set-up of a ground-based rayleigh lidar to detect clear air turbulence alain hauchecorne 1, charles...

12
Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1 , Charles Cot 1 , Francis Dalaudier 1 , Jacques Porteneuve 1 , Thierry Gaudo 2 , Richard Wilson 1 , Claire Cénac 1 , Christian Laqui 1 , Philippe Keckhut 1 , Jean-Marie Perrin 3 , Agnès Dolfi 2 , Nicolas Cézard 2 , Laurent Lombard 2 , Claudine Besson 2 1 LATMOS/IPSL, UVSQ, CNRS-INSU, Guyancourt, France, [email protected] 2 ONERA/DOTA, Palaiseau, France 3 OHP, CNRS-INSU, Saint-Michel l’Observatoire, France

Upload: dayna-mcdowell

Post on 04-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Set-up of a ground-based Rayleigh lidar to detect clear air

turbulence

Alain Hauchecorne1, Charles Cot1, Francis Dalaudier1, Jacques Porteneuve1, Thierry Gaudo2, Richard Wilson1, Claire Cénac1,

Christian Laqui1, Philippe Keckhut1, Jean-Marie Perrin3, Agnès Dolfi2, Nicolas Cézard2, Laurent

Lombard2, Claudine Besson2

1 LATMOS/IPSL, UVSQ, CNRS-INSU, Guyancourt, France, [email protected]

2ONERA/DOTA, Palaiseau, France

3OHP, CNRS-INSU, Saint-Michel l’Observatoire, France

Page 2: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Clear air turbulence

Clear air turbulence (CAT) is an important problem for safety of commercial airplanes:• It can cause severe passenger injuries and material damages • It is not easy to detect in advance on-board by radar or other methods

Cleair air turbulence is related to small-scale wind and air density fluctuations but its characteristics and mechanisms of formation are not well known.

European projects EU-FP6 Flysafe (2005-2009), coord. Thales: to propose new methods to improve aircraft safetyEU-FP7 DELICAT (2009-2012), coord. Thales: to develop a lidar prototype to detect CAT on board aircrafts

Page 3: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

MMEDTAC ANR Project (2006-2009)

2 methods proposed - Monostatic Rayleigh lidar: density

fluctuations in aerosol-free atmosphere, implemented within MMEDTAC

- Doppler Wind Rayleigh lidar: wind fluctuations

Objectives- To set-up a ground-based lidar system to detect CAT

- To improve and test algorithms developed in EU-DELICAT for the detection of CAT using lidar signals.

Page 4: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Rayleigh density lidar

Accuracy

phN

1

Advantages

Easy to realise and operate

Limitations

Aerosol scattering must be negligible or need high resolution spectral filter

Page 5: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Detection of turbulent fluctuations

For isotropic fluctuations

NgV

TT

/

Troposphere: g/N=1000ms-1

=1% ~ V=10ms-1

Stratosphere g/N=500ms-1

=1% ~ V=5ms-1

Page 6: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Detection based on variance of density fluctuations

Background removal (average signal from high altitude)

: integrated signal in time slice i and altitude layer j

Perturbation

Variance

Pi, j =Si, j −

1

2(Si, j−1 + Si, j+1)

1

2Si, j +

1

4(Si, j−1 + Si, j+1)€

Si, j

V j =1

NiPi, j −

1

2(Pi−1 + Pi+1)

⎝ ⎜

⎠ ⎟2

i

Page 7: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Laser Nd-Yag - 15W @ 532 nm

E=4. 1019 ph/s

2=0.5

Qlid=0.01 to 0.1

A=0.5 m2 (80 cm diameter)

z=10000 m

r=4. 10-7 m-1sr-1

N=12000/s to 120000/s

Estimated signal with OHP Rayleigh lidar

Page 8: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Detectivity limit with Rayleigh OHP lidarfor 10km altitude

Page 9: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Field campaign at Observatoire de Haute-Provence (OHP)

Use of NDACC Rayleigh temperature lidar at OHP

•Dedicated reception telescope (53 cm diameter)

•2 channels at 532 nm (parallel and perpendicular polarizations (detection solid particles)

•Distance emission-reception 6m to avoid PM saturation at low altitude

•Dedicated data acquisition chain

• Shot by shot acquisition at 50 Hz

• Detection in analogic mode

• Sampling 100 ns (15 m), resolution 37.5m (4 MHz)

Page 10: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

23 Jun 2009 22h-23h

Variance du signal sur une heure Campagne MMEDTAC OHP – 23/06/2009

Page 11: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Radar PROUST 11.5 à 15 km, Dole et al., 2001 :CT

2 = 0.3 à 0.6.10-3

Estimation turbulence parameters

Page 12: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence Alain Hauchecorne 1, Charles Cot 1, Francis Dalaudier 1, Jacques Porteneuve 1, Thierry

Conclusion

• A new lidar system has been set-up at OHP to detect clear air turbulence from Rayleigh scattering fluctuations

• Analysis of the results indicate the probable detection of CAT layers

• Derived turbulent parameters in the same range than ST radar estimations

• This technique can be applied to any powerful Rayleigh lidar.