session: [session title] · • frequency and voltage load shedding schemes operate from 250 msto...

14
Rhode Island Convention Center • Providence, Rhode Island Department of Defense (DOD) Environmental Security Technology Certification Program (ESTCP) Portsmouth Naval Shipyard Fast Load Shedding Microgrid Session: [Session Title] Russell Gagner, PE Naval Facilities Engineering Command – Mid Atlantic August [XX], 2016

Upload: others

Post on 31-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Rhode Island Convention Center • Providence, Rhode Island

Department of Defense (DOD) ‐Environmental Security Technology Certification Program (ESTCP) ‐

Portsmouth Naval Shipyard ‐ Fast Load Shedding Microgrid

Session: [Session Title]

Russell Gagner, PENaval Facilities Engineering Command – Mid Atlantic

August [XX], 2016

Energy Exchange: Federal Sustainability for the Next Decade

Fast Load Shedding Bottom Line Up Front

2

Technology

•  Microgrid Controls System (MCS) with intelligent fast load shedding•  Battery Energy Storage System (BESS) / Inverter for Frequency Regulation with Independent 

Operator for New England (ISO‐NE) and Microgrid Capacity

Problem/Solution:

• Shipyard on‐site generation assets are overloaded when utility grid fails, despite ample on‐site generation capacity for critical loads. Very high speed load shedding is required to maintain gas turbine generation stability under fault conditions.

• Frequency and voltage load shedding schemes operate from 250 ms to seconds…too slow. Contingency based systems operate in the range of 160 to 400 ms…too slow.  The GE C‐90 fast load shedding system can perform complete operation in less than 20 ms.

Cost Savings & Improvements:

•  Power outages can lead to six figure damages in terms of lost production and equipment damage.

•  Reduces preemptive generation dispatching and/or islanding impacts.•  Better aligns with EPA requirements for utilizing generation assets in “non‐emergency”  

conditions.

Contractors: Ameresco, Inc., General Electric

Energy Exchange: Federal Sustainability for the Next Decade

Technical Objectives

3

Solve electric resiliency problem for Portsmouth Naval Shipyard Microgrid by reducing base wide outages caused by fault induced instability.

Maintain centralized power production to critical facilities and waterfront assets.

Demonstrate ability to integrate / control battery energy storage system (BESS) with on‐site generation

Demonstrate that these assets can help ISO solve grid stability and regulation issues in a cost‐competitive way with revenue potential for the Navy

Document applicability to nearly all DoD sites and industrial Microgrids.

Energy Exchange: Federal Sustainability for the Next Decade

Technology/Methodology Description

4

Energy Exchange: Federal Sustainability for the Next Decade

Technology/Methodology Description

5

480 V

480 V480 V

34.5 kV

13.2 kV

Energy Exchange: Federal Sustainability for the Next Decade

Technology/Methodology Description

6

480 V

480 V480 V

34.5 kV

13.2 kV

Energy Exchange: Federal Sustainability for the Next Decade

Technology/Methodology Description

7

DG#1

DG#2

Main Substation Controllers

13.2 kV

HMI

Automation Programs

RTU

Router†

ISO-NEComm Circuits

Regulation Msgs

Shipyard SCADA

Power Plant

Substations 1-2

Loads served by

the PP

4 6

Sta. ServicePP Rect.

3

Trip signals

~

Controller

HMI BESS

Telemetry and control

High-speed logic onunder-freq / bkr trip

2

Substation 32

LoadsSubstation1

2Feeder Controllers

Trip9

Telemetry,status, control

P(gens,loads,plant)

1 MVA

Feeder Controllers

Telemetry & control

GTG#1

GTG#2

Overload signal

Substation 1

UtilityLoads

3Feeder Controller

Trip2

Telemetry and control

Loss of Utility

1. Monitor all sources and loads2. Loss of Utility3. Priority load shed to preserve

power plant and critical areas4. NAVFAC: Bring addition

generation on-line5. NAVFAC: Pick-up add’l critical

loads

Technical Approach

Energy Exchange: Federal Sustainability for the Next Decade

Physical Hardware and Configuration

8

Energy Exchange: Federal Sustainability for the Next Decade

Software Architecture

9

Energy Exchange: Federal Sustainability for the Next Decade

Construction Challenges: Constructability Risk

10

Breaker Unit Trip 52B CTs PTs LOOP FD RADIAL FD Generator

Franklin

F‐1 1A X* X** X

F‐1 2A X X X

F‐5 6A X X X

F‐9 2B X X X

F‐10 3B X X X

F‐12 1 X* X** X

AUX Cab X

* F‐1 and F‐12 are wired for future FLS Tripping however not used.

** F‐1 and F‐12 52B contacts are wired in series to indicate loss of utility to trigger FLS scheme.

Risks

Need to remove existing OOS SCADA wiring to clear paths.Franklin Substation has undergone three major modifications.Original switchgear did not have wires labeled from the factory.Oldest switchgear with older style components.Connection to Central Maine Power

Energy Exchange: Federal Sustainability for the Next Decade

Basic Commissioning

11

Pre‐Testing Inspections:

•  Multi party wire by wire point to point verification of installation•  Visual inspections of all hardware for damage, correct installation practices, proper labeling, 

removal of any temporary wiring, and verification of correct position of test switches.

System Start‐up and integrity tests

Communications testing including Goose Messaging

System Input and Output Testing including verifying status in the server.

Human Machine Interface Verification

Key attributes of Plan: Significant formality and don’t trip anything!!!

Energy Exchange: Federal Sustainability for the Next Decade

Performance Verification Testing (PVT)

12

Phase 1 PVT: (not too stressful)

• Place System in Operation• Disable Tripping on Critical Feeders – Open Trip output on Test Switches• Enable Tripping on non‐Critical Feeders• Establish Summer and Winter MicroGrid Configurations• Simulate a Loss of Power Initiation

Outcome: Issues with load shed calculations. Corrections made and successfully retested.

Phase 2 PVT: (very stressful)

• Place System in Operation• Place MicroGrid in Winter Alignment (~10 MW production)• Pull the plug on the utility. Observe Operation. Restore Distribution System• Place System in Operation• Place MicroGrid in Summer Alignment (~5 MW Production)• Pull the plug on the utility. Observe Operation. Restore Distribution System

Outcome: 100% expected outcome – Success!! Concern….divorced from a perfectly good power source….what happens under fault conditions???

Energy Exchange: Federal Sustainability for the Next Decade

Real Life – In Service

13

First Week:

• Place System in Operation• Performed normal weekly testing of power plant diesel generators.• One unit tripped offline at 500 kW…initiating a 500 kW fast load shed event• Taking out most important building on shipyard…Commander’s office• Diesel Generators were improperly programmed…fixed!!

June 2016: First real life event…wish it was a squirrel!

• MicroGrid in Summer Alignment (~5 MW production)• Large phase to phase to ground fault of group operated air break switch just 

upstream of shipyard intertie connection.• Fast load shed operated as designed… 1 ms after gas turbine tripped offline• Investigating gas turbine differential trip on fault outside zone of protection

July 2016: Second real life event…wow already…on a Monday morning .

• MicroGrid in Summer Alignment (~5 MW production) with diesels test underway• Single line to ground fault on utility provider• System worked flawlessly…retained power plant and all critical loads 

Energy Exchange: Federal Sustainability for the Next Decade

The End

14