sheet 1 notes and legend...2018/07/20  · sheet 2 notes and legend: 7 9 shown in section a-a on...

35
07 - 20- 18 SECTION A-A FOR THICKNESSES PEJF, SEE SHEET CENTERED ON JOINT NEOPRENE SHEETING, 3' WIDE, 2" PEJF C.J. 1" PEJF SLAB APPROACH C.J. DIAPHRAGM WINGWALL BRIDGE SEAT AND TOE OF CURB & PARAPET FACE OF APPROACH RAILING ® CENTERED ON JOINT NEOPRENE SHEETING, 3' WIDE, FASTENERS ® 6 9 1'-6" 2" 6 " PART PLAN AT ABUTMENT ELEVATION 2:1 2:1 2 : 1 NEOPRENE SHEETING TOE OF PARAPET EDGE OF DECK | ABUTMENT BEARINGS 2" PEJF APPROACH SLAB 1" PEJF BRIDGE LIMITS SHOULDER BREAK LINE FACE OF APPROACH RAILING & TOE OF CURB A A 1 1 CURB APPROACH SLAB PARAPET TRANSITION C.J. POROUS BACKFILL WITH GEOTEXTILE FABRIC NEOPRENE SHEETING 1" PEJF BRIDGE TERMINAL ASSEMBLY TOP OF SLOP | BEARINGS & | PILES (SQUARE STRUCTURE WITH CONCRETE PARAPETS) (SBR-1-13 SHOWN, BR-1-13 SIMILAR) ELASTOMERIC BEARING ASSEMBLY ³ 6" PERFORATED CORRUGATED PLASTIC PIPE 2H:1V SLOPE OR FLATTER 14'-0" TRANSITION ´ 1'-8" 1'-2" 3'-4" 2'-6" APPROACH SLAB SEAT 6" 1'-8" 1'-8" 3'-4" MI N. 6 " 4 ' - 0" MI N. C.J. ¯ C.J. ¯ 1 9 S TATE OF OHI O DE PARTME NT OF TRANSPORTATI ON DESI GN DATA SHEET DESI GN AGENCY REVI SI ONS ADMI NI STRATOR DATE S TRUCTURAL E NGI NEE RI NG OFF I CE OF I CD- 2 - 18 ON F LE XI BLE ABUTME NTS PRE S TRE SS E D CONCRETE I- BE AM BRI DGE S I NTE GRAL CONS TRUCTI ON DETAI L S F OR SHEET 1 NOTES AND LEGEND: 8 9 DETAILS. ³ = SEE SHEET FOR ELASTOMERIC BEARING ASSEMBLY APPROVAL OF THE ENGINEER. CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE ¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK PROJECT PLANS WHICH STANDARD DRAWING APPLIES. FOR BRIDGE TERMINAL ASSEMBLY DETAILS. STATE ON THE  = SEE ROADWAY STANDARD DRAWING MGS-3.1 OR MG TO AVOID EXCESSIVELY LONG WINGWALLS. A LATERALLY SLOPING "TOP OF SLOPE" MAY BE USED  = TOP OF SLOPE: ON SUPERELEVATED STRUCT SHOULDER BREAK LINE. ´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF NEOPRENE SHEETING PLACEMENT REQUIREMENTS. ® = SEE PROJECT PLANS AND/OR CMS 516.05 FOR ADDITIONAL PEJF = PREFORMED EXPANSION JOINT FILLER C.J. = CONSTRUCTION JOINT

Upload: others

Post on 20-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

SECTION A-A

FOR THICKNESSES

PEJF, SEE SHEET

CENTERED ON JOINT

NEOPRENE SHEETING, 3' WIDE,

2" PEJF

C.J.

1" PEJF

SLAB

APPROACH

C.J.

DIAPHRAGM WINGWALL

BRIDGE SEAT

AND TOE OF CURB & PARAPET

FACE OF APPROACH RAILING

®CENTERED ON JOINT

NEOPRENE SHEETING, 3' WIDE,

FASTENERS ®

6 9

1'-6" 2"

6"

PART PLAN AT ABUTMENT

ELEVATION

2:1

2:1

2:1

NEOPRENE

SHEETING

TOE OF PARAPET

EDGE OF DECK

| ABUTMENT BEARINGS

2" PEJF

APPROACH SLAB

1" PEJF

BRIDGE LIMITS

SHOULDER

BREAK LINE

FACE OF APPROACH

RAILING & TOE OF

CURB

A

A

1

1

CURB

APPROACH

SLAB

PARAPET

TRANSITION

C.J.POROUS BACKFILL

WITH GEOTEXTILE

FABRIC

NEOPRENE SHEETING

1" PEJF

BRIDGE

TERMINAL

ASSEMBLY

TOP OF SLOP

| BEARINGS & | PILES

(SQUARE STRUCTURE WITH CONCRETE PARAPETS)

(SBR-1-13 SHOWN, BR-1-13 SIMILAR)

ELASTOMERIC

BEARING

ASSEMBLY ³

6" PERFORATED

CORRUGATED

PLASTIC PIPE

2H:1V SLOPE OR FLATTER

14'-0" TRANSITION

´

1'-8"1'-2"

3'-4"

2'-6"

APPROACH SLAB SEAT

6"

1'-8"1'-8"

3'-4"

MIN.

6"

4'-

0"

MIN.

C.J. ¯

C.J. ¯

1 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 1 NOTES AND LEGEND:

8 9 DETAILS.

³ = SEE SHEET FOR ELASTOMERIC BEARING ASSEMBLY

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

PROJECT PLANS WHICH STANDARD DRAWING APPLIES.

FOR BRIDGE TERMINAL ASSEMBLY DETAILS. STATE ON THE

 = SEE ROADWAY STANDARD DRAWING MGS-3.1 OR MG

TO AVOID EXCESSIVELY LONG WINGWALLS.

A LATERALLY SLOPING "TOP OF SLOPE" MAY BE USED

 = TOP OF SLOPE: ON SUPERELEVATED STRUCT

SHOULDER BREAK LINE.

´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF

NEOPRENE SHEETING PLACEMENT REQUIREMENTS.

® = SEE PROJECT PLANS AND/OR CMS 516.05 FOR ADDITIONAL

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 2: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

PART PLAN AT ABUTMENT

TOE OF PARAPET

TOE OF

PARAPET

FACE OF APPROACH

RAILING & TOE OF

CURB

FACE OF APPROACH

RAILING & TOE OF

CURB

EDGE OF DECK

EDGE OF DECK

2" PEJF

2" PEJF

SHOULDER

BREAK LINE

SHOULDER

BREAK LINE

NEOPRENE

SHEETING

NEOPRENE

SHEETING

1" PEJF

1" PEJF

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

SLAB SEAT

2

2B

B

| ABUTMENT

BEARINGS

(STRUCTURE WITH LEFT FORWARD SKEW AND CONCRETE PARAPETS)

(SBR-1-13 SHOWN, BR-1-13 SIMILAR)

SHADED AREA INDICATES LIMITS

OF DIAPHRAGM PROTRUSION

UNDERNEATH PARAPET (TYP.)

14'-0" TRANSITION

´

´

14'-0" TRANSITION

2'-6"

2'-6"

N/2

N/2

N

APPROACH

6"

C.J. ¯

SECTION B-B

(BEAM & APPROACH RAILING NOT SHOWN)

(APPLIES AT BOTH ENDS OF ABUTMENT)

SEAT.

SLAB AND APPROACH SLAB

THICKNESS OF APPROACH

HEIGHT, H, SHALL MATCH

UNDERNEATH PARAPET.

DIAPHRAGM PROTRUSION

HP

AR

AP

ET

DIAPHRAGM

SEAT (BEYOND)

APPROACH SLAB

2 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 2 NOTES AND LEGEND:

7 9

1 9SHOWN IN SECTION A-A ON SHEET .

NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE

SEE SHEET .

N = DIAPHRAGM WIDTH FOR SKEWED BRIDGES.

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

SHOULDER BREAK LINE.

´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 3: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

PART PLAN AT ABUTMENT

(STRUCTURE WITH RIGHT FORWARD SKEW AND CONCRETE PARAPETS)

(SBR-1-13 SHOWN, BR-1-13 SIMILAR)

EDGE OF DECK

EDGE OF DECK

TOE OF

PARAPET

TOE OF

PARAPET

FACE OF APPROACH

RAILING & TOE OF

CURB

FACE OF APPROACH

RAILING & TOE OF

CURB

1" PEJF

1" PEJF

NEOPRENE

SHEETING

NEOPRENE

SHEETING

SHOULDER

BREAK LINE

SHOULDER

BREAK LINE

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2" PEJF

2" PEJF

| ABUTMENT BEARINGS

SLAB

SEAT

SHADED AREA INDICATES LIMITS

OF DIAPHRAGM PROTRUSION

UNDERNEATH PARAPET (TYP.)

2B

2B

14'-0" TRANSITION

´

´

14'-0" TRANSITION

2'-6"

2'-6"

APPROACH6"

N

N/2

N/2

C.J. ¯

3 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 3 NOTES AND LEGEND:

7 9

1 9SHOWN IN SECTION A-A ON SHEET .

NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE

SEE SHEET .

N = DIAPHRAGM WIDTH FOR SKEWED BRIDGES.

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

SHOULDER BREAK LINE.

´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 4: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

PART PLAN AT ABUTMENT

ELEVATION

(SQUARE STRUCTURE WITH TWIN STEEL TUBE BRIDGE RAILING)

APPROACH SLAB BRIDGE LIMITS

| ABUTMENT BEARINGS

2:1

2:12:1

NEOPRENE

SHEETING

SHOULDER

BREAK LINE

1" PEJF

2" PEJF

FACE OF BRIDGE

RAILING & EDGE

OF DECK

4

4

C

C

POROUS BACKFILL

WITH GEOTEXTILE

FABRIC

ELASTOMERIC

BEARING

ASSEMBLY ³

NEOPRENE SHEETING

1" PEJF

APPROACH

SLAB

BRIDGE

TERMINAL

ASSEMBLY

| BEARINGS & | PILES

TOP OF SLOP

C.J.

TWIN STEEL TUBE

BRIDGE RAILING

6" PERFORATED

CORRUGATED

PLASTIC PIPE

2H:1V SLOPE OR FLATTER

2'-6"

1'-8"1'-2"

APPROACH SLAB SEAT

6"

3'-4"

´

1'-6"

3'-9"

1'-8"1'-8"

3'-4"

MIN.

6"

4'-

0"

MIN.

1'-6" MIN.

TO | BOLT) (TYP.)

10" MIN. (FACE OF DIAPHRAGM

C.J. ¯

C.J. ¯

EDGE OFAPPROACH

SLAB

7†

"

SECTION C-C

1" PEJF

SLAB

APPROACH

DIAPHRAGM WINGWALL

2" PEJF

C.J.

CENTERED ON JOINT

NEOPRENE SHEETING, 3' WIDE,

BRIDGE SEAT

FOR THICKNESSES

PEJF, SEE SHEET

®CENTERED ON JOINT

NEOPRENE SHEETING, 3' WIDE,

FASTENERS ®

(RAILING NOT SHOWN)

FACE OF RAILING

APPROACH SLAB &

EDGE OF DECK AND

6 9

1'-6"

6"

4 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 4 NOTES AND LEGEND:

8 9 DETAILS.

³ = SEE SHEET FOR ELASTOMERIC BEARING ASSEMBLY

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

TERMINAL ASSEMBLY DETAILS.

 = SEE ROADWAY STANDARD DRAWING MGS-3.1 FOR B

TO AVOID EXCESSIVELY LONG WINGWALLS.

A LATERALLY SLOPING "TOP OF SLOPE" MAY BE USED

 = TOP OF SLOPE: ON SUPERELEVATED STRUCT

SHOULDER BREAK LINE.

´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF

NEOPRENE SHEETING PLACEMENT REQUIREMENTS.

® = SEE PROJECT PLANS AND/OR CMS 516.05 FOR ADDITIONAL

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 5: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

PART PLAN AT ABUTMENT

(SKEWED STRUCTURE WITH TWIN STEEL TUBE BRIDGE RAILING)

(STRUCTURE WITH LEFT FORWARD SKEW SHOWN, STRUCTURE WITH RIGHT FORWARD SKEW SIMILAR)

FACE OF BRIDGE

RAILING & EDGE

OF DECK

FACE OF BRIDGE

RAILING & EDGE

OF DECK

| ABUTMENT

BEARINGS

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

SHOULDER

BREAK LINE

SHOULDER

BREAK LINE

NEOPRENE

SHEETING

NEOPRENE

SHEETING

2" PEJF

2" PEJF

1" PEJF

1" PEJF

SLAB SEAT

10" MIN. (FACE OF DIAPHRAGM

TO | BOLT) (TYP.)

´

´

2'-6"

2'-6"

APPROACH

6"

N

N/2

N/2

3'-9"

3'-9"

4"

1'-6"

1'-6"

CLR.

6" MIN.

1'-6" MIN.

1'-6" MIN.

C.J. ¯

EDGE OF

APPROACH SLAB

EDGE OF

APPROACH SLAB

7†

"

5 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 5 NOTES AND LEGEND:

7 9

4 9SHOWN IN SECTION C-C ON SHEET .

NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE

SEE SHEET .

N = DIAPHRAGM WIDTH FOR SKEWED BRIDGES.

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

SHOULDER BREAK LINE.

´ = SEE ROADWAY TYPICAL SECTION FOR LOCATION OF

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 6: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

ELEVATION

6" PERFORATED

CORRUGATED

PLASTIC PIPE

6" NON-PERFORATED

CORRUGATED

PLASTIC PIPE

(SHOWN WITH CONCRETE PARAPET AND NO SKEW)

2" PEJF

C.J.

S403 (E.F.)

(TYP. @

EACH BEAM)

CRUSHED AGGREGATE SLOPE

PROTECTION, 601.06, AT END

OF DRAINAGE PIPE (1'-0" DEEP)

LIMITS OF POROUS

BACKFILL AND

PERFORATED PIPE

„" PER FT.

MIN. SLOPE

6

6

(a)

6

6

D

D

E

E

(b)

3-A506

A505

APPROACH

SLAB SEAT

(TYP. BETWEEN

BEAMS & AT FASCIAS)

4-#6

BARS

4-#6 BARS

4-#8

BARS

4-#8 BARS

2-A501

WINGWALL

(SUBSTRUCTURE)

#5 BAR (E.F.)

(TY

P.)

8"

1'-6"2"

4'-0

"̀ DIA.

A502 & S.O. A503 @ 1'-0" MAX.

(TYP. BETWEEN PILES)

2-A501 @ 1'-0" MAX.

S601 @ 1'-0" MAX.

S502, 2-S501 &

(E.F.) (d)

#6 B

AR

S

MA

X. (F.F.)

#8 B

AR

S

@ 1'-0"

(SU

PE

RS

TR

UC

TU

RE)

DIA

PH

RA

GM

(SU

BS

TR

UC

TU

RE)

PIL

E C

AP

1'-0"

MA

X. (E.F.)

S.O. #

5 B

AR

S

@

BY THE DESIGNER (8'-0" MAX.) (TYP.)

PILE SPACING TO BE DETERMINED

2-A502 & A504 @ 1'-0"

(TY

P.

@ E

AC

H PIL

E)

3-

A401

@ 6"

(DIMENSIONS SHOWN ARE FOR NO SKEW,

DIMENSIONS WILL VARY WITH SKEW, SEE SHEET )

SECTION E-E

TOP OF SLOP

| BEARINGS & | PILES

APPROACH

SLAB

POROUS BACKFILL

WITH GEOTEXTILE

FABRIC

NEOPRENE SHEETING

BRIDGE DECK SLAB

BRIDGE LIMITS

6" PERFORATED

CORRUGATED

PLASTIC PIPE WHERE STEEL PILES ARE USED,

ORIENT WEB PARALLEL TO

| BEARINGS

SLOPE PROTECTION

ELASTOMERIC

BEARING

ASSEMBLY ³

1" PEJF•" PEJF

2H:1V SLOPE OR FLATTER

C.J.

SECTION D-D (DIMENSIONS)

SECTION D-D (REINFORCING)

2H:1V SLOPE

OR FLATTER

| BEARINGS & | PILES

SLOPE @ ‚" PER FOOT

AWAY FROM | BEARINGS

6" PERFORATED

CORRUGATED

PLASTIC PIPE

POROUS BACKFILL

WITH GEOTEXTILE

FABRIC

WHERE STEEL PILES ARE USED,

ORIENT WEB PARALLEL TO

| BEARINGS

TOP OF SLOP

C.J.

A501

A502

A503

A401

(DIMENSIONS SHOWN ARE FOR NO SKEW,

DIMENSIONS WILL VARY WITH SKEW, SEE SHEET )

A501

A401

4" CLR.

S601

S501

S801

S502

S401 &

S402 (c)

(TYP.)

7 9 7 9

4-#8 BARS

4-#6 BARS

4-#8 BARS

#6 BARS

(E.F.) (d)

#5 BARS @ 1'-0"

MAX. (E.F.)

1'-8"1'-2"6"

3'-4"

8"

4'-

0"

MIN.

MIN.

6"

4'-

0"

MIN.

2'-

0"

1'-8"

2'-6"

2'-

0"

MIN.

6"

6"

1'-3"

CL

R.

3"

3'-4"1'-0"

MA

X.

#8 B

AR

S

@

CL

R.

3"

6"

4-#8 BARS

BARS

4-#6

(E.F.) (d)

#6 B

AR

S

1'-0"

MA

X.

#8 B

AR

S

@

4-#8 BARS

3-A506

1'-0"

1'-0"

1'-0"

1'-0"

C.J. ¯

6 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 6 NOTES AND LEGEND:

8 9

PARALLEL TO | BEARINGS.

SPACING, IN BOTH CASES, SHALL BE MEASURED

INCLUDING S601 BARS, PARALLEL TO BEAMS. BAR

| BEARINGS. PLACE VERTICAL BARS IN DIAPHRAGM,

PLACE VERTICAL BARS IN PILE CAP NORMAL TO

APPROVAL OF THE ENGINEER.

CONCRETE IN THE SAME POUR; HOWEVER, THIS REQUIRES

PROCEDURE THAT PLACES THE DIAPHRAGM AND DECK

CONTRACTOR MAY ELECT TO SUBMIT AN ALTERNATE

PLACEMENT IN THE ADJACENT SPAN IS COMPLETE. THE

¯ = PLACE THE DIAPHRAGM CONCRETE AFTER THE DECK

IN DIAPHRAGM AND PILE CAP SHALL BE 2'-5".

MINIMUM LAP LENGTHS FOR #5 VERTICAL BARS

CALCULATIONS.

FOR DESIGN METHODOLOGY AND EXAMPLE

REFER TO THE DESIGN DATA SHEET SUPPLEMENT

REQUIRED FOR THE INDIVIDUAL STRUCTURE.

DESIGNER SHALL PROVIDE THE REINFORCEMENT

REINFORCING STEEL SHOWN IS MINIMUM.

BEARING ASSEMBLY DETAILS.

³ = SEE SHEET FOR ELASTOMERIC

EXCESSIVELY LONG WINGWALLS.

OF SLOPE" MAY BE USED TO AVOID

STRUCTURES, A LATERALLY SLOPING "TOP

 = TOP OF SLOPE: ON SUPERELE

BAR SPACING SHALL NOT EXCEED 1'-0".

IN EACH SIDE FACE OF THE PILE CAP. THE

(d) = A MINIMUM OF 5-#6 BARS SHALL BE PLACED

ACCOMMODATE DRAPED STRANDS.

S401 & S402 BARS MAY BE MOVED TO

FOR BEAMS 60" OR GREATER IN HEIGHT.

LESS IN HEIGHT. 3-S401 & S402 BARS

(c) = 2-S401 & S402 BARS FOR BEAMS 54" OR

(TYP. @ FASCIAS)

(b) = #5 BARS @ 1'-0" MAX. (N.F.)

(TYP. BETWEEN BEAMS)

(a) = #8 BARS @ 1'-0" MAX. (N.F.)

S.O. = SERIES OF

F.F. = FAR FACE

N.F. = NEAR FACE

E.F. = EACH FACE

PEJF = PREFORMED EXPANSION JOINT FILLER

C.J. = CONSTRUCTION JOINT

Page 7: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

INTEGRAL ABUTMENT PARTIAL PLAN

INTEGRAL ABUTMENT PARTIAL PLAN

INTEGRAL ABUTMENT PARTIAL PLAN

(WF BEAM SHOWN, MODIFIED AASHTO TYPE 4 BEAMS SIMILAR)

(AT SKEWED ABUTMENT)

(AASHTO TYPE 2 BEAM SHOWN, AASHTO TYPE 3 & 4 BEAMS SIMILAR)

(AT SKEWED ABUTMENT)

(WF BEAM SHOWN, OTHER BEAMS SIMILAR)

(NO SKEW)

| BEARING

SLAB LIMITS

APPROACH

DIAPHRAGM

BACK FACE OFDIAPHRAGM

FRONT FACE OF

| BEAM

BARS (c)

S402

BARS (c)

S401

DIAPHRAGM

FRONT FACE OF

DIAPHRAGM

BACK FACE OF

SLAB LIMITS

APPROACH| BEAM

| BEARING

BARS (c)

S401

(a)

£

W

DIAPHRAGM

FRONT FACE OF

| BEAM

DIAPHRAGM

BACK FACE OF

| BEARING

£

SLAB LIMITS

APPROACH

BARS (c)

S401

(b)

BARS (c)

S402

BARS (c)

S402

³³

³

1'-8"8"6"6"

3'-4"

BO

TT

OM F

LA

NG

E

TO

P F

LA

NG

E

1'-6"

1'-6"

3'-

0"

LE

VE

L S

EA

T

8"

MIN. EMBEDMENT

2'-4"

1'-8" MIN.

6"6"

PEJF1'-

0"

PEJF1'-

0"

LE

VEL SE

AT

3'-

0"

1'-6"

1'-6"

N N/2

N/2

BO

TT

OM F

LA

NG

E

W1

W

TO

P F

LA

NG

E

NN/

2

N/2

8"

MIN. EMBEDMENT

2'-4"

1'-8" MIN.

FL

AN

GE

TO

P

FL

AN

GE

BO

TT

OM

PEJF1'-

0"

PEJF1'-

0"

1'-6"

1'-6"

LE

VEL SE

AT

3'-

0"

W1

EMBEDMENT

2'-4"

6"6"

(•" PEJF)

1'-0"

(1" PEJF)

1'-0"

7 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 7 NOTES AND LEGEND:

(8") x (COS £) + (W1) x (SIN £) + 1'-0"

[ 1'-8" + (W/2) x (TAN £) ] x COS £

DETAILS.

³ = SEE SHEET FOR ELASTOMERIC BEARING ASSEMBLY

AND RIGHT FORWARD SKEWS)

£ = SKEW ANGLE (TAKEN AS POSITIVE FOR LEFT FORWARD

BEAMS

EDGE OF BOTTOM FLANGE FOR AASHTO TYPE 2, 3 & 4

AASHTO TYPE 4 BEAMS; DISTANCE FROM | BEAM TO

ACCOUNTING FOR CLIP, FOR WF BEAMS AND MODIFIED

W1 = DISTANCE FROM | BEAM TO EDGE OF TOP FLANGE,

FOR AASHTO TYPE 2, 3 & 4 BEAMS

AASHTO TYPE 4 BEAMS; BOTTOM FLANGE WIDTH

W = TOP FLANGE WIDTH FOR WF BEAMS AND MODIFIED

N/2 = LARGER OF

N = DIAPHRAGM WIDTH FOR SKEWED BRIDGES

DIAPHRAGM.

NEEDED TO PROVIDE 2" MINIMUM CLEAR TO BACK FACE OF

ACCOMMODATE DRAPED STRANDS. ROTATE S402 BARS AS

HEIGHT. S401 & S402 BARS MAY BE MOVED TO

3-S401 & S402 BARS FOR BEAMS 60" OR GREATER IN

(c) = 2-S401 & S402 BARS FOR BEAMS 54" OR LESS IN HEIGHT.

TOP AND BOTTOM FLANGES.

(b) = FOR AASHTO TYPE 2, 3 & 4 BEAMS, DO NOT CLIP THE

CLIP THE BOTTOM FLANGE.

DIMENSION, NORMAL TO | BEAM, SHALL BE 6". DO NOT

THE TOP FLANGE MAY BE CLIPPED. THE MAXIMUM CLIP

(a) = FOR WF BEAMS AND MODIFIED AASHTO TYPE 4 BEAMS,

8 9

Page 8: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

(PEJF NOT SHOWN)

BEARING & SEAT DETAIL

SLOPE SLOPE

HP10x42 WITH 1" DIA.

VENT HOLE IN WEB

AT MID-HEIGHT (e)

ƒ" THICK EMBEDDED

STEEL SOLE PLATE†" DIA. x 5"

END WELDED

STUD (TYP.)

88

F F

BEAM SEAT

SEE DETAIL G

Š

Š

STEEL UPPER LOAD PLATE (f)

1'-6"

1'-6"1'-6"

3'-0" LEVEL SEAT

•" (TYP.)

18"x10" ELASTOMERIC BEARING

(SEE TABLE FOR LAYERS AND

THICKNESSES) (a)

(c)

19"x11"x1•"

STEEL LOWER

LOAD PLATE

SOLE PLATE

EMBEDDED STEEL

ƒ" THICK1'-8"

ABCBA

| BEARING

BEAM ENDƒ" ƒ"

4"

3"

6"

4"

3"

(d)

(d)

(d)

PLATE WIDTH

SECTION F-F

(REMAINDER OF BEARING ASSEMBLY NOT SHOWN)

(EMBEDDED STEEL SOLE PLATE DETAILS)

STUD (g)

8"

DETAIL G

TYPICAL LOCATION OF CHAMFER.

1'-8" MEASURED FROM THE END OF THE BEAM.

OF THE EMBEDDED SOLE PLATE FOR A LENGTH OF

THE ƒ" CHAMFER SHALL BE MOVED TO THE TOP

STEEL UPPER LOAD PLATE

8 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SHEET 8 NOTES AND LEGEND:

WIDTH

FLANGE

BOTTOM

WIDTH

PLATEB C

3'-4"

2'-2"

1'-10"

1'-6"

3'-2•"

2'-0•"

1'-8•"

1'-4•"

6‚"

5‚"

4‚"

3‚"

8"

4"

4"

2"

A

SOLE PLATE DIMENSIONS

(d)

10"

6"

4"

6"

(d)

400' < L <= 500'

290' < L <= 400'

L <= 290'

0.400"

0.373"

0.412"

0.280"

0.261"

0.288"

6

5

3

1

1

1

THICKNESS

LAYER

ELASTOMER

INTERNAL

THICKNESS

LAYER

ELASTOMER

EXTERNAL

LAYERS

ELASTOMER

INTERNAL

NO. OF

LAYERS

ELASTOMER

EXTERNAL

NO. OF

THICKNESS

BEARING

TOTAL

THICKNESS

LAMINATE

STEEL

LAMINATES

STEEL

NO. OF

6

5

3

0.0747"

0.0747"

0.0747"

3„"

2•"

1ƒ"

(c/c ABUT. BRGS.)

LENGTH

STRUCTURE

TOTAL

ELASTOMERIC BEARING DIMENSIONS (b)

WIDTH

FLANGE

BOTTOM

WIDTH

PLATE

3'-4"

2'-2"

1'-10"

1'-6"

LENGTH

PLATE

3'-4"

2'-2"

1'-10"

1'-6"

11"

11"

11"

11"

UPPER LOAD PLATE DIMENSIONS (f)

SOLE PLATE IS INCIDENTAL TO THE COST OF THE I-BEAMS.

ASSEMBLY FOR PAYMENT. THE ƒ" THICK EMBEDDED STEEL

CONSIDERED COMPONENTS OF THE ELASTOMERIC BEARING

UPPER & LOWER LOAD PLATES AND HP SHAPES SHALL BE

ASSEMBLIES (UPPER & LOWER LOAD PLATES AND HP SHAPES).

PER CMS 516.03, GALVANIZE STEEL COMPONENTS OF BEARING

DURING THE MOLDING PROCESS.

VULCANIZE THE STEEL LOWER LOAD PLATE TO THE ELASTOMER

BRIDGES, DIVISION II, SECTION 18.7.2.6) IS NOT REQUIRED.

LOAD TEST (AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY

DESIGN SPECIFICATIONS. THE LONG-TERM COMPRESSION PROOF

WITH SECTION 14.7.6 (METHOD A) OF THE AASHTO LRFD BRIDGE

OF 60 DUROMETER. THE BEARINGS WERE DESIGNED IN ACCORDANCE

ELASTOMERIC BEARINGS: THE ELASTOMER SHALL HAVE A HARDNESS

OF THE STUDS ON THE PLANS.

STRANDS. THE DESIGNER SHALL SHOW THE EXACT LOCATION

INTERFERING WITH REINFORCING STEEL AND PRESTRESSING

(g) = END WELDED STUDS MAY BE RELOCATED IN ORDER TO AVOID

Fy = YIELD STRENGTH (KSI)

Pu = FACTORED DEAD LOAD REACTION (KIPS) (WITHOUT FWS)

bf = FLANGE WIDTH OF HP SHAPE (IN.)

N = UPPER LOAD PLATE LENGTH (PARALLEL TO | BEAM) (IN.)

B = UPPER LOAD PLATE WIDTH (NORMAL TO | BEAM) (IN.)

WHERE

T = [0.5*(B-0.8*bf)* 2*Pu/(Fy*B*N) ] - ƒ" >= ƒ"

AS FOLLOWS (ROUND UP TO NEAREST „"):

(f) = THICKNESS (T) OF UPPER LOAD PLATE SHALL BE CALCULATED

| BEARING PRIOR TO PLACEMENT OF THE DECK.

SHALL MATCH THE LOCAL TANGENT OF THE BEAM AT THE

(e) = CUT THE TOP OF THE HP10x42 ON A SLOPE. THE SLOPE

ADJUSTED ACCORDINGLY.

MAY BE DECREASED BY …". DIMENSION "A" SHALL BE

(d) = IN ORDER TO ALLOW FOR FIT-UP, THE PLATE WIDTH

(c) = 6" MIN. @ | BEARING

DIAPHRAGMS.

10/10, FOR GUIDANCE REGARDING PLACEMENT OF PIER

DIAPHRAGMS AND STANDARD DRAWING PSID-1-13, SHEET

GUIDANCE REGARDING PLACEMENT OF ABUTMENT

PIER DIAPHRAGMS. REFER TO BDM SECTION 702.6.1 FOR

LENGTH, IF ABUTMENT DIAPHRAGMS ARE PLACED BEFORE

L <= 290', REGARDLESS OF ACTUAL TOTAL STRUCTURE

(b) = USE THE ELASTOMERIC BEARING DIMENSIONS FOR

FOR THE ELASTOMERIC BEARINGS.

EXCEEDS 200 KIPS, THEN PROVIDE A SPECIAL DESIGN

WEARING SURFACE. IF THE ACTUAL DEAD LOAD REACTION

ACTUAL DEAD LOAD REACTION, NOT INCLUDING FUTURE

KIPS PER BEARING. THE DESIGNER SHALL CALCULATE THE

ON A MAXIMUM SERVICE DEAD LOAD REACTION OF 200

(a) = THE BEARING SIZES SHOWN ON THIS DRAWING ARE BASED

Page 9: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

07-20-18

9 9

ST

AT

E

OF

OHIO

DEP

AR

TM

EN

T

OF T

RA

NSP

OR

TA

TIO

ND

ESIG

N

DA

TA S

HE

ET

DESIG

N

AG

EN

CY

RE

VISIO

NS

AD

MINIS

TR

AT

OR

DA

TE

ST

RU

CT

UR

AL E

NGIN

EE

RIN

G

OFFIC

E

OF

IC

D-2-18

ON F

LE

XIB

LE

AB

UT

ME

NT

S

PR

ES

TR

ESS

ED C

ON

CR

ET

E I-

BE

AM B

RID

GES

IN

TE

GR

AL C

ON

ST

RU

CTIO

N

DE

TAILS F

OR

SIZE

PILE

14" CIP

12" CIP

HP14x73

HP12x53

HP10x42

CLAY

50

45

40

35

30

35

30

30

25

25

SAND

MINIMUM LENGTH, FT.

GENERAL NOTES:

£

£

£

£

DRAWING AS-1-15

SEE STANDARD

135° BEND

STANDARD

7 9

£ = SKEW ANGLE

SEE SHEET .

N = DIAPHRAGM WIDTH FOR SKEWED BRIDGES.

* = DIMENSION VARIES

CONTRACTOR REQUIREMENTS.

REFER TO STANDARD DRAWING PSID-1-13, SHEET 10/10, FOR

TEMPORARY STABILITY FOR DECK PLACEMENT:

STEEL H-PILES - ASTM A572 - YIELD STRENGTH 50 KSI

NOTES)

STRENGTH IN THE BRIDGE GENERAL

REQUIRED STEEL GRADE AND YIELD

(THE DESIGNER SHALL SPECIFY THE

STRENGTH 36 OR 50 KSI

STRUCTURAL STEEL - ASTM A709 GRADE 36 OR 50 - YIELD

REINFORCING STEEL - MINIMUM YIELD STRENGTH 60 KSI

(SUBSTRUCTURE)

CONCRETE CLASS QC1 - COMPRESSIVE STRENGTH 4.0 KSI

(SUPERSTRUCTURE)

CONCRETE CLASS QC2 - COMPRESSIVE STRENGTH 4.5 KSI

DESIGN DATA:

FUTURE WEARING SURFACE (FWS) OF 0.060 KSF

HL-93 LIVE LOAD

DESIGN LOADING:

REVISIONS THROUGH JANUARY 2018.

2017, AND THE ODOT BRIDGE DESIGN MANUAL, 2007 EDITION, WITH

STATE HIGHWAY AND TRANSPORTATION OFFICIALS, 8TH EDITION,

SPECIFICATIONS" ADOPTED BY THE AMERICAN ASSOCIATION OF

THIS STRUCTURE CONFORMS TO THE "LRFD BRIDGE DESIGN

DESIGN SPECIFICATIONS:

CONCERNS ABOUT SETTLEMENT OR DIFFERENTIAL SETTLEMENT.

INTEGRAL ABUTMENTS SHALL NOT BE USED WHERE THERE ARE

SUPPORTED ON AT LEAST 4 PILES.

FOR PHASED CONSTRUCTION PROJECTS, EACH PHASE SHALL BE

INTEGRAL ABUTMENTS SHALL BE SUPPORTED ON AT LEAST 4 PILES.

THE HEIGHT OF THE PILE CAP SHALL NOT EXCEED 7'-6".

BETWEEN FLANGE TIPS.

FOR AN HP SHAPE SHALL BE TAKEN AS THE DIAGONAL DISTANCE

ALLOWABLE PILE SPACING IS 3 PILE DIAMETERS. THE PILE DIAMETER

THE MAXIMUM ALLOWABLE PILE SPACING IS 8'. THE MINIMUM

ABOVE SHALL NOT BE USED UNLESS APPROVED BY THE DEPARTMENT.

PILE TYPES AND SIZES OTHER THAN THOSE SHOWN IN THE TABLE

SPECIFICATIONS.

REQUIREMENTS OF THE AASHTO LRFD BRIDGE DESIGN

COMPRESSION AND FLEXURE IN THE PILES SATISFIES THE

AT THE BOTTOM OF THE PILES, AND THAT THE COMBINED AXIAL

RESISTANCE IS AVAILABLE, THAT NO LATERAL DEFLECTION OCCURS

CALCULATIONS SHALL DEMONSTRATE THAT ADEQUATE LATERAL

OF 3' INTO SCOUR-RESISTANT ROCK SHALL BE USED. THE

PILES DRIVEN TO REFUSAL ON BEDROCK, A MINIMUM CORE DEPTH

SUPPORT THE USE OF A SHORTER LENGTH, AND, IN THE CASE OF

OBTAINED, THEN THE DESIGNER SHALL PERFORM CALCULATIONS TO

IF THE MINIMUM LENGTH SHOWN IN THE TABLE ABOVE CANNOT BE

TYPE-3

A

B

TYPE-1

B

A

B

A/2A/2

A

10"

A/2

A/2

10"

10"

10"

A

B

TYPE-26

TYPE-18

A B

C

TYPE-19

TYPE-24

REINFORCING STEEL LIST

MARK LENGTH TYPE A B C

A401 9'-7" 3 2'-6" 2'-0"

A501 * 2(N-4")/COS (SKEWED)

3'-0" (NO SKEW)*

A502 * 2 2'-2" *

A503 SERIES * 2 2'-2" SERIES *

A504 * 2 2'-2" *

A505 * 3 2'-2" *

A506 * 19 * * *

S401 4'-1" 24 4•" 1'-8"

S402 4'-0" STR

S403 * 2 * 8"

S501 * 2(N-4")/COS (SKEWED)

3'-0" (NO SKEW)*

S502 * 2(N-10")/COS (SKEWED)

2'-6" (NO SKEW)*

S601 * 26(N-4")/COS (SKEWED)

3'-0" (NO SKEW)

S801 * 18

PILE LENGTHS, ARE SHOWN IN THE TABLE BELOW.

PILES. ALLOWABLE PILE TYPES AND SIZES, ALONG WITH MINIMUM

INTEGRAL ABUTMENTS SHALL BE SUPPORTED ON A SINGLE ROW OF

COULD OCCUR IN ONE DIRECTION).

333' (500' TOTAL STRUCTURE LENGTH, ASSUMING 2/3 MOVEMENT

LENGTH FOR INTEGRAL PRESTRESSED CONCRETE I-BEAM BRIDGES IS

MAXIMUM SKEW OF 30°. THE MAXIMUM PERMISSIBLE EXPANSION

OR CURVED ALIGNMENT WITH TANGENT SUPERSTRUCTURES WITH A

INTEGRAL ABUTMENT DETAILS ARE INTENDED FOR USE ON STRAIGHT

LIMITATIONS:

Page 10: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD‐2‐18 – Integral Construction Details for Prestressed Concrete I‐Beam Bridges on Flexible Abutments  July 20, 2018  

Page | 1 

 

1. Overview 

The purpose of Design Data Sheet  ICD‐2‐18  is  to provide  information  to designers  regarding standard 

design  and  detailing  practices  for  integral  abutments  for  prestressed  concrete  I‐beam  bridges.  This 

drawing shows geometric requirements for integral abutments including width, height, and length of the 

diaphragm, as well as dimensional requirements for the pile cap. Treatments of wingwalls, approach slabs, 

and railings are also shown on the drawings. Minimum reinforcing for the diaphragm and pile cap are 

shown,  and  this  supplement  includes  design  methodology  and  example  calculations  for  piles  and 

reinforcing. Bearing sizes and details are presented, and limitations on the use of integral abutments for 

prestressed concrete I‐beam bridges are stated. 

The following sections of this document will discuss the ICD‐2‐18 drawing in greater detail. 

 

2. Plan Preparation Requirements 

Design Data Sheets are not intended to be used as contract drawings. Project plans shall include all details, 

notes, and pay items needed for construction. 

 

3. Detail Information 

 

3.1 Sheets 1/9 through 3/9 

These sheets show details for square and skewed structures with concrete parapets. The concrete parapet 

ends  at  the  back  face  of  the  diaphragm.  For  skewed  structures,  a  triangular‐shaped  (in  plan  view) 

diaphragm  protrusion  supports  the  squared‐off  end  of  the  parapet.  This  detailing method  provides 

adequate clearance between  the diaphragm and  the  first post of  the bridge  terminal assembly, while 

providing support for the full‐length of the parapet. The diaphragm protrusion extends down only to the 

level of the approach slab seat, thus allowing for installation of the neoprene sheeting on a flat surface. 

Wingwalls shall be parallel to the centerline of abutment bearings. Turned‐back or flared wingwalls shall 

not  be  used  due  to  the  increased  rigidity  of  the  abutment/wingwall  pile  group  for  these wingwall 

configurations. A 2” PEJF expansion  joint shall be provided between the diaphragm and the wingwalls, 

and shall be located immediately outside of the edge of deck. 

Curbs shall be supported on the approach slabs. The approach slab seat shall extend only to the face of 

curb. Therefore, the approach slab corners will be notched‐out. PEJF shall be provided at the approach 

slab corners as shown. 

Due to the addition of the concrete weight, the I‐beams will rotate about the centerline of bearing during 

placement of  the deck  in  the adjacent  span. A hardened diaphragm may  reduce  the  total amount of 

deflection and may be damaged in the process. Therefore, regardless of skew, the abutment diaphragm 

shall not be placed until the deck placement has been completed in the adjacent span. Procedures that 

place the abutment diaphragm with the deck concrete may be approved by the Engineer if the placement 

submittal can assure that the deck concrete  in the adjacent span will be placed before concrete  in the 

diaphragm has reached its initial set. 

Page 11: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD‐2‐18 – Integral Construction Details for Prestressed Concrete I‐Beam Bridges on Flexible Abutments  July 20, 2018  

Page | 2 

 

Avoid acute diaphragm corners by squaring the last 3” of the face to the end of the diaphragm. 

3.2 Sheets 4/9 and 5/9 

These sheets show details  for square and skewed structures with  twin steel  tube  (TST) bridge  railing. 

Dimensions are  shown  to establish acceptable  locations  for  the  top‐mounted TST post,  the  first  side‐

mounted TST post on  the bridge, and  the  first post of  the bridge  terminal assembly. Refer  to Bridge 

Standard Drawing TST‐1‐99 and Roadway Standard Drawing MGS‐3.1 for additional railing details. 

Wingwalls shall be parallel to the centerline of abutment bearings. Turned‐back or flared wingwalls shall 

not  be  used  due  to  the  increased  rigidity  of  the  abutment/wingwall  pile  group  for  these wingwall 

configurations. A 2” PEJF expansion  joint shall be provided between the diaphragm and the wingwalls, 

and shall be located 1’‐6” outside of the edge of deck to provide room for the top‐mounted TST post on 

the diaphragm. 

Curbs are not required when connecting a bridge terminal assembly to a TST bridge railing. The approach 

slab edges shall be aligned with the bridge deck edges. PEJF shall be provided at the approach slab corners 

as shown. 

3.3 Sheet 6/9 

This  sheet  shows  representative  elevation  and  section  views  of  an  integral  abutment with  concrete 

parapets and no skew. Dimensions are shown in Section D‐D for no skew, with a reference to Sheet 7/9 

for dimensions with skew. A mandatory vertical construction joint located at 1’‐0” from the front face of 

the diaphragm shall be shown. Refer to Section 3.1 for more information. 

The following design methodologies may be used. See Section 4 for example calculations. The reinforcing 

steel provided shall not be less than the minimums shown on Sheet 6/9 of the Design Data Sheet.  

Determine  the pile  spacing based on  consideration of axial  loads only, unless noted otherwise  in  the 

general notes on Sheet 9/9 of the Design Data Sheet. Assume that 1/3 of the approach slab dead load is 

supported by the abutment. Apply the maximum number of lanes that will fit on the superstructure and 

apply the multiple presence factor. Do not apply a dynamic load allowance. 

For design of the horizontal reinforcing at the top and bottom of the pile cap, model the pile cap as a 

continuous beam with supports at each pile location. A depth equal to the minimum pile cap depth may 

be used for the entire length of the pile cap model. Model the dead load beam reactions as concentrated 

loads. Use the live load reaction per wheel and distribute the wheel loads to the beams assuming the deck 

to act as  simple  spans between beams. Place wheel  loads at  locations  that  cause highest  shears and 

moments. Apply the multiple presence factor and dynamic load allowance. 

For design of the horizontal reinforcing at the front and back faces of the diaphragm, model the diaphragm 

as a continuous beam with supports at each prestressed concrete I‐beam location. Use a beam width of 

1’, corresponding to the bottom 1’‐height of the diaphragm. Calculate the earth pressure acting on the 

back face of the diaphragm when the bridge expands into the backfill. To calculate the bridge expansion 

movement, use an expansion length equal to 2/3 of the total bridge length, a temperature rise of 35°, and 

a  factor  of  1.2  corresponding  to  the  load  factor  for  temperature  (TU)  effects  for  deformations.  The 

movement required to mobilize full passive pressure may be assumed to be equal to 5% of the diaphragm 

height, measured from the top of the pile cap to the bottom of the approach slab. The pressure on the 

Page 12: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD‐2‐18 – Integral Construction Details for Prestressed Concrete I‐Beam Bridges on Flexible Abutments  July 20, 2018  

Page | 3 

 

back face of the diaphragm may be assumed to be a  linear  interpolation between at‐rest pressure (for 

zero movement) and full passive pressure (for the movement specified above). Use a load factor of 1.5 

for the earth pressure. For typical backfill behind abutments (Type B granular material per CMS 503.08), 

use a unit weight of 0.120 kcf, an angle of internal friction (φ) of 38°, and a friction angle between fill and 

wall  (δ) of 19°. Apply a  live  load  surcharge equal  to 50% of  the  surcharge  specified  in AASHTO  LRFD 

3.11.6.4. 

For design of the horizontal reinforcing at the front and back faces of the pile cap, model the pile cap as a 

continuous beam with supports at each pile location. Use a beam width of 1’, corresponding to the bottom 

1’‐height of the pile cap. Calculate the earth pressure acting on the back face of the pile cap when the 

bridge expands into the backfill. Calculate the bridge expansion movement as described above for design 

of the diaphragm. The movement required to mobilize full passive pressure may be assumed to be equal 

to 5% of  the  total abutment height, measured  from  the bottom of  the pile cap  to  the bottom of  the 

approach slab. The pressure on the back face of the pile cap may be assumed to be a linear interpolation 

between at‐rest pressure  (for  zero movement) and  full passive pressure  (for  the movement  specified 

above). Use a load factor of 1.5 for the earth pressure. Use φ and δ angles as described above for design 

of the diaphragm. Apply a live load surcharge equal to 50% of the surcharge specified in AASHTO LRFD 

3.11.6.4. 

The horizontal reinforcing at the front and back faces of the pile cap shall also meet the requirements for 

skin reinforcing in AASHTO LRFD 5.6.7. 

For the design of the “X” bars connecting the diaphragm to the pile cap, calculate the seismic horizontal 

connection force per the Bridge Design Manual and the AASHTO LRFD Bridge Design Specifications. Ensure 

that the area of steel provided results in adequate shear friction to resist the seismic horizontal connection 

force at the Extreme Event Limit State. 

For crack control checks, assume a Class 1 exposure condition (ϒe = 1). In areas where the concrete cover 

varies due to the differing slopes of the beam seat, supplement the primary #8 bars with #4 or #5 bars 

detailed to be developed in areas not meeting the crack control criteria. 

3.4 Sheet 7/9 

This sheet shows the information necessary to determine the diaphragm and pile cap width for skewed 

structures. Note that the  top  flange may be clipped only  for WF beams and Modified AASHTO Type 4 

beams. The maximum clip dimension, normal to centerline beam, shall be 6”. Do not clip the top flange 

of AASHTO Type 2, 3, and 4 beams. Do not clip the bottom flange for any beam type. 

3.5 Sheet 8/9 

This sheet shows standard bearing sizes and details to be used for integral prestressed I‐beam bridges. If 

the actual dead load reaction exceeds the 200‐kip limit stated in note (a), then provide a special design 

for the elastomeric bearings. The calculated vertical dead load should consider the placement sequence 

of the abutment diaphragm and deck. The bearing does not need to be designed for vertical loads that 

are placed after the abutment diaphragm has cured. 

The  number  and  thickness  of  elastomer  layers  depends  on  the  bridge  length  and  on  the  timing  of 

abutment and pier diaphragm pours. Refer to note (b) for more specific directions. 

Page 13: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD‐2‐18 – Integral Construction Details for Prestressed Concrete I‐Beam Bridges on Flexible Abutments  July 20, 2018  

Page | 4 

 

3.6 Sheet 9/9 

This  sheet  contains  reinforcing  steel  details  and  general  notes.  The  length  limitations  for  integral 

prestressed I‐beam bridges are defined. For 0° skew, the limit of 500’ for concrete bridges corresponds to 

the same superstructure contraction movement demand for steel bridges with a maximum length of 400’, 

considering a temperature fall of 90° F for steel bridges and 45° F for concrete bridges, and a shrinkage 

coefficient of 0.0002 in/in for concrete bridges. 

Minimum pile lengths are defined, and are based on the pile type and size as well as the predominant soil 

type. For cases where the minimum pile lengths are satisfied, the determination of pile spacing may be 

based on axial loads only. For cases where the minimum pile lengths cannot be satisfied (e.g. relatively 

shallow depths to rock or difficult driving conditions that may prevent achieving the minimum lengths), 

calculations which consider the lateral loading on the piles must be provided as stated in the notes. The 

minimum pile  lengths  are based on  the  information provided  in Publication  FHWA/IN/JTRP‐2004/24, 

Jointless and Smoother Bridges: Behavior and Design of Piles, Frosch et al, 2006. 

 

 

 

   

Page 14: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Design Example

ICD-2-18 Integral Construction Details for Prestressed Concrete I-Beam Bridges on Flexible AbutmentsThe purpose of this design example is to further describe the application of the design methodologies outlined in the"Detail Information" section of this Designer Supplement.

Design Information:Design Specification: AASHTO LRFD Bridge Design Specifications, 8th Edition, and ODOT Bridge Design Manual,2007 Edition, with revisions through July 2018.Design Loading: HL-93 Live Load and future wearing surface of 60 psf.3-span bridge, end span length = 90' c/c bearings, total bridge length = 276'Skew = 10°Deck thickness = 8.5” (including 1” monolithic wearing surface)Average haunch thickness over length of each span = 3”Abutment pile cap height varies from 5' minimum at edge of deck to 5.5' maximum at crownBeam clip = 1", measured normal to the CL of the beam

Deck width normal toroadway alignmentWSS 45ft 4in 45.33 ft

Wb 20in Barrier width

θskew 10deg Bridge skew

W 49in Larger beam flange width

sbeam 9ft 10in 9.83 ft Beam spacing

dclip 1.0in Clip distance

Distance from beam CLto flange edgeW1

W

2dclip 23.5 in

NI 3 Number of interior beams

NE 2 Number of exterior beams

WSS Wb 2 12ft

3.5 NL 3 Number of lanes on bridge

Page 5

Page 15: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

m 1.20 NL 1=if

1.00 NL 2=if

0.85 NL 3=if

0.65 otherwise

0.85 Multiple presence factor[LRFD 3.6.1.1.2]

Step 1: Select pile size and spacing

Factored Loads for Pile Spacing

Ldiaph

WSS

cos θskew 46.03 ft Diaphragm length measured

along CL of bearing

Habut5.5ft 5.0ft

25.25 ft Average abutment height

Width of end diaphragm and abutment per sheet 7/9 on the ICD-2-18 design data sheet:

N max 20inW

2tan θskew

cos θskew 8in cos θskew W1 sin θskew 12in

2 47.92 in

say N 48in End diaphragm width

tdeck 8.5in Deck thickness

hhaunch 3in Haunch height

hbeam 48in Beam height

hbear 10in Bearing height

tAS 15in Approach slab thickness

H tdeck hhaunch hbeam hbear End diaphragm height

Service I Reactions at abutment from LEAP Bridge ConcreteRbeam 45.7kip

Rprecast_I 5.5kip Rprecast_E 6.1kip

Rdeck_I 48.4kip Rdeck_E 40.3kip

Rdiaph_I 5.1kip Rdiaph_E 2.6kip

Rparapet 11.0kip

Rfws 22.7kip

Rlane_LL 93.3kip

γDC 1.25 γDW 1.5 γLL 1.75 LRFD load factors[LRFD 3.4.1]

Component and Attachment Loads

Superstructure:

RDC1 γDC Rbeam Rprecast_I Rdeck_I Rdiaph_I Rparapet NI

Rbeam Rprecast_E Rdeck_E Rdiaph_E Rparapet NE

698.12 kip

wDC1

RDC1

Ldiaph15.17

kip

ft

Page 6

Page 16: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

End Diaphragm:

wDC2 γDC N H 150 pcf 4.34kip

ft

Abutment Pile Cap:

wDC3 γDC N Habut 150 pcf 3.94kip

ft

Approach Slab:

LAS 25ft Approach slab length

tAS 1.25ft Approach slab thickness

wDC4 γDC

LAS

3 tAS 150 pcf 1.95

kip

ft

wDC wDC1 wDC2 wDC3 wDC4 25.4kip

ft

Wearing Surface and Utility Loads

Future Wearing Surface:

RDW γDW Rfws NI NE 170.25 kip

wDW

RDW

Ldiaph3.7

kip

ft

Live LoadsRLL γLL Rlane_LL NL m 416.35 kip

wLL

RLL

Ldiaph9.04

kip

ft

Total Factored Line Load

wT wDC wDW wLL 38.14kip

ft

Pile Spacing

RR_max 310kip Ultimate pile load, HP10x42 drivento bedrock [BDM 202.2.3.2.a]

*if piles are not driven to bedrock, substitute RRmax with Rndr [BDM 202.2.3.2b]

spile

RR_max

wT8.13 ft

Maximum pile spacing[BDM 303.4.2.2]spile_max 8ft

spile min spile spile_max 8 ft Pile spacing

Page 7

Page 17: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 2: Design horizontal reinforcing at top and bottom of pile cap

The pile cap is designed with uniform dead load from the approach slab, diaphragm, and abutment. The superstructureloads applied to the substructure through the beam bearings are positioned to produce the maximum load effects(shear and moment) in the pile cap. The live load positions considered for the example structure are shown below. Thedesigner shall consider unique live load positioning for each individual structure, in order to maximize the load effectsin the pile cap.

Page 8

Page 18: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Pile Cap Loading

Abutment, Diaphragm, and Approach Slab Loads

Pile Cap:

W1_sevice N Habut 150 pcf 3.15kip

ft W1_strength γDC W1_sevice 3.94

kip

ft

Diaphragm and Approach Slab:

W2_service N tdeck hhaunch hbeam hbear LAS

3tAS

150 pcf 5.04kip

ft

W2_strength γDC W2_service 6.3kip

ft

Component and Attachment Loads

Interior Beams (P2, P3, P4)

PI_DCservice Rbeam Rprecast_I Rdeck_I Rdiaph_I Rparapet 115.7 kip

PI_DCstrength γDC PI_DCservice 144.62 kip

Exterior Beams (P1, P5)

PE_DCservice Rbeam Rprecast_E Rdeck_E Rdiaph_E Rparapet 105.7 kip

PE_DCstrength γDC PE_DCservice 132.13 kip

Wearing Surface and Utility Loads

PDWservice Rfws 22.7 kip

PDWstrength γDW PDWservice 34.05 kip

Live Loads

Truck and lane reactions are from LEAP Bridge Concrete analysis.Reaction at abutmentfrom design truck per laneRtruck 64.5kip

IM 1.33 Dynamic load allowance

Reaction at abutment fromdesign lane loadRlane 28.8kip

wlane

Rlane

10ft2.88

kip

ft Design lane dist. load

conversion from lane load towheel loadx 0.5

Page 9

Page 19: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Case 1:

m1 1.2

Beam 1:

P11_truck9.167ft 3.167ft( )

sbeamRtruck IM x m1 64.56 kip

P11_lane wlane 1.333 ft wlane 8.667 ft5.5ft

sbeam

17.8 kip

P11_LLservice P11_truck P11_lane 82.36 kip

P11_LLstrength γLL P11_LLservice 144.13 kip

Beam 2:

P21_truck0.667ft 6.667ft( )

sbeamRtruck IM x m1 38.39 kip

P21_lane wlane 8.667 ft4.333ft

sbeam

11 kip

P21_LLservice P21_truck P21_lane 49.39 kip

P21_LLstrength γLL P21_LLservice 86.43 kip

Page 10

Page 20: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Case 2:

m2 1.0

Beam 1:

P12_truck9.167ft 3.167ft( )

sbeamRtruck IM x m2 53.8 kip

P12_lane wlane 1.333 ft wlane 8.667 ft5.5ft

sbeam

17.8 kip

P12_LLservice P12_truck P12_lane 71.6 kip

P12_LLstrength γLL P12_LLservice 125.3 kip

Beam 2:

P22_truck0.667ft 6.667ft 7ft 1ft( )

sbeamRtruck IM x m2 66.89 kip

P22_lane wlane 8.667ft4.333ft

sbeam

9ft4.5ft

sbeam

22.86 kip

P22_LLservice P22_truck P22_lane 89.75 kip

P22_LLstrength γLL P22_LLservice 157.06 kip

Beam 3:

P32_truck2.833ft 8.833ft( )

sbeamRtruck IM x m2 50.89 kip

P32_lane wlane 1 ft9.333ft

sbeam

2.73 kip

P32_LLservice P32_truck P32_lane 53.62 kip

P32_LLstrength γLL P32_LLservice 93.83 kip

Beam 4:

P42_lane wlane 1 ft0.5ft

sbeam

0.15 kip

P42_LLservice P42_lane 0.15 kip

P42_LLstrength γLL P42_LLservice 0.26 kip

Page 11

Page 21: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Case 3:

m1 1.2

Beam 1:

P13_lane wlane 2 ft1ft

sbeam

0.59 kip

P13_LLservice P13_lane 0.59 kip

P13_LLstrength γLL P13_LLservice 1.03 kip

Beam 2:

P23_truck

sbeam 3.833ft sbeam

Rtruck IM x m1 71.53 kip

P23_lane wlane 2ft8.833ft

sbeam

8ft5.833ft

sbeam

18.84 kip

P23_LLservice P23_truck P23_lane 90.38 kip

P23_LLstrength γLL P23_LLservice 158.16 kip

Beam 3:

P33_truck6ft

sbeamRtruck IM x m1 31.41 kip

P33_lane wlane 8 ft4ft

sbeam

9.37 kip

P33_LLservice P33_truck P33_lane 40.78 kip

P33_LLstrength γLL P33_LLservice 71.36 kip

Page 12

Page 22: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Case 4:

m2 1.0

Beam 1:

P14_truck7.167ft 1.167ft( )

sbeamRtruck IM x m2 36.35 kip

P14_lane wlane 9.167 ft4.583ft

sbeam

12.3 kip

P14_LLservice P14_truck P14_lane 48.66 kip

P14_LLstrength γLL P14_LLservice 85.15 kip

Beam 2:

P24_truck2.667ft 8.667ft 7ft 1ft( )

sbeamRtruck IM x m2 84.33 kip

P24_lane wlane 9.167ft5.25ft

sbeam

9.833ft4.917ft

sbeam

28.26 kip

P24_LLservice P24_truck P24_lane 112.59 kip

P24_LLstrength γLL P24_LLservice 197.03 kip

Beam 3:

P34_truck2.833ft 8.833ft( )

sbeamRtruck IM x m2 50.89 kip

P34_lane wlane sbeam4.917ft

sbeam

1ft9.333ft

sbeam

16.89 kip

P34_LLservice P34_truck P34_lane 67.78 kip

P34_LLstrength γLL P34_LLservice 118.62 kip

Beam 4:

P44_lane wlane 1 ft0.5ft

sbeam

0.15 kip

P44_LLservice P44_lane 0.15 kip

P44_LLstrength γLL P44_LLservice 0.26 kip

Page 13

Page 23: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Beam Reactions:

Service:

Case 1:P11_service PE_DCservice PDWservice P11_LLservice 210.76 kip

P21_service PI_DCservice PDWservice P21_LLservice 187.79 kip

Case 2:P12_service PE_DCservice PDWservice P12_LLservice 200 kip

P22_service PI_DCservice PDWservice P22_LLservice 228.15 kip

P32_service PI_DCservice PDWservice P32_LLservice 192.02 kip

P42_service PI_DCservice PDWservice P42_LLservice 138.55 kip

Case 3:P13_service PE_DCservice PDWservice P13_LLservice 128.99 kip

P23_service PI_DCservice PDWservice P23_LLservice 228.78 kip

P33_service PI_DCservice PDWservice P33_LLservice 179.18 kip

Case 4:P14_service PE_DCservice PDWservice P14_LLservice 177.06 kip

P24_service PI_DCservice PDWservice P24_LLservice 250.99 kip

P34_service PI_DCservice PDWservice P34_LLservice 206.18 kip

P44_service PI_DCservice PDWservice P44_LLservice 138.55 kip

Strength:

Case 1:P11_strength PE_DCstrength PDWstrength P11_LLstrength 310.31 kip

P21_strength PI_DCstrength PDWstrength P21_LLstrength 265.1 kip

Case 2:P12_strength PE_DCstrength PDWstrength P12_LLstrength 291.48 kip

P22_strength PI_DCstrength PDWstrength P22_LLstrength 335.73 kip

P32_strength PI_DCstrength PDWstrength P32_LLstrength 272.51 kip

P42_strength PI_DCstrength PDWstrength P42_LLstrength 178.93 kip

Case 3:P13_strength PE_DCstrength PDWstrength P13_LLstrength 167.2 kip

P23_strength PI_DCstrength PDWstrength P23_LLstrength 336.83 kip

P33_strength PI_DCstrength PDWstrength P33_LLstrength 250.04 kip

Case 4:P14_strength PE_DCstrength PDWstrength P14_LLstrength 251.32 kip

P24_strength PI_DCstrength PDWstrength P24_LLstrength 375.71 kip

P34_strength PI_DCstrength PDWstrength P34_LLstrength 297.29 kip

P44_strength PI_DCstrength PDWstrength P44_LLstrength 178.93 kip

Page 14

Page 24: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Beam loads when beam does not carry live loads:

PI_service PI_DCservice PDWservice 138.4 kip

PE_service PE_DCservice PDWservice 128.4 kip

PI_strength PI_DCstrength PDWstrength 178.67 kip

PE_strength PE_DCstrength PDWstrength 166.17 kip

Results from an external continuous beam analysis are as follows:

Service:Case 1:M1pos_service 342.57kip ft M1neg_service 282.71 kip ft

Case 2:M2pos_service 319.26kip ft M2neg_service 286.61 kip ft

Case 3:M3pos_service 220.43kip ft M3neg_service 229.59 kip ft

Case 4:M4pos_service 279.40kip ft M4neg_service 275.23 kip ft

Strength:Case 1:M1pos_strength 497.66kip ft M1neg_strength 400.58 kip ft V1_strength 247.34kip

Case 2:M2pos_strength 456.87kip ft M2neg_strength 407.4 kip ft V2_strength 267.48kip

Case 3:M3pos_strength 283.91kip ft M3neg_strength 307.6 kip ft V3_strength 284.21kip

Case 4:M4pos_strength 387.11kip ft M4neg_strength 387.49 kip ft V4_strength 304.19kip

Design Forces:

Mpos_service max M1pos_service M2pos_service M3pos_service M4pos_service 342.57 kip ft

Mneg_service min M1neg_service M2neg_service M3neg_service M4neg_service 286.61 kip ft

Mpos_strength max M1pos_strength M2pos_strength M3pos_strength M4pos_strength 497.66 kip ft

Mneg_strength max M1neg_strength M2neg_strength M3neg_strength M4neg_strength 307.6 kip ft

Vstrength max V1_strength V2_strength V3_strength V4_strength 304.19 kip

Page 15

Page 25: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Calculate the flexural resistance provided using the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet.Minimum Reinforcement [LRFD 5.6.3.3]f'cA 4ksi fy 60ksi

γ3 0.67 γ1 1.6

N 48 in Hmin 5ft Pile cap dimensions

Sc

N Hmin2

628800 in

3 Pile cap section modulus

fr 0.24f'cA

ksi ksi 480 psi Modulus of rupture [LRFD 5.4.2.6]

Mcr γ3 γ1 fr Sc 1234.94 kip ft [LRFD 5.6.3.3]

Mmin_steel min Mcr 1.33 Mpos_strength 661.89 kip ft

As 0.79in2

4 3.16 in2

(4 - #8 bars)

b N 48 in

aAs fy

0.85f'cA b1.16 in [LRFD 5.6.2.2 & Eqn. 5.6.3.1.2-4]

d5 0.625in d8 1in

ds Hmin 3in d5d8

2 55.875 in

Mn As fy dsa

2

873.65 kip ft [LRFD 5.6.3.2.3]

ϕ 0.9

Mr ϕ Mn 786.28 kip ft [LRFD Eqn. 5.6.3.2.1-1]

Since Mr > Mu and Mr > Mmin_steel, the minimum reinforcing steel (4 - #8 bars) is adequate for the strength limit state.

Check spacing of reinforcement for crack control at the service limit state.

dc 3in d5d8

2 4.125 in

βs 1 dc 0.7 Hmin dc 1.11 [LRFD Eqn. 5.6.7-2]

ρ As b ds 0.00118

Page 16

Page 26: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Es 29000ksi

n

Es

ksi

120000ft

3

kip

2

0.15kip

ft3

2

f'cA

ksi

0.33

6.8

k 2 ρ n ρ n( )2

0.5

ρ n 0.12

j 1k

3 0.96

Ms Mpos_service 342.57 kip ft

fss Ms As j ds 24.24 ksi < 0.6 fy 36 ksi

γe 1.0kip

in

smax

700γe

βs fss2 dc 17.87 in [LRFD Eqn. 5.6.7-1]

sN 2 2in d5 d8 2

315.42 in Spacing provided

Since the actual spacing provided , smax, the minimum reinforcing steel (4 - #8 bars) is adequate for the service limit state.

Page 17

Page 27: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 3 - Design stirrups in pile cap for shear due to vertical loading

As previously shown, the maximum applied shear at the strength limit state, Vu Vstrength 304.19 kip

Calculate the shear resistance provided using the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet. For this example, the simplified procedure for nonprestressed sections [LRFD 5.7.3.4.1] will be used to calculate theshear resistance. Therefore, the section must contain at least the minimum amount of transverse reinforcement specified inLRFD 5.7.2.5.

Av 0.31in2

2 0.62 in2

2 - #5 bars at 12" c/c

sv 12in

dv dsa

2 55.29 in

β 2 λ 1.0 bv N 48 in

[LRFD 5.7.3.3-3]Vc 0.0316 β λ

f'cA

ksi ksi bv dv 335.48 kip

θ1 45deg

Vs Av fy dv1

tan θ1

sv 171.41 kip [LRFD C5.7.3.3-1]

Vc Vs 506.89 kip

0.25f'cA bv dv 2654.12 kip

Vn min Vc Vs 0.25f'cA bv dv 506.89 kip

ϕv 0.9

Vr ϕv Vn 456.2 kip [LRFD Eqn. 5.4.2.1-1]

Check minimum transverse reinforcement per LRFD 5.7.2.5.

Av_min 0.0316f'cA

ksi ksi bv

sv

fy 0.61 in

2 per foot [LRFD 5.7.2.5-1]

Av 0.62 in2

Since Vr > Vu and the minimum transverse reinforcement requirements of LRFD 5.7.2.5 are satisfied, the minimum

reinforcing steel specified on Sheet 6/9 of the Design Data Sheet (#5 bars @ 12" c/c) is adequate for the strength limitstate.

Page 18

Page 28: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 4 - Design horizontal reinforcing at front and back faces of diaphragm

Anticipated movement of superstructure:

L 276ft α 0.000006in in( )

F ΔT 35F θ 90deg

Δ2

3L α ΔT 1.2 cos θskew 0.55 in

Height of diaphragm from top of pile cap to bottom of approach slabHD H tAS 54.5 in

For typical backfill behind abutments: (Type B granular material per C&MS 503.08)

ϕ'f 38deg δ 19deg γsoil 120pcf

Movement required to mobilize full passive pressureδpass 0.05 HD 2.73 in

At rest lateral earth pressure coefficient

ko 1 sin ϕ'f 0.38 [LRFD 3.11.5.2-1]

Passive lateral earth pressure coefficient, kp 9.10 [LRFD Fig 3.11.5.4-1]

k ko kp ko Δ

δpass 2.14 Design lateral earth pressure coefficient

ρEP k γsoil HD 1.16 ksf Earth pressure at top of pile cap

Hs 4ft Height of surcharge[LRFD Table 3.11.6.4-1]

ρsurcharge 0.5 k γsoil Hs 0.51 ksf Surcharge pressure

The following moments are calculated based on uniformly distributed loads applied to a continuous beam with supports ateach prestressed concrete I-beam location. The moments are calculated a 1 foot high strip located at the top of the pile cap.

MEP 0.11 ρEP 1 ftsbeam

cos θskew

2

12.77 kip ft Moment due to earth pressure

Msurcharge 0.11 ρsurcharge 1 ftsbeam

cos θskew

2

5.62 kip ft Moment due to surcharge

Ms MEP Msurcharge 18.4 kip ft Total service Moment

Mu 1.5 MEP 1.75 Msurcharge 29 kip ft Total factored moment

Sc1ft N

2

64608 in

3 Pile cap section modulus

f'cD 4.5ksi

fr 0.24f'cD

ksi ksi 509.12 psi Modulus of rupture [LRFD 5.4.2.6]

Page 19

Page 29: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Mcr γ3 γ1 fr Sc 209.58 kip ft [LRFD 5.6.3.3]

1.33 Mu 38.57 kip ft

Mmin_steel min Mcr 1.33 Mpos_strength 209.58 kip ft

Calculate the flexural resistance provided using the minimum reinforcing steel specified on sheet 6/9 of the Design DataSheet.

As 0.79in2

(#8 bars @ 12") b 12in

aAs fy

0.85f'cD b1.03 in [LRFD 5.6.2.2 & Eqn. 5.6.3.1.2-4]

ds N 2in d5d8

2 44.875 in

Mn As fy dsa

2

175.22 kip ft [LRFD 5.6.3.2.3]

ϕ 0.9

Mr ϕ Mn 157.7 kip ft [LRFD Eqn. 5.6.3.2.1-1]

Since Mr > Mu and Mr > Mmin_steel, the minimum reinforcing steel (4 - #8 bars) is adequate for the strength limit state.

Check spacing of reinforcement for crack control at the service limit state.

dc 2in d5d8

2 3.125 in

βs 1 dc 0.7 N dc 1.1 [LRFD Eqn. 5.6.7-2]

ρ As b ds 0.00147

Es 29000ksi

n

Es

ksi

120000ft

3

kip

2

0.15kip

ft3

2

f'cD

ksi

0.33

6.54

k 2 ρ n ρ n( )2

0.5

ρ n 0.13

j 1k

3 0.96

fss Ms As j ds 6.51 ksi < 0.6 fy 36 ksi

γe 1.0kip

in

smax

700γe

βs fss2 dc 91.58 in [LRFD Eqn. 5.6.7-1]

sv 12 in Spacing provided

Since the actual spacing provided , smax, the minimum reinforcing steel (#8 bars @ 12") is adequate for the service limit

state.

Page 20

Page 30: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 5 - Design stirrups in diaphragm for shear due to horizontal loading

VEP 0.6 ρEP 1 ftsbeam

cos θskew 6.98 kip Shear due to earth pressure

Vsurcharge 0.6 ρsurcharge 1 ftsbeam

cos θskew 3.07 kip Shear due to surcharge

Vu 1.5 VEP 1.75 Vsurcharge 15.84 kip Total factored shear

Calculate the shear resistance provided using the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet. For this example, the simplified procedure for nonprestressed sections[ LRFD 5.7.3.4.1] will be used to calculate theshear resistance. Therefore, the section must contain at least the minimum amount of transverse reinforcement specified inLRFD 5.7.2.5.

Av 0.62 in2

sv 12 in 2 - #5 legs @ 12" c/c

dv dsa

2 44.36 in

β 2 λ 1.0 bv 12in

[LRFD 5.7.3.3-3]Vc 0.0316 β λ

f'cD

ksi ksi bv dv 71.36 kip

θ1 45deg

Vs Av fy dv1

tan θ1

sv 137.51 kip [LRFD C5.7.3.3-1]

Vc Vs 208.88 kip

0.25f'cD bv dv 598.84 kip

Vn min Vc Vs 0.25f'cD bv dv 208.88 kip

ϕv 0.9 Vr ϕv Vn 187.99 kip [LRFD Eqn. 5.4.2.1-1]

Check minimum transverse reinforcement requirements of LRFD 5.7.2.5. The minimum reinforcement check will be basedon the full diaphragm height, rather than a 1 foot high strip.

bv HD 54.5 in

Av_min 0.0316f'cD

ksi ksi bv

sv

fy 0.73 in

2 per foot [LRFD 5.7.2.5-1]

Av_min exceeds the minimum reinforcing steel shown on Sheet 6/9 of the Design Data Sheet.

Try sv 10in

Av_min 0.0316f'cD

ksi ksi bv

sv

fy 0.61 in

2

Since Vr > Vu and the minimum transverse reinforcement requirements of LRFD 5.7.2.5 are satisfied, #5 bars at 10" is

adequate for the strength limit state. As an alternative to providing the minimum reinforcement per LRFD 5.7.2.5, thedesigner ,may elect to calculate the shear resistance based on the general procedure outlined in LRFD 5.7.3.4.2, usingEqn. 5.7.3.4.2-2 for β, which is for sections that do not contain the minimum amount of shear reinforcement as requiredunder LRFD 5.7.2.5. In all cases, at a minimum, the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet shall be provided.

Page 21

Page 31: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 6 - Design horizontal reinforcing at front and back faces of pile cap

Δ 0.55 in See Step 4

Height of abutment from bottom of pile cap to bottom of approach slab

HA HD Hmin 9.54 ft

For typical backfill behind abutments: (Type B granular material per C&MS 503.08)

ϕ'f 38deg δ 19deg γsoil 120pcf

Movement required to mobilize full passive pressure

δpass 0.05 HA 5.72 in

At rest lateral earth pressure coefficient

ko 1 sin ϕ'f 0.38 [LRFD 3.11.5.2-1]

Passive lateral earth pressure coefficient, kp 9.10 [LRFD Fig 3.11.5.4-1]

k ko kp ko Δ

δpass 1.22 Design lateral earth pressure coefficient

ρEP k γsoil HA 1.4 ksf Earth pressure at top of pile cap

Hs 4ft 3ft 4ft( ) HA Hmin 10ft Hmin 3.09 ft Height of surcharge (Interpolate)[LRFD Table 3.11.6.4-1]

ρsurcharge 0.5 k γsoil Hs 0.23 ksf Surcharge pressure

The following moments are calculated based on uniformly distributed loads applied to a continuous beam with supports ateach prestressed concrete I-beam location. The moments are calculated a 1 foot high strip located at the top of the pile cap.

MEP 0.11 ρEP 1 ft spile 2 9.82 kip ft Moment due to earth pressure

Msurcharge 0.11 ρsurcharge 1 ft spile 2 1.59 kip ft Moment due to surcharge

Ms MEP Msurcharge 11.41 kip ft Total service Moment

Mu 1.5 MEP 1.75 Msurcharge 17.52 kip ft Total factored moment

Sc1ft N

2

64608 in

3 Pile cap section modulus

f'cD 4.5ksi

fr 0.24f'cA

ksi ksi 480 psi Modulus of rupture [LRFD 5.4.2.6]

Mcr γ3 γ1 fr Sc 197.59 kip ft [LRFD 5.6.3.3]

1.33 Mu 23.3 kip ft

Mmin_steel min Mcr 1.33 Mpos_strength 197.59 kip ft

Page 22

Page 32: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Calculate the flexural resistance provided using the minimum reinforcing steel specified on sheet 6/9 of the Design DataSheet.

As 0.44in2 12in

9in

0.59 in2

per foot (#6 bars @ 9")

b 12in d6 0.75in

aAs fy

0.85f'cA b0.86 in [LRFD 5.6.2.2 & Eqn. 5.6.3.1.2-4]

ds N 2in d5d6

2 45 in

Mn As fy dsa

2

130.73 kip ft [LRFD 5.6.3.2.3]

ϕ 0.9

Mr ϕ Mn 117.66 kip ft [LRFD Eqn. 5.6.3.2.1-1]

Since Mr > Mu and Mr > Mmin_steel, the minimum reinforcing steel (#6 bars at 9") is adequate for the strength limit state.

Check spacing of reinforcement for crack control at the service limit state.

dc 2in d5d6

2 3 in

βs 1 dc 0.7 hbeam dc 1.1 [LRFD Eqn. 5.6.7-2]

ρ As b ds 0.00109

Es 29000ksi

n

Es

ksi

120000ft

3

kip

2

0.15kip

ft3

2

f'cA

ksi

0.33

6.8

k 2 ρ n ρ n( )2

0.5

ρ n 0.11

j 1k

3 0.96

fss Ms As j ds 5.39 ksi < 0.6 fy 36 ksi

γe 1.0kip

in

smax

700γe

βs fss2 dc 112.5 in [LRFD Eqn. 5.6.7-1]

sprov 9in Spacing provided

Since the actual spacing provided , smax, the minimum reinforcing steel (#6 bars at 9") is adequate for the service limit state.

Page 23

Page 33: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 7 - Design stirrups in pile cap for shear due to horizontal loading

VEP 0.6 ρEP 1 ft spile 6.7 kip Shear due to earth pressure

Vsurcharge 0.6 ρsurcharge 1 ft spile 1.08 kip Shear due to surcharge

Vu 1.5 VEP 1.75 Vsurcharge 11.94 kip Total factored shear

Calculate the shear resistance provided using the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet. For this example, the simplified procedure for nonprestressed sections[ LRFD 5.7.3.4.1] will be used to calculate theshear resistance. Therefore, the section must contain at least the minimum amount of transverse reinforcement specified inLRFD 5.7.2.5.

Av 0.62 in2

sv 12in 2 - #5 legs @ 12" c/c

dv dsa

2 44.57 in

β 2 λ 1.0 bv 12in

[LRFD 5.7.3.3-3]Vc 0.0316 β λ

f'cA

ksi ksi bv dv 67.6 kip

θ1 45deg

Vs Av fy dv1

tan θ1

sv 138.16 kip [LRFD C5.7.3.3-1]

Vc Vs 205.76 kip

0.25f'cA bv dv 534.82 kip

Vn min Vc Vs 0.25f'cA bv dv 205.76 kip

ϕv 0.9 Vr ϕv Vn 185.19 kip [LRFD Eqn. 5.4.2.1-1]

Check minimum transverse reinforcement requirements of LRFD 5.7.2.5. The minimum reinforcement check will be basedon the full abutment height, rather than a 1 foot high strip.

bv Hmin 60 in

Av_min 0.0316f'cA

ksi ksi bv

sv

fy 0.76 in

2 per foot [LRFD 5.7.2.5-1]

Av_min exceeds the minimum reinforcing steel shown on Sheet 6/9 of the Design Data Sheet.

Try sv 9in

Av_min 0.0316f'cA

ksi ksi bv

sv

fy 0.57 in

2

Since Vr > Vu and the minimum transverse reinforcement requirements of LRFD 5.7.2.5 are satisfied, #5 bars at 9" is

adequate for the strength limit state. As an alternative to providing the minimum reinforcement per LRFD 5.7.2.5, thedesigner ,may elect to calculate the shear resistance based on the general procedure outlined in LRFD 5.7.3.4.2, usingEqn. 5.7.3.4.2-2 for β, which is for sections that do not contain the minimum amount of shear reinforcement as requiredunder LRFD 5.7.2.5. In all cases, at a minimum, the minimum reinforcing steel specified on Sheet 6/9 of the Design DataSheet shall be provided.

Page 24

Page 34: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Step 8 - Design "X" bars connecting diaphragm to pile cap

For this example, the magnitude of the seismic horizontal connection force will be equal to 0.25 times the tributarypermanent load. For an integral bridge with expansion bearings at all piers, the tributary permanent load at each abutmentis equal to one-half of the total dead load of the superstructure, including a future wearing surface allowance. It will beassumed that the dead load reactions at each of the pier bearing points are the same as the dead load reactions at theabutment. From Step 2, the unfactored dead load reactions at the abutment are as follows:

PI_DCservice 115.7 kip Interior beam, DC

PE_DCservice 105.7 kip Exterior beam, DC

PDWservice 22.7 kip Beam, DW

W2_service 5.04kip

ft Dist. load for diaphragm

Therefore, for the 3-span bridge, the tributary permanent load at each abutment is:

Nbp 3 2 6 Number of bearing points, number ofbearing points in a beam line

Ptpl PI_DCservice NI PE_DCservice NE PDWservice NI NE Nbp

2 W2_service Ldiaph 2247.9 kip

Seismic horizontal connection force

Vui 0.25 Ptpl 561.97 kip

From LRFD 5.7.4.4, for normal weight concrete placed against a clean surface, free of laitance, but not intentionallyroughened:

c 0.075ksi μ 0.6 K1 0.2 K2 0.8ksi

The interface area

Acv N 12in 12in( ) Ldiaph 13257 in2

The minimum number of "X" bars to be provided in each bay, according to Sheet 6/9 of the Design Data Sheet, is:

Nbars_B

sbeam W 2 2 in cos θskew ft

1 6.5 say Nbars_B 7

The minimum number of "X" bars to be provided at each fascia, according to Sheet 6/9 of the Design Data Sheet, is:

LOH 3ft Deck Overhang

Nbars_OH

LOHW

2 2 2 in

cos θskew ft1 1.63 say Nbars_OH 2

The total number of "X" bars provided in each diaphragm is:

Nbars Nbars_B NI NE 1 2 Nbars_OH 32

Area of interface shear reinforcement

Avf Nbars 2 0.44 in2

cos 45deg( ) 19.91 in2

Pc 0kip

Page 25

Page 35: SHEET 1 NOTES AND LEGEND...2018/07/20  · SHEET 2 NOTES AND LEGEND: 7 9 SHOWN IN SECTION A-A ON SHEET .1 9 NEOPRENE SHEETING LIMITS SHALL BE SIMILAR TO THOSE SEE SHEET . N = DIAPHRAGM

Designer Supplement: ICD-2-18 July 20, 2018

Nominal interface shear resistance

Vni_1 c Acv μ Avf fy Pc 1711 kip LRFD Eqn. 5.7.4.3-3

Vni_2 K1 f'cA Acv 10606 kip LRFD Eqn. 5.7.4.3-4

Vni_3 K2 Acv 10606 kip LRFD Eqn. 5.7.4.3-5

Vni min Vni_1 Vni_2 Vni_3 1711 kip

For the Extreme Event limit state, the resistance factor, ϕ, may be taken as 1.

ϕni 1.0

Vri ϕni Vni 1711 kip LRFD Eqn. 5.7.4.3-1

The AASHTO LRFD requirements for minimum area of interface shear reinforcement also need to be met.

Avf_min 0.05ksiAcv

fy 11.05 in

2 LRFD Eqn. 5.7.4.2-1

Since Vri > Vui and the area reinforcing steel provided meets the AASHTO minimum, the minimum reinforcing steel

specified on Sheet 6/9 of the Design Data Sheet (#6 bars @ 12") is adequate for the Extreme Event limit state.

Page 26