shashank shekhar - brandeis university€¦ · shashank shekhar. brandeis university. cell motility...

34
Drunken sailors and sober cells, the ways they move Shashank Shekhar Brandeis University

Upload: others

Post on 28-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Drunken sailors and sober cells, the ways they move

    Shashank ShekharBrandeis University

  • Cell motility is conserved across billions of years of evolution

    White blood cells(Slightly speeded up)David Rogers, 1950

    Blood smear

    Fish scale cell(30 X speeded up)

    Theriot labWound healing

    Amoeba(Real time)

    Feeds on bacteria in soil

    100,000 years ago 2 billion years ago 500 million years ago

    Bacteria White blood cell

    5 µm 5 µm 25µm

  • "Run and Tumble" motility of Listeria Monocytogenes

    < 30oC

    Gründling et al, 2004

    1 µm

    ~ 37oCListeria’s “Run and Tumble”

    1 µm

    5 µm

  • Intracellular pathogens also show similiar behaviour

    Listeria BacteriaTheriot lab (60X speeded up)

    Comet tail

    Speedboat

    Contrails

  • Cellular and pathogenic motility have the same molecular basis

    Cameron et al, 2001Svitkina et al 1997

    1. Similar rates of propulsion (~µm/min)2. Suggests identical molecular basis.3. Evolutionary conserved

    Fish scale cell Pathogen

  • Bacterial and cellular motility have the same molecular basis

    Svitkina et al 1997; Gary Borisy Cameron et al, 2001

    Actin filament

  • Actin filaments are formed from monomers

    5 nm

    Pollard and Cooper, 2001

    How do such small molecules self-assemble to form structures orders of magnitude bigger

  • Fluorescence microscopy enables direct visualization of actin filaments

    Actin monomer

    Fluorophore

  • Fluorescence microscopy enables direct visualization of actin filaments

    • Filament growth• Thermal fluctuations

    Flow

    5 µm Flow

  • Actin polymerization can generate force

    Displacement

    Short filament (10 µm)

    Fixed surface

    5 pN

    Buckling

  • Filament networks enable overcoming buckling

    Productive

    NonProductive

    Listeria

  • Requirements for actin propulsion

    Polymerization = force Filament mesh prevents buckling

    Elongate productive Filaments Regeneration of monomers

  • Approach : What I can not create, I don’t understand.

    1. Identify essential components2. Characterize the component’s function3. Reconstitute function i.e. motility

  • Requirements for actin propulsion

    Polymerization = force Filament mesh prevents buckling

  • “Branchers” branch actin filaments to form a dense mesh

    Svitkina & Borisy, 1999

    Mullins et al., 1999

    Actin

    Brancher(Arp2/3)

    binding elongationArp2/3Filament

    dissociation

    Smith et al, 2013; Gelles and Goode la

    5 µm

  • Requirement 1 : Generating a dense mesh of filaments

    Dense branching forms a mesh

    Wiesner et al, 2003

    Actin Brancher

    Actin

    Brancher

    Listeria mimicking bead

    Listeria placed in mix of Actin + ArpGel formed

  • Requirement 1 : Branching generates a dense mesh of filaments

    Bacteria (Listeria)

    Actin

    Branchers

    Actin

  • Requirements for actin propulsion

    Polymerization = force Filament mesh prevents buckling

    Elongate productive Filaments

  • Requirement 2 : Blocking unproductive growth

    5 µm

    54 min

    Time

    Leng

    th

    Flow

  • Requirement 2 : Absence of capping leads to a “fish bone” comet

    Bacteria (Listeria)

    Cappers

    Branchers

    Actin

    Actin + Brancher + Cappers

    Carlier et al, 2000

  • Requirements for actin propulsion

    Polymerization = force Filament mesh prevents buckling

    Elongate productive Filaments Regeneration of monomers

  • Requirement 3 : Disassembly of the network & monomer regeneration

  • Requirement 3 : Disassembly of the network & monomer regeneration

    Fast (10 monomers/µM/s)

    Slow (0.2 monomers/s)

    5 Plus ends

    1 minus ends

    Debrancher – GMFActin Depolymerizing Factor (ADF)

  • Requirement 3 : Debrancher increases the number of minus ends

    DebrancherGandhi et al, 2010; Sean Guo; Goode and Gelles labs

  • Requirement 3 : Disassembly of the network & monomer regeneration

    5

    5

    5

    1

    Debrancher

    Plus ends

    Minus ends

  • Requirement 3 : Depolymerizer fragments actin filaments

    Actin + Depolymerizer

    5 µm

    Silvia Jansen

  • Requirement 3 : Depolymerizer also depolymerizes filaments

    Depolymerization increases 20x

    0 1 2 3 4 50

    1

    2

    3

    4

    5

    Rat

    e of

    dep

    olym

    eriz

    atio

    n (s

    u/s)

    ADF (µM)

    Depo

    lym

    eriza

    tion

    Subu

    nits

    /sec

    Depolymerizer(µM)

    Shekhar et al, 2017

  • Requirement 3 : Depolymerizer fragments and depolymerizes filaments

    FastDepolymerization

    Shekhar et al, 2017

  • Requirement 3 : Disassembly of the network & monomer regeneration

    Depolymerizer

  • Summary

    1. Actin monomers polymerize to form filaments.

    2. Branchers branch filaments.

    3. Cappers block filament growth.

    4. Depolymerizers depolymerize.

    5. Bacteria (Listeria)

  • Reconstitution of Actin based motility

    Loisel et al, 1999

  • Reconstitution of Actin Based Motility

    Listeria

    Branching activator (ActA)

  • Reconstitution of Actin Based Motility

    Achard et al, 2010

    Delatour et al, 2008

    Wiesner et al, 2003

    5 µm

  • Truly an international and interdisciplinary effort

    Jané Kondev

    Bruce Goode

    Jeff Gelles

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34