t-m~o 11.1 . . . . .-1 It, tfM

IjT RM;

101~~;j 0. 1

0 10 20 30 0 0 0 0

Velocity Ft/Sec.

4o4

Page 50: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 50/158

FIGURE 20ELONGATION LIMIT CURVE

SHOWING EOXPERIMENTAL POINTSTITAJIIJ4 (6hi-0i)

(EMEATED. TEDeMATURE - iO&'i)

4'4

0 100 200T 30oo 50'o700:'.' :,

Im.GZ HT A 4i112.. ANW(........ .....

S202,M XT t

T10

Veoct (it/Se4

it35RZ-

Page 51: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 51/158

FIGURE 22

ELO1GATI ON LIMI CURVE

SHOWING £ PERIMAL POINTS

L-605(ELEATED TMJ A MU R E -500 F

4i0

100 OF_-A

0 10 00 40 50 0 0

0H1CO. EXE~14A POINPS

T 10 .. .

I4jl-# ,~ -.-. : i -

.tt

0 100 200L300 400F,00 600 TO

DIE NOFIGURE 23

___TE TEWAUR *1*F j

40~ I 440~~7 17.0060 0

Veoct (PANec

36R

Page 52: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 52/158

FIGURE 2)iILORITICU LIMIT CURVE

SHOWING '' RD0ITA P03IM,2024-0 AIfLUJE

DIETEO.R 20 P

30

iloit

~T00 100T 200 300.io o0 6 70

4[4 4it (F/Sc

rz37

Page 53: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 53/158

19

38

Page 54: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 54/158

I

m o m *

39i

Page 55: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 55/158

10

P04

40z

Page 56: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 56/158

APPENDIX A

41

Page 57: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 57/158

GRAPH 1LOAGITUDIINAL TENSIM SPECIMENS

ELONGATION VS POSITION OF .2 INCH GAGE LUMAT VARIOUS TEST TEMPERATMM AND VELOCITIES

17 -7 PH - 5" GAGE LIMME

ROM MATM .020 GAWHELD END IMPACM

60STATIC

r-14;1, 4':L

'V"4 0 . . . .

fH. -t LI 41 , 1", , , , , -- -- - . .: '1

:4

E.2 17- - . , - -1 - ' :. ";- 4 - ' #

20 -7-7, r7-- =-M -i 7-444

+

0 qi. IF4 u- 44

no ift80

. . . 44-UH 1

4'HUE

60HAF±H

IEN :1-f4-4+ ... ...

40

EME.2 t

-- Ttt -7 4,4'T

..........

0 L ILL

80-260 Ft/Sec

60tFFT-ff-l

.. ...ir r1, i-L'

4 344 j- "'H.1441 ::'r i: jF40 ith, 1:l-

.244 "4 ill+

T; 7 ',4 i :'

Jx; j:,-

141i"IT,44L----

Of i4l' jgg

44 i

0

so ILL , xr; Frtt c

- rll 4mi

60 4#5

-rill, P,

-R1740X.2

fj," IH 4-

20 . i, '41 1

:7 iflif, 40

1 15 20 25

Position (Typical)

42

7-

Page 58: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 58/158

0MPH 1 (Cont±nu.d)

60~~ 51~5 Ft/S.c

El.2 - r <K ::~ f __ ~ ~ 44li3~IflA3~jj ~ H

~ ILlljr

-~

0 *~ Atrti9~~Th{:~~ 44-i ~~jjJ~.iri ~* ~

flOCK TB3E'ZBATLJEU - .063 GAGE

80 STATIC

i~0.2

0

60

.2

I

250 Ft/S.c

80

.2 jj  ~ f i~:7fj~.:~tJr 4'K1I:~'-~I7

20 1 T

Position (Typical)

43

Page 59: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 59/158

GRAPH 1.(Continued)

80300 Ft/Sec

60 --------

.2 207

T~m I v77~4i 4tL

60

80580 Frt/Sec

60 4

20................. ... F

-#M

60ST I

rr

20

80Ft5a

44J

Page 60: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 60/158

Page 61: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 61/158

GROH 1 (Continued)

10M *F - .06-1 GAOE

80

60

270 1-/4

Or- _7

80 _f t/e

-4 r

160 15 f 20 25Position~Tpcl

46,fK :1, 4

Page 62: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 62/158

Page 63: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 63/158

Page 64: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 64/158

GPHP 2 (Cont inued)

80j 360 Ftfj8ec .

8060 ._ _ _ _ _I

20 1

0 ~

80 ___1475 Ft/B.ca

E.  H IF 1 j;:;

20-i I i

0--I

510 Ft/SeC

80

.2

20

mmO TDmflRAuR - A03 eAGZ

80 ~~~~~STAMIC ___________

2 TI

20 77

5 . 15 20 25

Position (Typical)49

Page 65: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 65/158

GRIA.PH 2 (Continued)

37 5 Ft/Sec80

60 7+T

40 ....

7 t:V.2 71,7717

20 1 I7-

0 50

Page 66: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 66/158

GRAPH 2 (Continued)

80 62o it/see

T10 TL 7*~f ~

60 JSTATIC -rEl

-21 IT:1tj:fl -T

0tl -J I-T,

60

20

10 402

PositonTpica+

-4'

Page 67: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 67/158

GRAPH 2 (Continued)

80 1455 Ft/Sec

40

20 414 SecMZ

20 :

60 535PtSI

.2 7'I

20

60 77 -----

0 'I mA 15 20 25

Position Typical)

52

Page 68: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 68/158

GRAPH 2 (Concl1uded)

1.25 It/Sec100 Tlrl lit, 1,; .t:TTl T.

_____ itifl f:litl

20 - 7;: i 7-r IIjj4___;;t

.55 ft/tit

1 5: 110

7.

53

Page 69: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 69/158

GMPH 3WB3GITUDINAL TMI5IL SPECI34KU

EWUQATIONf VS POSITION O F .2 INCH GAGE- I==ff

AT VARtIOUS TEST T EATUMlS AND VELOCITIES

RMN'1 - 5 GAS' I==Q

MWQ TDERATUB - .020 GAGE

ELD MN IMPACTED

80STATIC _

TwT pIIT I

r4l F1~ ~

0 - z r1

14 774 T

54

Page 70: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 70/158

GRAPE 3 (Continued)

20 4IRA 4A

fth

20

80

80 .39../..

.20

20

139 t /ca(p s

8 0 .. .. .. .....

Page 71: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 71/158

GRIM 3 (Coztizaued)

.iiui00.it~~~ 300 Ft/SectH I . -:

I '- J i32.:

ix:tl qi rA~ -v 1HT4i~~~~rr~1 1I1 4- --- :~ V 8

20T

4 -1 ~ '

80 530 15 20 2

656

Page 72: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 72/158

GRAPH 3 (Continued)

500*F - .020 GAOE

60 & I

141 XT *vh4;1

E 0 4 ' -

.2

'I2TZ 4--.i4

60

H ---...

80

Positi-n Tpial

+57. ...

Page 73: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 73/158

0PP 3 (Concluded)

10001P - .020GhOW

80 sTAT

T'+3T 1 ~~

60 ' lfj

20

2 T1 3.

.220t +~T'

11o i t /se(Tpiae

60 445t

Page 74: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 74/158

GRAPH 4~IOWIMMJINAL TENSILE SPEDS

ELONGATION VS POSITION OF .2 INCH GAGE LENGTRAT VARIOUS TEST TEMPERTURES AND VELOCITIES

]BERYLLIUM4 5 1 GAGE LENGTH'

HELD ED O00 WO02AGEHELD ED fl4ATU

10STTIC HFT1 -1

IE2'4i w 111-,-~:;j 4

U80; - 1 .063 GA G

0

10 F/E

.2 1, 'i t#-

8o o063 GAGE

40 STATIC

30+

20o i" T...111 10 '

- d td 11#1 t t.2 10 tr~~

10 2 15SZ 20 25Psitio t ypial

25

Page 75: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 75/158

GRAPH 4~ (Continued)

20 FTSEC

q.X

90o0 -44 .03G

0

7060

Page 76: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 76/158

Page 77: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 77/158

GRtAPH~5IMNITUDIINAL TENSILE SPECI)UNS

ELONGATION VS POSITION OF .2 INCH GAIGE IMNOGEAT VARIOUS TEST TEPEN UIRES AND VELOITIES

MoLX3Nmm (.5% TO) -PA( IflG

BEUD END A

30 SA

fc.............ul J.; tI, l 4

S 20 'T7.211 77101

IF0

Pouti (yicl

..........

Page 78: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 78/158

GRAPH 5 (Continued)

1000'01' - .020 GAGE

STATIC20

Tt

,+N

10

FS:  ITH 1 j1E'FTM[02Tr

4

0 L

U5, 1PT/S3C

a0TF -0.

m  IT

404. _t;1 - 4Ti+ _1114.t NO Of 94

L.;;+ M F F4

T30 -.411.:: . I':[ tH

T.ta

44

02 7 13 M _fl i 14 MIN R-

Lv

x J44D

10

.j 1,:..

290 FT/SEC40 Z: 4L t;i,

..._LL .........

Mf

It0 "'T-T " . I .. ......

I-H- 4+4 i

20 LrfVifi, ii J2 14

If

14

_7

N

10IF144M V . . . .....

-P It-, -IN .. .....

ti

0

2000 *F .020 GAGE

STATIC30

Jil .

2041.

7El;; ii .114'2 Imf

1.0-t

-4 jl[MMT

020 25

Position (Typical)

63

Page 79: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 79/158

GRMP 5 (Concluded)

55 IT/SEC

30 T;IM

I +I

10-

0

Poiho (Typca1

64t

Page 80: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 80/158

GUMP 6LONGITUDINAL TEIWIL spzcims

ELONGATION VS POSITION OF .2 INCH GAGE IZNGT

AT VARIOUS TEST TORTl AND VEOCITIsCOLLD(B11 (3.0 IdO-10 Ti) -5 GAGE. LENG

H BO END BOOK STUATICl .020 .GGZiAT

30 r-j i'~7.:ij.

20 lySE

.2 t10 L~ITT i4 Jf7~i~~ 1

0

200 T/SEc

30 - -

ft0 ... im- -M I :JF 4114

1 ~ ~ ~ ~ ~ ~ n ...hT~l-T7

45 1WI l 10Poit0 (.;7ical

'Ill v 65

Page 81: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 81/158

MAM 6 (Continued)

ROOK HATURE .063 WE

40STATIC

ifj

30 71

.tjil X 4;Lj:I q

20 q; ;s 11 tj :Tll -P :4P TIT-MIM11M,

2 jr L . . .

10 i,

+ a

0 ...

O D 20 rf/00

.........114# f ..

50 W H+f +

.......... . ....

i540 .. . ...-4

......... I

. T+ Ta w

:M

2 30 444 :,,#:

Z T ,20 it It" '4 . .

#10 It t

qj

NN +

044 --

5040

4 +

-lit

30 . ......... ...........----- ......-M 091 I-

20 f i...............4

if1 1 V, 1 114.

10 t P4:

itIt I "I4 jTIT wl-dr,iiij

U: I L

0 15

Position (Typical)

66

Page 82: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 82/158

GRAE 6 (Continued)

10000, .020 GAME

20 1T

101

.2 H f." I

10 --.L .  F1 4., 4*'I ITH-

2

T165 *F/SCT0C .F V-1 LL;p;~i~i

20I .00 AG

10 Kt

.25ZEEitioTpcl

67r : 7.

Page 83: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 83/158

MMA? 7LONGNITUIA TENL SPECIMEN

EW3WTION VS PCOITION OF .2 INKCJIGM.EIZNG'AT VARM Uff MOULMTUMB ASD VWI IBB

TUNGSTEN - 5 GAGE LIT

1000OF - .020 GAGE

STATIC

10

E L.2.....

10

200P.20 GAGE

30~~Pa it4+i.

Page 84: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 84/158

:.T Y- A..T x -ftffM ,F7

T t xOi j,:j:j:0J ., ; 1 t:IT it + I :

Flift'illMH

MwT

ATTx:

1 VIN[ww

T H 'M THIM - - -- - -----

L Tt .._. .. ITX_it

f 11 . I t.. :Tt

X . .1jr4+j:± i, 41 It

TH:1 #T,

ITII Vill- 4", 1 TH :

:[RA1.1 L U, 4.

4ti _Tj 11", 1-7: IMT IVj F., 111 1:::: J rPx ff: Aw V4 .11.

]LI.14.......

"IMM ..... ....t:a 44ld T *: IT

4 1: IVI  ... TR4

--HFT -I. W I 4.. . ..1-144 Ii 1,q 4# +I :M - HH M: X

M t---- --------

Mf 1_14Z X. X

T:X: 1, 1 T T T'l A :2 1. m

+4- . . . .

4

+ xt# -,rul- J4 +G o H

44j M . ......

ilL 4, 44T T+ 1,4, i ;A:q -Lrr 400 :14f -Mi'j " 41, P

J' 7,111.4

414am,

I.:: IHill T' .1i

Hi+iw Ti I,. j ..

14ml; I Q __ I M ilill +1- M If I.,

fl m

7 c

X

. j T M

.. a l -TT. mmf

t : I.. +

TT I R4 44-

Ift:M:

N

M4' -,A11 m:

st t i 1

J±± I 0, x

IlL R T M Tx

T. w+44 - + -

X ---- - ------- 7

... ... ....

- QIrlill 4

T HrP, H R It. 4F ,

Sk"T44 H

Ti

4

Ltd

fttl , " M.

0

69

Page 85: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 85/158

LTST:

4 12

r0

.2 . 0

It ...... 70m

Page 86: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 86/158

Th~4

qa

M.,i 174

Page 87: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 87/158

Page 88: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 88/158

77"

6T,

4i +

4[ jj. 4M ,T

-IllI~ ., -+[P,#

~r~r2f'ji7 H+~4T :I-

{F-44i IT

FITIr-

+ F IV

X

4 - 4#

+ 515 T. .73+ +

Page 89: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 89/158

171

* TT

.1 I4144

I i+

-I74

Page 90: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 90/158

4--

:Iiffk

7775

Page 91: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 91/158

41 ;P+

r

41 D

JI-4

I lf

+ Ri

yl 4 4, T., TT

It, It jif,,: -fl.i.

P

T."

HITT

T7

17 M q:

.. ...

....

..

.. .

-44- 4+ H-

T X . .....

....................................

I TR T I

WM 44 M

IT

4rll I

t

:p T

q 1-im- -H T. 1.1.43:: T,: - "'IT

I : l4j

.4.

0

x lat..- F

.. 14

A It

It tt a

It T' T

4

Ml

4-,;J i, I: u A":-

.14 Tjli , 1. f, , I

IT

fl I

X X ..... ... ..

IlU..........

X X+ 4 -4 M

t H M.: im I T

Tx: - . - - : " -,

TT IX I X

IT T

litT

J76 -

Page 92: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 92/158

IH j~-' .:-I. 7

-717T

NYi '18miMR t

  KRI 94 ii4 4

7 : Ai:U:

*t11*i44 2 1T ................

7- 74 7i. -11

Lih41

P Up T0

Page 93: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 93/158

K4fit-

.- 1v 1- 71 I ;F IT j ~4I

;P R oo i1 1-4, 4q 4

PI-I .T. 4 ib- :11;1

F1 TPH MD

:7 .. ...8

. IIIII h t

Page 94: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 94/158

j

LfI 1 11;.

ur'

 1]N

twX ..

T-xT

T:

ITT Ia-:N:I If 4R fT1-T11 mov:T"'To ta

X :: --H+ +4+ . . , I .-  ..

H::'M :.......

# ....... TTITT:

++..:::::: TV M4 - =MITT: 2:m w .. ..................... ....................TX ----1 .. ......

.. .............

...............T.

M 44T:

.:: :T :X :::. . ..I.: T

M

IME7 M... T.=m jxq: - xv.: XX Itissm: ...... .....

.............T .- TTI:

w: mmI NTT TRR-Mrl

f M

l -4M W.U7 M i:

M UIM

........

IT x

T MIT

X.4 1J:

iff.4

'74 f ITT 'R

I 41T

T.TT R : M . - +t: T,0.0 Y4+ AT

:nX:

411+T

44

H O W 110I T 4 HE

I, 1:1ITT 41 41

W I N Of I I T I

XT R Mip- 114.14 4 4

T T

'rit

T.

MMI

.77777U

.. ....

Mmi 1111

tnt1: T. FT

fl: 1-1-111 TT .-4 : -p't4 '

W&

t:IT,

00

79

Page 95: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 95/158

4.l IL 4

C., =- l~4,

___ M ~~ ~~~l't . 1--U 4

ti It.-f -t 4L IT

TPP

:L71T:t4I___ IT4 t , 11"HIV1T.

'''''41T

41: T I0

T t

...... 80.

Page 96: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 96/158

GRAPH 1.UNIFORM ELONGATION VS FORMING VELOCITY

FOR LONGITUDINAL TENSILE~ SPECIMENSAT VARIOUS TEMPERATEURES

BERYLLIU14 - .5 GAGE IZNGTH

.063 Gage

10 400 F

20 800OF

10 i w Ir

0

10

5

10 160OF

+ 11141, 1+ +1

20

5 I~tWN

15 5

101

Page 97: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 97/158

titl LU

u~lzi

I 01

Vt-t

Ii T

Li -. I 1V- T.~ TTVI

.F , TT;

141

IA

40 It-

0 0 0 00 00

10, 10AD

82

Page 98: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 98/158

I IMi7 V

4 mp .'~t

LTT ff__

T; T~~1. 4 i4

,&4,1 14M1l4

i __

j2~ ~ ~ ~~ ' 1 il h' 4~ :#

H 4-g

A[1 '.'fl..1 41 4

4.42A 1.44

0 -7

83 4

Page 99: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 99/158

Page 100: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 100/158

GRAPH 14UNIFORM ELONGATION VS FORKING VELOCITY

FOR LO0NGITUDINAL TENSILE SPEC IMENIS

AT VARIOUS TEMPERATURES

TUNGSTEN - .5 GAGE LIMTH,020 GAGE

1000 OF

2

2000F

10 Cooite L 4f 44

0 rN-50.1 -

Velocity (Ft/See)

85

Page 101: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 101/158

GRAPH 15LONGITUDINAL TENSILE SPECIMENS

ELONGATION VS POSITION OF .2 INCH GAGE-LENGTH

AT -320*F AND VARIOUS TEST VELOCITIES17-7 PH - 5 GAGE LENGTH

HEWLD IMACTED E

60 220 Fl/SEC

20i

20 484FT SEC

25 f P 11F 44 114=;'Tht fi$j lfI

0 1 5 10 15 20' 25

Position (Typical)

86

Page 102: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 102/158

GRAPH 16WGII JDIIAL TznsUZ spECim

ELONGATION VS POSITION OF .2 fINCH GAGE LENGTH

AT-3120*F ANqD VARIOUS TEST VELOCITIESA-286 - 5 , GAGE LENGT

HELD mN .02 GAEMACTED EN

STATIC

60I I i , *1

so -4 i

II

2 77-1 77~ ~1 17-0

150 ft/Sec ___________

80~

40

20 i.

. 1 15 F02

887

Page 103: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 103/158

Page 104: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 104/158

Page 105: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 105/158

GRAPH 18

LONGITUDIAL TESUIE spECIms.ElONGATION VS POSITION OF .2 INCH GAGE-LENGT

AT -3200F AND VARIOUS VELOCITIES

USS 12 14eV - 5 GAGE LMNTK

HEDED.020 GAGE ThPACTE

E 30STTC

20

-'107: 77,

0

30 305 F/E

7 -7'.:

.2 I I iTU 1 h ______________

7717 I- __

Position (Tvpical)

90

Page 106: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 106/158

GRAPH 19LONGITUDINAL TENSILE SPECnam.I

FAWNGTION VS POSITION -OF .2 INCH GAGE Ifl0THAT -320*F AND VARIOUS TEST VUWCITIES

L-605 - 5 GA~JZ IflQTj

.063 GAGE

250T

40X

20

20 15202

Poito (Typical) L

iii91

Page 107: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 107/158

GRAPH 20

LONITUDINAL TISIIB1 SPECIMENS

ELONGATION VS POSITION OF .2 INCH G A C IZNGT

AT-320*F AND VARIOUS TEST VELOCITIES

R'e1 - 5 GAGO IZNOM

HBO END ~.020 GAGE-WATDW

STATIC-

70 ..

60

50  7-... i irrH

20 1 r .i;4PI~j~iiiT.i.~PI. .Lv$I4 ~~iN:L~ __ 1

j i j~iii'4 4'~ ~__40__ ' 4 ~ .~Tjf~ I~i .

.2~ F

3 0_ _ _H0f/ e _ _ _ _ _ _ _ _ _

E. :7O 7Vvi :iFt1-~ I -

 t ft..., I7Y20 --- 4I Li'j j~[

* 1 I { .4,

01 VO ~1 1j. j.

15 20 25.

209

- - - - - - - - - - - - - -- - - - _ - - - -

Page 108: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 108/158

GRAPH 20 (Concluded)

4 -. 455 Pt/Sec ___

30 .~..  ...._ _ _ , .. ~

.2 L --.-. 1-

10. +iL,--

0

510 t/sec

30 .. L tr.2 I~j I I

20 L ___ 4}I

10 514

10 15 2.0 25

Position (Typical)

93

Page 109: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 109/158

GRAPH 21LONGITUDINAL TEISIIZ SPECIMEN

ELONGATION VS POSITION O0F .2 INC O W G E LENGITH

AT -32O*F AIM VARIOUS TEST VElOITIES'202h-O AIAIEINWI 5 GM EN=T

Em 30 .D.t:LI ;i+r

30

20 4rE

0 ; , I '-i-

20

50

ILI-oo~ ionff(Typica)l

M94

--------------------------- rill

Page 110: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 110/158

Page 111: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 111/158

1d4 T i; ~. ,~" 1lf

I~ ~~ir . rn '7

HIT1 1r 77[ ; 7 7 _1jH'~I'~~K,

- ~J ~ 1[*1W~

I11it~lif ~i

'il14

4: 4I~41I~ 4

t,4E ;fjll I ~l.

~ 2.11414

1.,H ..., -'.I

. I d f . IT,,

II' lr;.fI1 i:1 7::liiiiT

96p

Page 112: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 112/158

14 7118

m T.

Iff T

. ..... 0

Rif it : 97

Page 113: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 113/158

-.i4~.

Page 114: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 114/158

i :~

:1 ~ l'J:TiC

4~ iI-0

JLV il1jijll

6"4 .dt it i U

0 0

4j- 1

Page 115: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 115/158

I Eli,

-TITiii

tf

t

I -

lilt

H: 1 i

U-'

rx

04-

4;4

i;ufll. P,-1111 8

F i

1 1 , l

7il

Page 116: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 116/158

[N]

"T 1 4

Q R.R4 U, al"ll

V IM- I--' -4I..:: :X-M ±a

TT.T.

:;TTa WIT--- I. T

TE-±IVA' fl

+

B-H...W

I, =XXT

31MM.T.

... ..r:oI, tM

M

jj V,M

J: '4 1,M.:

T12 TH'.

T4 .Im.

T

TM I

TT

Hill Tt m

ijj

10 1

Page 117: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 117/158

APPENDIX B

10

102

Page 118: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 118/158

Page 119: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 119/158

TABLE 1 (Continued)

FREE BULWE DOME

LOW EXPLOSIVE HIGH TEMPEPATURETENSILE TESTING DATA

Charge-Grains *

Material Part No. (Bullseye Velocity Temp. Average

Powder) fps O Strain-%

L-605 (Continued) 07101022 60 192 1000 32.0

07101023 70 212 1000 28.0

07101024 80 260 1000 30.5

Rene'41 08103050 75 222 500 21.5

08103051 70 221 500 21 5

08103052 80 261 500 21 5

08103053 70 222 i000 19.0

08103054 75 221 1000 25 .008103055 80 261 1000 23.0

Molybdenum 10101080 85 462 I .T. 0.25

(.5% Ti) 10101081 75 390 R.T. 0.2510101082 50 272 R T • 0.25

10101083 75 390 600 20.5

10101084 85 462 600 21.0

10101085 85 462 300 21.5

10101086 75 390 300 23.0

Columbium 11101080 75 288 R.T. 17.0

11101081 65 253 R.T. 11.5

11101082 85 342 R.T. 16.511101083 85 342 1400 3.01110108 85 342 500 4.511101085 65 253 500 17.0

1110186 65 253 1400 3.0

Tungsten 12105080 60 263 B .T. 0

12105081 85 407 R.T. 0

12105082 60 263 800 0

Aluminum 2024-0 X13101809 40 315 200 1.5

X13101810 30 175 200 21.5

X13101811 30 175 38o 30.5

X13101812 40 29. 200 18.5

X13101813 40 325 200 0.5

*Velocity measured 0.050 to 0.40" from dome surface.

104

Page 120: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 120/158

Page 121: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 121/158

IT.

TI IN

"I . ii.~

M.: 1:4x:

a. Max

0

106

Page 122: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 122/158

tt

4 jlt-l 17

4,; J.

-02

FrilJ'j'LT 4-"-l

iff

ML J N®r

49

4i.

HL 'a .

... .... Lill 'Zfft

t 7

44tt

4

j'i17 14 4- I

7 1- ':7 Tu +..I

ni

... . . ....... .

7 4 il

-4 t

Fiflo

J,

H-V

I'S47

'4'H

ITTM M

'R itM . .

V, 1 4 M

i - 1 t

14

Q :P4 4 41

Z4

t4

ElliLim 4 -P Ill

UTSZ#49 690"AV

10 7

Page 123: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 123/158

4~I4 Hr 1+4iA

.I;..am--

..............

R0 00 0

(nCY 104

-j 8u9uzAy

108

Page 124: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 124/158

T op____ i1 In i'.'l'-* ' i n ~~4.

*1~~~ ~ ~~ ..ll.....

Van ;~ . .....

1,,.14 IN'*'*~f. I

. . .

19~ ~~....   i,'

Page 125: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 125/158

H: +

:iq

-Tffliq

4

j: T-f :L' IT :7777jZTT 77:-:. H7. ..T TP wr f

I#

r i T:Rif NE I i4T4'P#.4 1: .  Mm

pxj -i4jR4 rri T E1041-41 .'_ltlr 8

T Tt r 4 I 'I T-

4 Ir. a r :71,-FIRE

A.IRON[ 1*1

+

't + t T P- 4

4r, +1 1

1q. w _ ::P; 4- "N -14

-H- +i+4 . I ,It +

4'4

:4

J. RT ft 4 i. 4

+

if ++

4-

+ t -i

_r ERR I4T

ITIT

ti-:t: -jg ',: ;,

I .14J,TP

4RTIE 91M -Wr -i- 1:141: T", I + 4 r4

i 4A

71:

44Tit

4.

4"MR 14,O 0

4, 1;- 1- r, 4

46 l. -,:*': , -- L 44

+

H 41

H4I(TrT TIT :F_

M- ; L R 4 1,il l

H4Tl-

I, V:p. 7: P 4

41.Iff 11i SMIR: i

0

0

110

Page 126: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 126/158

.114,1,1 Ii.44

j II ~ P u - a

-

T ~TL

Tt:I

M~~~: F-1;.>4 r

5i' II<'-

V4 V

4

' 4 11

-UT949 .83a.Ay

Page 127: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 127/158

Page 128: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 128/158

  ITE...e .-.I.4 1

I ~ 4 ~ TLz j

j<-i T~~Ttr...Mtd Th

... ...

rvi ~14L "1, 1 . 14 -r V

HT, I

QRTTL It i

4 Fltt - .. .F

0

1, 44U 43.O

1134

Page 129: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 129/158

.~4 riTr' 4

  t~ IT;~t~t4~ igr:~4~L2 It zi1 :tJk I

~i PW4- 41 4 1"

-tit~ 4.- aI i t I~tE ~1. j.~ R ~ T '1'i®R,' ~ irt klL ~

4~ -. p- L

~~~~~~~T~~~~~~ R-1~F~1r4'~ ~ 44.. 4~~4 ~ If

4E~t4:,L

IrI

114

Page 130: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 130/158

1. ,.J7

I .... 4 .

71 Qi

7,~ I,7 tl_1

7:7

I 44

UTX4 OO

Page 131: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 131/158

Page 132: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 132/158

GRAPH 421

EXPLOSIVE FREE BULGE TUBEAVERAGE STRAIN VS VELOCITY

EN'.

.r4R

10i

700

Veoi t tF tSc

t Rontuprtr hgaexlsv

1,1 1gies te peatr lw exloiv

I~ ~ P o a l c....e i....re io oI . o tests.-i:1 -I.-..-

117

Page 133: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 133/158

EXPWSIVE rm2 BUlGE TLUEAVERAGE STRAIN VS VKlOITY,

17-7 PH

30

40M

0 100 30 40 50 00700Velocity (Ft/See)

ORAl 4f3

EXPLOSIVE flUZ BULGE TUBEAVERAGE STRAIN VS VELOCIT

A-286

60

50 .iYjt~t 4 A b1 ;.. Y4.+----.d--0 10 200 300 e00 00 60 7MT80

Veoct (Ft/Boo

10118

Page 134: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 134/158

GRAP 44

EXPWJOIm FUN 3U11 TulaAVERAGS STRAIN VS 'YRLOCrITT

VASCO=E 1000

I I."OMPS145H~

601- -r t2f7+ *i4 ~ 4 t~. * j~~" ~~*iX

.> ~ ~ qjp*I~ft f ld r ~ M

o0 io 20 0

Velocity (Ft/See

30 ...19

44- ,

Page 135: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 135/158

APPENDIX C

120

Page 136: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 136/158

Page 137: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 137/158

TABLE 4 (Continued)

DEEP RECESSING - DRAW

LOW EXPLOSIVE AIR BOOM TD PATURE)

Part f Die D-D 6 TMaterial Number Gae Number Chage' Do Results

2024-0 Aluminum LE13101-003 .020 1 225 .024 3.6 Good113101-004 .020 2 350 .021 23.9 SplitLE13201-003 .63 1 225 GoodLE13201-004 ].063 2 350 Split

TABLE 5DEEP RECESSING - DRAW

HIGH EXPLOSIVE - WATER

Part Die 1 Do-D eTMaterialNumber ae Number Charge( D Results

17-7 PH H01102-001 .020 2 7 .053 20.7 GoodH30,1102-002 .020 37. .090 48.0 Split

EOI203-001 o.63 2 iO .043 21.7 GoodI E01203-002 .063 3 20 .111 145.9 GoodA-286 HD2102-001 .020 2 5 .053 20.7 Good

HE02102-002 .020 3 10 .030 54.0 GoodHRD2202-001 .063 2 10 .05 21.5 GoodI 1302202-002 .063 3 25 .136 143.4 Good

Vascojet 1000 1303101-001 ".020 2 5 .050 21.0 Good

I HE33101-W2 .020 3 7j .1ol 46.9 splitI H103201-OO .o63 2 10 .02 21.8 Good

H303201-002 .063 3 271 .145 42.5 GoodUss 22 MoV M o4102-001 .020 2 5 .051 20.9 Good

=E14102-002 .020 3 12 .119 45.1 Split  04202-O1 .063 2 10 .037 22.3 GoodH304202-O02 .063 3 25 .025 54.5 Good

Ti(6A2AV) HEO5102-001 .020 2 5 .000 26.o Split

135102-002 .020 1 21 .o24 3.652O0-oOl .O63 2 10 .000 26.o

-05201-O2 .063 1 5 .057 0.3Ti(13V-llCr-3A1) 1306102-001 .020 2 5 .000 26.o

,306102-002 .020 1 2k .030 3.013062O1-OOI .063 2 10 .000 26.0IO62l- 02 .063 1 5 .023 3.7 Split

L-6)5 E307101-001 .020 2 5 .050 21.0 GoodHED7101-002 .020 3 10 .094 47.6

37201- oi .o63 2 10 .041 21.9

I107201-002 .063 3 30 .131 43.9Rene '41 n308103-001 .020 2 5 .048 21.2

=308103-002 .020 3 10 .115 45.51308203-001 .063 2 10

o08203-002 .o63 3 27f .125 4.5 Good

122

Page 138: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 138/158

TABLE 5 (Continued)

DEEP RECESSING - DRAW

HIGH EXPLOSIVE - WATER

(RooM T34ERATURE)

Part Die (c) Do-DMaterial Number Gage Number r T Results

2024-0 Aluminum HE3102-001 .020 2 o2044 21.6 GoodSIER13102-002 .020 3 7 ~ .103 46.7 Split

HE13201-Ool .063 27 .042 21.8 GoodHE13201-002 .063 3 20 . 4o6.o Split

TABU 6DEEP RECESSING - DRAW

ELECTROMAGNTIC

____ ~(R"O TERA~fURE)_ _ _

Part Energy Measuredaterial Number Gage Kilo- Elong. in T Results

joules 6 Inches

A286 EM02101-001 .020 18.4 8 1/16 34.4 Crack

USS 12 MoV EM04101-OO1 .020 18.4 7 3/4 29.2 Crack

Ti(6AI-4V) EM05101-001 .020 18.4 7 16.7 CrackL-605 EM07101-001 .020 18.4 7 5/16 21.9 Good2024-0 Aluminum EMI3201-O01 .063 12.8 8 1/8 35.4 Crack

TABLE 7DEEP RECESSING - NO DRAW

STATIC FOFMING(ROOM TDERURE)

Part IApproximate Draw

Material Number Gage Depth at Fracture IT

17-7 PH So11ol-003 .020 1.95 0 23.9A-286 S02101-003 .020 1.95 0 23.9Vascojet 1000 S03113-003 .020 1.50 0 14.4USS 12 MoV S04101-003 .020 1.95 0 23.9Ti(6Al-4V) S05101-002 .020 0.90 0 5.2Ti(13V-llCr-3A1) S06202-003 .063 1.40 0 12-3L-605 S07101-003 .020 1.85 0 22.2Rene'41 S08101-003 .020 1.95 0 23-9

2024-0 Aluminum S13201-003 .063 1.65 0 17.7

123

Page 139: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 139/158

Page 140: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 140/158

TABLE 9 (Continued)

DEEP RECESSING - NO DRAW

LOW EPLOSIVE AIR

(ROoW TWERATURE)

Part Die h (C) Draw

Material Number Gage INo. Charge % T Results

Vascojet 1000 LE03201-001 .063 1 250 0 6.0 GoodI LE03201-002 .063 2 250 26.0 Split

USS 12 oV LE04101-001 .020 1 225 6.0 GoodLEOIO-002 .020 2 225 26.0 splitLE04201-O01 .063 1 250 6.0 Good

=LEO4201-OO2 .o63 2 250 26.0 SplitTi(6Al-4V) L O510Ol-001 .020 1 225 6.0 split

t LE05201-OOI .063 1 225 6.0 SplitTi(13V-llCr-3AI) LE06101-001 .020 1 225 6.0 Split

L62ol-01 .o63 1 225 6.0 Split

L-15 LE071O1-001 .020 1 225 6.0 GoodIO71O1-002 .020 2 250 26.0 SplitLE072Ol-OO1 .063 1 300 6.0 GoodLE07201-O02 .063 2 400 26.0 Split

Rene'41 LEO8101-001 .020 1 225 6.0 GoodLE08l1o-002 .020 2 250 26.0 SplitLE082oI-ooi .063 1 300 6.0 Good

LM08201-002 .063 2 400 26.o Split

2024 -0 Aluminum LE131O1-001 .020 1 100 6.0 Good

LE13101-002 .020 2 225 26.0 SplitLEI32O-O0l .063 1 200 6.0 Good__13201-002 .063 2 250 26.0 Split

TABLE 10DEEP RECESSING - NO DRAW

LOW EXPOISIVE AIR

(ELEVATED T4)ERATUR)

Part Gag IDi C) ra I TempMaterial No. Gage No. %Results

17-7 Ph L01OI-005 .020 2 20 0 26.0 o00 split

S10o120l-0O5 .063 2 o400 26.0 Goodil01201-006 063 3 500 57.0 Split

A-286 L0D210-005 .020 2 200 26.0 splitL021-005 .063 2 400 26.0 GoodLEm220l-oO6 063 3 500 57.0 Split

Vascojet, 1000 LU03101-04 .020 2 200 26.o Split

I L032o1-04 .o63 2 400 26.0 SplitUSS 12 MoV Lz04101-004 .020 2 200 26.0 split

t L=04201-004 .063 2 40 26.0 1000 SplitTi(6Al-4V) 1l05101-003 .02D 1 200 6.0 1200 Good

L805101-0 .020 2 200 26 .o SplitIZ05201-003 .063 1 400 6.o Good

__ LE052Ol-OO .063 2 400 26.0.Split

125

Page 141: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 141/158

TABLE 10 (cntinued)DEEP RECESSING - NO DRAW

(LCw EPLOSIVE AI)ELEVATED T RATURE

Part Die Draw6 Temp.Material No. Gage No. Charge(C) T oI Resul

Ti(13V-llCr-3A1) LEo62ol-o4 .063 1 200 0 6.0 1200 Good

LE06201-005 .063 2 300 26.0 1200 splitL-605 IZ07101-005 .020 2 200 26.0 w Good

iao7101-006 .020 3 300 6.0 SplitLE07201-005 .063 2 1400 26.0 split

Rene'41 L08101-005 .020 2 200 26.0 GoodL 081l0oo6 .020 3 300 57.0 Split

1220 26.o 50 split

2024-0 Aluminum LE13l01-005 .020 2 100 26.0 200 Split

_ __ IZ13201-i05 o63 2 200 26.o 200 split

TAML 31

DE RECESSIN - ND DWHIGH PLOSIVE - WATER

PatDie ( o3)Material No. Gp No. Charg Do T Results Rem

17-7 Ph H110o2-003 .020 2 4 .025 23.5 GoodHE01102-0l .020 3 15 .001 56.9 SplitHU1203-003 .063 2 15 .025 23.5 Good

HE01203-004 .063 3 20 .113 45.7 1 (F)A-286 HE02102-003 .020 2 71 .014 214.6 Good

HE02102-004 .020 3 15 .113 45 .7 Split

HE 222I-003 .063 2 15 .023 23.7 Goodascojet 1000 HE03101-003 .020 2 71 .o46 21.4 Good

HP03101-04 .020 3 10 090 48.0 Split

IE03201-003 .063 2 15 .010 22.0 'GoodU~ 12 MoV 11504102-003 .020 2 .153 20.7 Good

HE012-001O .020 3 15 .128 41.2 SplitI 150420-003 .063 2 15 .0141 21.9 Good

Ti(6A13-4v) HE05102-003 .020 2 5 o 26.0 Split

HE05102-004 .020 1 21 6.0 SplitHE05201-003 .063 2 15 26.o Split

0E05201-04 .063 1 5 6.0 Split

Ti(13V-11Cr-3A1) 11506102-003 .020 2 5 26.0 split4

I m6102 -004 .020 1 5 6.0 splitI 1156201-003 .063 2 15 26.0 splitt 1156201-004 .063 1 5 .00 6.0 split

L-605 1E07101-003 .020 2 71 .031 22.9 Good

110lO10o 4 .020 3 15 .054 51.6 split

H7201-003 .063 2 15 .028 23.2 Good

126

Page 142: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 142/158

TABLE 11 (Continued)

DEEP RECESSING - NO DRAW

HIGH EXPLOSIVE - WATER

04Mce TEMERATURE)

Part GageDie (E) W-D I IMaterial No. Gage No. Charge Do6T Results Re

Rene'41 HE08103-003 .020 2 5 .036 22.4 Good

| HE08103-004 .020 3 15 .077 49.3 SplitHE08203-003 .063 2 15 .041 21.9 Good

2024-0 Aluminum HE13101-003 .020 1 2j .000 6.0 Good

HE13101-o04 .020 2 5 006 25.4 Split

HE13201-003 .063 3 10 .027 54.3 Split

TABLE 12DEEP REMSING - NO DRAW

ELECTMO-HIDRAUFLIC

(RO T4PERATtR)

Part Die Energy DrawMaterial No. Gage No. Kilo- % 6T Results Rem

Joules

17-7 PH EH01101-01 .020 1 7.2 0 6.0 Good GE31101-002 .020 2 1.2 26.0 Split

EHO12O-001 .063 2 16.1 26.0 (D) (G)

A-286 EH02101-001 .020 1 16.1 6.0 Good (G)

E0m21l-002 .02D 2 19.9 26.o Split (0)VascoJet 1000 EBO31OI-001 .020 1 11.2 6.0 Good (G)

SEO31ox-002 .020 2 14.2 26.o Split ()USA 12 MoV EHO 4I-00l .020 1 7.2 6.0 Good (G

EHXA101-002 .020 2 19.9 26.0 split (a)Ti6llY E5-01 01 .020 1 5.0 6.0 split Gi

t 105101-002 .020 2 12.4 26.o splitTi(13V-llCr-3Al) EHK)6201-001 .063 1 14.4 6.0 Split (D)L-605 EBD7101-001 .020 1 11.2 6.0 Good (0

E3)7101-002 .020 2 19.9 26.0 Split (0)Rene'41 EBHO81O-001 .020 1 11.2 6.o Good 0)

I 1308101-002 .020 2 39.8 26.0 Split G)2094-0 Aluminum E O13101-001 .020 1 1.8 6.0 Good i)

I. ME31Ol--002 .020 2 7.2 26.0 Split (GIEpo3-OOI .063 2 11.2 0 26.0 Good (G

127

Page 143: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 143/158

TABLE 13SHAILOW RECESSING - NO DRAW

STATIC FOI4ING(Room TWMETR)

Part Die DrawMaterial No. Gage No. % j T [tesults

17-7 Ph S03101-O01 .020 2 015.0 GoodS01101-002 .020 3 30.0 Split

A-286 S02101-001 .020 1 5.0 Good802101-002 .020 2 15 . Split

Vascojet 1000 S03113-001 .020 1 5.0 Good

1 S03113-002 .020 2 15.0 SplitUSS 12 NoV S04101-001 .020 1 5.0 Good

t S04101-002 .020 2 15.0 SplitTi(6A1-4V) S05101-001 .020 1 5.0 SplitTi(13V-UlCr-3A1) S06201-001 .063 1 5.0 Good

t 806201-002 .063 2 15.0 SplitL-605 S07101-001 .020 2 15.0 Good

f S07101-002 .020 3 30.0 SplitRene'41 S08101-001 .020 1 5.0 Good

I S08101-002 .020 2 15.0 Split2024-0 Aluminum S13101-001 .020 1 5.0 GoodS13101-002 .020 2 0 15.0 Split

TAB E 14SHALLOW RECESSInG - NO DRAW

LOW EXPWSIVE AIR

Part Die (c) Draw

Material No. jGage No. Charge T Results

17-7 Ph L01101-006 .020 1 225 5.0 GoodIZo11l1-7 .020 2 225 15.0 Split

L301201-007 .063 2 400 15.0 (D)A-286 Lz01O1-06 .020 1 225 5.0 Good

L02101-007 .020 2 300 15.0 Split

LE02201-007 .063 2 500 15.0 (D)Vacojet 1000 LBO3101-005 .020 1 300 5.0 Good

L0310l-006 .020 2 300 15.0 SplitL803201-005 .063 1 250 5.0 GoodLE03201-006 .063 2 250 15.0 Split

ISS2 MoV 12"01-005 .020 1 300 5.0 Goodi oAzo.lo6 .020 2 225 15.0 SplitLUO21-005 .o63 1 350 5.0 SpliLEOkOI-O06 .063 2 225 15.0 split

Ti(6Al-4V) LE05101-O05 .020 1 225 5.0 Splitt LE05201-005 .063 1 250 5-0 Split

Ti(13V-llCr-3A1) LE06101-o0 .02o0 1 200 5.0 Split

t L062O1-O06 .063 1 225 5.0 SplitL-605 1Z07101-007 .020 1 225 5.0 Good

L07101-008 .020 2 300 15.0 SplitLE07201-06 .063 2 500 15.0 (D)

128

Page 144: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 144/158

TABLE 14 (Continued)SHALLOW RECESSING - NO DRAW

LOW EXPLOSIVE AIR

 ROOM TEPERATtRE)

Part Die (C)DrawMaterial No. Gage INo. Charge) 6 T Results

Rene'41 LE08101-007 .020 1 225 0 5.0 GoodLE08101-008 .020 2 300 15.0 SplitLEo82ol- 06 .063 2 500 15.0 (D)

2024-0 Aluminum LE13101-06 .020 1 225 5.0 Good

LE13101-007 .020 2 225 15.0 SplitLE132o1-006 .063 1 225 5.o GodLE13201-007 .063 2 225 .15.0 Split

TABLE 15

SHALLOW RECESSING - NO DRAW

LOW EXPLOSIVE AIR(ELEVATED TEMPERURE)

PMrt Gage Die 1 Draw Temp.Material No. No. Charge(C)1 5 TFResults

17-7 Ph LE01101-008 .020 2 200 0 15.0 1000 SplitLEO2Ol1m-8 .063 2 400 Split

A-286 LEo2lo1-0Q8 .020 2 200 Splitf LE0220-008 .063 2 400 Split

Vascojet 1000 LE03101-007 .020 2 200 Splitt LE03201-007 .063 2 400 Split

USS 12 bv LE4iOl-oo7 .020 2 200 Splitt LE0201-07 .063 2 400 15.0 1000 Split

Ti(6AI-4v) LE05101-oo6 .020 1 200 5.0 1200 Good

LE05101-007 .020 2 200 15.0 SplitLE05201-006 .o63 1 400 5.0 oodLE05201-007 .063 2 400 15.0 Split

Ti(13V-llCr-3Al) IzO62-oo7 .063 1 400 5.0 GoodtL62oioo8 .63 2 400 15.0 1200 Split

L-605 LO71O1-009 .020 2 200 500 Split

f LE07201-007 .063 2 500 g (D)Rene'41 L8101-009 .020 2 200 , Split

t LE08201-007 .063 2 500 500 (D)2024-0 Aluminum LE131O1-006 .020 2 200 200 Split

J, LE132ol-006 .63 2 300 0 15.0 200 Split

129

Page 145: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 145/158

Page 146: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 146/158

TABLE 17SHALL4W RECESSING - NO DRAW

ELECTRO-HYDRAULIC

(ROO TDPATURE)

Part Die Energy Drawaterial No. Gage No. Kilo- T Results Rema

joules

17-7 Ph EHO01-003 .020 2 32.2 0 15.0 Good (G)t EHOo1-004 .020 3 13.8 30.0 Split (H)

A-286 EH2l0l-003- .020 1 10.9 5.0 Good (H5 E02101-004 .020 2 16.1 15.0 Split (G

Vascojet 1000 EX03101-003 .020 1 6.1 5.0 Good Ht EH03ll-0  4 .020 2 11.2 15.0 Split (

USS 12 MoV EH04101-003 .020 1 4. 3 5.0 Good HEHO410-0 1 4 .020 2 16.1 15.0 Split 0

TE6HV) o51ol-003 .020 1 2.7 5.0 Split Ht EHO51Ol-004 .020 2 11.2 15.0 Split (G

L65EHO7101-003 .020 1 6.1 5.0 Good HEH711o-004 .020 2 16.1 15.0 Split

Rene'41 ENO8101-003 .020 2 13.8 15.0 GoodEHD8101-04 .020 3 13.8 30.0 Split

2024-0 Aluminum EH13101-003 .020 1 1.5 5.0 Good HEH13101-004 .020 2 4.3 0 15.0 Split (H

NOTES FOR TABLES 3 THRU 17-

(A) - Forming was stopped at a depth of 3 inches.

(B) - Part bad puckers on one side.

(C) - Grains of bullseye gnpowder.

(D) - Part not formed down completely to die contour.

(E) - Grams of RDX.

(F) - Unable to prevent drawing.

(G) - Seven capacitors.

(H) - Six capacitors.

(J) - Two shots.

(K) - Pulled off to one side.

131

Page 147: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 147/158

DISTRIBUTIONNo.Copies

GOVERNMENT AGENCIES

Armed Services Technical Information Agency 10

Arlington Hall Station

Arlington 12, Virginia

George C. Marshall Space Flight Center-NASA I

Attn: William A. Wilson, Chief

Methods Research and Development Branch

Fabrication & Assembly Engineering Division

Huntsville, Alabama

Department of the Navy I

Bureau of Naval Weapons

Attn: PID-2 (E. G. Gleason)Washington 25, D. C.

Department of the Navy 1

Bureau of Naval Weapons

Attn: RBI (Mr. N. E. Promisel)

Washington 25, D. C.

Commander

Watervliet Arsenal

Attn: Production Methods

Mr. George Hohenstein

Watervliet, New York

Commanding Officer

Watertown Arsenal

Attn: OROWatertown 72, Massachusetts

Materials Advisory Board

Attn: Mr. Les Gould

2101 Constitution Avenue

Washington 25, D. C.

U. S. Naval Ordinance Test Station

Attn: John Pearson

China Lake, California

C6rmanderAeronautical Systems Division

Attn: ASRCT (Col. Arden B. Hughes)

Wright-Patterson Air Force Base, Ohio

Cormmander

Aeronautical Systems DiVision

Attn: ASRCOO (Mr. C. W. Douglass)

Wright-Patterson Air Force Base, Ohio

Commander

Aeronautical Systems Division

Attn: ASRCTF (Lt. Col. E. M. Morse)

Wright-Patterson Air Force Base, Ohio

13 2

Page 148: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 148/158

DISTRIBUTI10 (Continued)

INDUSTRY No . Copies

Advanced Metals Research Corporation

625 McGrath Highway

Somerville, Massachusetts

Aerocal Division

Attn: D. Z. Chapman, Chief Engineer

24751 So. Crenshaw Blvd.

Torrance, California

Aero et -General Corporation

Attn: L. Zernow, Director of Research

Ordnance Division

11711 S. Woodruff AvenueDowney, California

Aerojet-General Corporation

Attn: K. F. Mundt

Vice-President, Manufacturing6352 N. rwindale AvenueAzusa, California

Allison Division 1

General Motors Corporation

Attn: L. E. BatchelorMaster Mechanic

P. o. Box 894Inldianapolis 6, Indiana

Aeronca Manufacturing Corporation

Longren California Division24751 S. Grenshaw Blvd.

Torrance, California

Bell Aircraft Corporation

Niagara Falls AirportAttn: Mr. Ralph W. Varrial, Manager

Production Engineering

Buffalo 5, New York

Bendix Products Aerospace Division

Attn: Library

717 Bendix Drive

South Bend, Indiana

E. W. Bliss Company

Hastings, Michigan

Boeing Airplane Company

Aero-Space Division

Attn: Mr. B. K Bucey,

Assistant.to Vice-President,

Manufa~turingP. 0. Box 3707Seattle 24, Washington 133

Page 149: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 149/158

Page 150: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 150/158

DISTRIBUTION (Continued)

No. Copies

E. I. DuPont de Nemours & Company

Central Research Department

Experimental Station

Wilmington 98, Delaware

Federal Presses

511 Divisions Street

Elkhart, Indiana

Ford Motor CompanyScientific Lab., Engineering Staff'

Attn: Supervisor, Tech. Info. Section

20000 Rotunda Drive

Dearborn, Michigan

The Garrett Corporation

AiResearch Manufacturing Division

Attn: H. W. Young, Factory Manager

9851 Sepulveda Blvd.Los Angeles 45, California

Mr. D. A. StewartSupervisor, Machinability Unit

General Electric Company

FPLD Manufacturing

Building 700Cincinnati 15, Ohio

General Dynamics/San Diego

Advanced Products Department

Attn: Robert A. KaserP. 0. Box 6231

San Diego 6, California

General Dynamics CorporationAdvanced Products DivisionAttn: J. A. Kline, ManagerResearch and Development

San Diego, California

General Dynamics CorporationAttn: E. W. Fedderson, Director

Manufacturing Engineering ofGeneral DynamicsSan Diego, California

General DynamicsAttn: Mr. A. T. Seeman,

Chief of Engineering Manufacturing

P. 0. Box 1011

Pomona, California

135.

Page 151: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 151/158

DISTRIBUTION (Continued)

No. Copies

General Dynamics Corporation

Astronautics Division 1

Attn: V. G. Mellquist, Manager

Applied Manufacturing Research

San Diego, California

General Dynamics Corporation

Convair Division

Attn: C. A. Ives, Supervisor

Applied Manufacturing Research

San Diego, California

General Dynamics Corporation/Ft. Worth

Attn: Mr. R. K. May, Chief of

Manufacturing R & DGrants Lane

Fort Worth, Texas

Grumman Aircraft Engineering Corporation

Attn: Mr. William J. Hoffman

Vice-President, Manufacturing Engineering

Bethpage, Long Island, New York

Hayes Aircraft Corporation

P. 0. Box 2287

Birmingham, Alabem

Hercules Powder Company I

Wilmington 99, Delaware

HPM Division - Koehring Company

Attn: D. G. Barkhurst

Mount Gilead, Ohio

Hughes Aircraft Company

Attn: Mr.. J. W. Moffett,

Chief, Equipment Engineer

El Segundo, California

Ling-Temco-Vought, Inc.

Industrial Division

P. o. Box 6327Attn: Mr. P. F. Young,

Manager Operations

Dallas 22, Texas

Lockheed Aircraft Corporation

Attn: Mr. C. S. Wagner, Exec.Assistant to the Exec. Vice-President

P. 0. Box 511Burbank, California

136,

Page 152: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 152/158

Page 153: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 153/158

DISTRIBUTION (Continued)No- Copies

Minnesota Mining and Manufacturing Company

Attn: Frank C. Graham

2301 Hudson RoadSt. Pisu 19, Minnesota

Northrop Corporation

Norair Division

Attn: Mr. R. R. Nolan

1001 East Broadway

Hawthorne, California.

North American Aviation, Inc.

Attn: Mr. M. E. Fisher

4300 East Fifth Avenue

Columbus 16, Ohio

North American Aviation, Inc.

Attn: Mr. Latham Pollock

International Airport

Los Angeles 45, California

North American Aviation, Inc.

Rocketdyne Division

Attn: Mr. C. W. Buckel

6633 Canoga Avenue

Canoga Park, California

Reactive Metals Products

Bridgeport Brass Company

Attn: Mr. L. G. McCoy

Niles, Ohio

Republic Aviation .Corporation

Attn: A. Kastelowitz -

Director of Manufacturing Research

Conklin Street

Farmingdale, New York

Repnolds Metals CompanyAttn: Carson L. Brooks

4th and Canal Streets

Metallurgical Research Division

Richmond 19, Virginia

Rohr Aircraft Corporation

Attn: H. J. SieradzkyP. 0. Box 878Chula Vista, California

138

- -- r----------- -777~

Page 154: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 154/158

DISTRIBUTION (Continued)No. Copies

Ryan Aeronautical CompanyAttn: Mr. Robert L. Clark

P. O. Box 311

Lindbergh Field

San Diego 12, California

Sheridan-Gray, Incorporated

24701 Crenshaw Boulevard

Torrance, California

Sikorsky Aircraft Division

United Aircraft CorporationAttn: Mr. Alex Sperber, Factory Manager

N. Main Street

Stratford, Connecticut

Sperry Gyroscope Company

Division Sperry-Rand Corporation

Attn: Mr. G. A. Richroath

Great Neck, New York

Solar Aircraft Company

Attn: Mr. J. A. Logan

Manager Facilities Division

2200 Pacific Highway

San Diego 12, California

Thompson Ramo Wooldridge, Inc.

Attn: Mr. Carl W. Goldbeck

23555 Euclid Avenue

Cleveland 17, Ohio

U.S.I. Clearing

Division of U. S. Industries, Inc.

6499 West 65th StreetChicago 38, Illinois

United States Steel Corporation

Research & Technology Division

Attn: Mr. M. W. Lightner

525 William Penn Place

Pittsburgh 30, Pennsylvania

Verson Allsteel Press Company

9313 S. Kenwood Avenue

Chicago 19, Illinois

139

Page 155: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 155/158

DISTRIBUTION (Continued)

UNIVERSITIES & RESEARCH ORGAN. No. Copies

American Society of Tool & Manufacturing Engineers 1

Attn: Phillip D. Harvey

Asst. Technical Director

10700 Puritan Avenue

Detroit 38, Michigan

Armour Research Foundation

Illinois Institute of Technology

10 West 35th Street

Chicago 16, Illinois

California Institute of Technology 1

Attn: Aeronautics Library

1201 E. California Street

Pasadena 4, California

California Institute of Technology

Guggenheim Aeronautical Lab.

1201 E. California Street

Pasadena 4, California

California Institute of Technology

Attn: D. S. Wood

Pasadena 4, California

Carnegie Institute of Technoloa 1

Attn: Professor M. C. Shaw

Schenley Park

Pittsburgh 13, Pennsylvania

Colorado School of Mines 1

Attn: John S. Rinehart, Director

Mining Research Laboratory

Golden, Colorado

Cornell University - Metallurgical Engineering

Attn: Professor G. V. Smith

Olin Hall

Ithaca, New York

Defense Metals Information Center 1

Battelle Memorial Institute

505 King Avenue

Columbus 1, Ohio

Defense Metals Information Center 1Battelle Memorial Institute

Attn: Webster Hodge

505 King Avenue

Columbus 1, Ohio

140

Page 156: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 156/158

Page 157: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 157/158

4- (n - ,. ~4-) ()*

0 '1-1 04.3+~ 0H 0 p.- a 8 4 0

arN 0 c~~4

0 40 0 C

to.4) 0. c?.

0 C)~o :2 0 0 0 D H 0P4 W 4 0 4 040 4 0 14 4)

.14 + 50 P

-P k -~ 42'00 r4 U-~- 0 0 0H

4)H .~ 4-1 . 0) P#t -P .

ow P . 01 0

7H Cr4 H 4)H

a0 t* *Hi .oa.

014g 4-~- 00 0.0094 0z~4c0- Q-20.

H4 I4) co. t- v w

10 :n0 v) A n1Ai'0 0LI~

4-~~ ~ ~ H-* c a(

45P4)

>b: 4) 43O0

0 (D 0H4 I'- 0 P. 40, -4I *0 P. 40 0~~~~4 o~0 H

-) 0 ~ 4

(Dw 14 oo

0 4) r4-0 P0 4) -4C 0

0 -84 c~ 00 -HrL 0

09 Id0 4-3 *tI 1-0 0 4

C-U 0) r -

j4- or

04) 000A

1-4 H4

U G 0 ~~0 4 UG D

Page 158: Sheetmetal Forming

8/13/2019 Sheetmetal Forming

http://slidepdf.com/reader/full/sheetmetal-forming 158/158