sergey kryzhevich - bcamโ‚ฌยฆย ยท this is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ....

23
Sergey Kryzhevich BCAM, Bilbao , 13 February 2013

Upload: others

Post on 30-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Sergey Kryzhevich

BCAM, Bilbao , 13 February 2013

Page 2: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

1) Vibro-impact systems: definitions and main properties. 2) Grazing bifurcation(s). 3) Estimates on eigenvalues 4) Homoclinic points. 5) Smale horseshoes.

Page 3: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

1. Vibro-impact systems. Mathematical models: Newton, Hook, Peterka,74,

Pesin-Bunimovich-Sinai, 85 (for billiards), Schatzmann, 98 โ€“ the most general model, Babitsky, 98 review,โ€ฆ

2. Grazing bifurcation. Nordmark, 91, Ivanov, 94, Dankowitz et al 02, Budd et al, 08,โ€ฆ

Page 4: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Fig. 1. An example of single degree-of-freedom vibro-impact system

1 โ€“ point mass, 2 โ€“ spring, 3 - delimiter, 4 โ€“ damping element

Page 5: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

๐ฝ = [0,๐œ‡โˆ—] - values of parameter; ๐‘“ ๐‘ก, ๐‘ฅ, ๐‘ฆ, ๐œ‡ :๐‘…3 ร— ๐ฝ โ†’ ๐‘… - a ๐ถ2 smooth function, . ๐‘“ ๐‘ก + ๐‘‡, ๐‘ฅ,๐‘ฆ, ๐œ‡ โ‰ก ๐‘“(๐‘ก, ๐‘ฅ,๐‘ฆ, ๐œ‡) Consider a system of 2 o.d.e.s ๏ฟฝฬ‡๏ฟฝ = ๐‘ฆ; ๏ฟฝฬ‡๏ฟฝ = ๐‘“(๐‘ก, ๐‘ฅ,๐‘ฆ, ๐œ‡) (1) Denote the set of corresponding right hand sides by ๐‘‹๐‘“ = ๐‘‹๐‘“(๐ฝ,๐‘›,๐‘‡) Denote ๐‘ง = (๐‘ฅ,๐‘ฆ)

. . .

Page 6: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Eq. (1) is satisfied for ๐‘ฅ > 0. If ๐‘ฅ = 0 the following impact conditions take place: If ๐‘ฅ ๐‘ก0 โˆ’ 0 = 0 then ๐‘ฆ ๐‘ก0 + 0 = โˆ’๐‘Ÿ๐‘ฆ ๐‘ก0 โˆ’ 0 , ๐‘ฅ ๐‘ก0 + 0 = ๐‘ฅ(๐‘ก0 โˆ’ 0) (2) . Here ๐‘Ÿ = ๐‘Ÿ ๐œ‡ โˆˆ 0,1 is a ๐ถ2 smooth function. Denote by (*) the VIS defined by Eq. (1) and impact conditions (2) Let .

[ ] ( ) ( ){ }0,,,0,,0,0 111 >=โˆ’ร—ร—โˆž=ฮ› yryyJ ยตยตR

Page 7: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

A function ๐‘ง ๐‘ก = col(๐‘ฅ ๐‘ก ,๐‘ฆ(๐‘ก)) is called solution of the VIS (*) with a finite number of impacts on an interval (๐‘Ž, ๐‘) if the following conditions are satisfied: there exist instants ๐‘ก0, โ€ฆ , ๐‘ก๐‘+1 where ๐‘ก0 = ๐‘Ž, ๐‘ก๐‘+1 = ๐‘ such that 1) The components ๐‘ฅ ๐‘ก is continuous, points ๐‘ก1, โ€ฆ , ๐‘ก๐‘ are all points of discontinuity for ๐‘ฆ(๐‘ก). 2) The function ๐‘ฅ ๐‘ก is non-negative and ๐‘ก1, โ€ฆ , ๐‘ก๐‘ are all its zeros. 3) ๐‘ฆ ๐‘ก๐‘˜ + 0 = โˆ’๐‘Ÿ ๐œ‡ ๐‘ฆ ๐‘ก๐‘˜ โˆ’ 0 for all ๐‘˜ = 1, โ€ฆ ,๐‘ 4) The function ๐‘ง ๐‘ก is a solution of system (1) on every segment ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 .

, , , .

Page 8: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Lemma 1. Let ๐‘ง ๐‘ก = col(๐‘ฅ ๐‘ก ,๐‘ฆ(๐‘ก)) - be a solution of (*), corresponding to the value ๐œ‡0 of the parameter and to the initial data (๐‘ก0, ๐‘ฅ0,๐‘ฆ0). Let ๐‘ฅ02 + ๐‘ฆ02 > 0 and let the considered solution be defined on ๐‘กโˆ’, ๐‘ก+ . Let the function ๐‘ฅ(๐‘ก) have exactly ๐‘ zeros ๐‘ก1, โ€ฆ , ๐‘ก๐‘ on the interval (๐‘กโˆ’, ๐‘ก+). Suppose that ๐‘ฆ ๐‘ก๐‘˜ โˆ’ 0 โ‰  0 for all k. Then for any ๐‘ก โˆˆ (๐‘กโˆ’, ๐‘ก+) โˆ– {๐‘ก1, โ€ฆ , ๐‘ก๐‘} there is a neighborhood ๐‘ˆ of the point ๐‘ก0, ๐‘ฅ0,๐‘ฆ0, ๐œ‡0 such that the mapping ๐‘ง(๐‘ก, ๐‘กโ€ฒ, ๐‘ฅโ€ฒ,๐‘ฆโ€ฒ,๐œ‡๐œ‡) is smooth with respect to (๐‘กโ€ฒ, ๐‘ฅโ€ฒ,๐‘ฆโ€ฒ, ๐œ‡๐œ‡) from ๐‘ˆ. All corresponding solutions have exactly ๐‘ impacts ๐‘ก๐‘˜(๐‘ก๐‘ก, ๐‘ฅ๐‘ก,๐‘ฆ๐‘ก,๐œ‡๐‘ก) over (๐‘กโˆ’, ๐‘ก+). Impact instants ๐‘ก๐‘˜(๐‘ก๐‘ก, ๐‘ฅ๐‘ก,๐‘ฆ๐‘ก, ๐œ‡๐‘ก) and corresponding velocities ๐‘ฆ(๐‘ก๐‘˜ ๐‘ก๐‘ก, ๐‘ฅ๐‘ก,๐‘ฆ๐‘ก, ๐œ‡๐‘ก โˆ’ 0) are smooth functions of ๐‘ก๐‘ก, ๐‘ฅ๐‘ก,๐‘ฆ๐‘ก,๐œ‡๐‘ก in ๐‘ˆ.

Page 9: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ . The topology is minimal one there for any

pair (๐‘“0, ๐‘Ÿ0) and any ๐‘… > 0 the set

๏ฟฝ ๐‘“, ๐‘Ÿ : sup๐‘ก,๐‘ง,๐œ‡ โˆˆ๐‘€

( ๐‘“ ๐‘ก, ๐‘ง, ๐œ‡ โˆ’ ๐‘“0 ๐‘ก, ๐‘ง, ๐œ‡ + ๏ฟฝ๐œ•๐‘“๐œ•๐‘ง

๐‘ก, ๐‘ง, ๐œ‡

โˆ’๐œ•๐‘“0๐œ•๐‘ง

๐‘ก, ๐‘ง, ๐œ‡ ๏ฟฝ + ๏ฟฝ๐œ•๐‘“๐œ•๐œ‡

๐‘ก, ๐‘ง, ๐œ‡

โˆ’๐œ•๐‘“0๐œ•๐œ‡

๐‘ก, ๐‘ง, ๐œ‡ ๏ฟฝ + |๐‘Ÿ ๐œ‡ โˆ’ ๐‘Ÿ0(๐œ‡)|) < ๐‘…๏ฟฝ

is open.

Page 10: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

โ€œStiffโ€ model with a perturbation ๏ฟฝฬ‡๏ฟฝ = ๐‘ฆ; ๏ฟฝฬ‡๏ฟฝ = ๐‘“ ๐‘ก, ๐‘ฅ,๐‘ฆ + ๐‘” ๐‘ก, ๐‘ฅ,๐‘ฆ ; ๐‘” ๐ถ1 < ๐œ€ We assume conditions (2) take place. โ€œSoftโ€ model with a perturbation. ๏ฟฝฬ‡๏ฟฝ = ๐‘ฆ; ๏ฟฝฬ‡๏ฟฝ = ๐‘“ ๐‘ก, ๐‘ฅ,๐‘ฆ + ๐‘” ๐‘ก, ๐‘ฅ,๐‘ฆ + โ„Ž(๐œ…, ๐‘ก, ๐‘ฅ,๐‘ฆ); ๐‘” ๐ถ1 < ๐œ€ โ„Ž ๐œ…, ๐‘ก, ๐‘ฅ,๐‘ฆ = โˆ’2๐›ผ๐œ…๐œ’โˆ’ ๐‘ฅ ๐‘ฆ โˆ’ 1 + ๐›ผ2 ๐œ…2๐œ’โˆ’ ๐‘ฅ x, ๐›ผ = โˆ’log ๐‘Ÿ/๐œ‹. ฯ‡ฬฒ =1 if x <0 and ฯ‡ฬฒ =0 if xโ‰ฅ0; addition of functions h replaces the conditions of impact. Consider stroboscopic (period shift) mappings for both

of these models. Call them ๐‘†๐‘”,๐‘Ÿ and ๐‘†๐‘”,๐‘Ÿ,๐œ… Hyperbolic invariant sets persist for small ๐œ€ and big ๐œ… and

small changes in ๐‘Ÿ.

1kฮด

Page 11: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Fig. 2. A ยซsoftยป model of impact, ยซsuturedยป from two linear systems. A delimiter is replaced with a very stiff spring.

Page 12: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Fig. 3. A grazing bifurcation. Here the case ยต>0 corresponds to existence of a low-velocity impact, we can select ยต equal to this velocity. ยต=0 corresponds to a tangent motion (grazing), the case ยต<0 corresponds to passage near delimiter without impact.

Page 13: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

There exists a continuous family of ะข โ€“ periodic solutions ๐œ‘ ๐‘ก, ๐œ‡ = (๐œ‘๐‘ฅ ๐‘ก,๐œ‡ ,๐œ‘๐‘ฆ ๐‘ก, ๐œ‡ ) of system (*), satisfying following properties: 1) For any ๐œ‡ โˆˆ ๐ฝ the component ๐œ‘๐‘ฅ ๐‘ก,๐œ‡ has exactly ๐‘ + 1 zeros ๐‘ก0 ๐œ‡ , โ€ฆ , ๐‘ก๐‘(๐œ‡) over the period [0,๐‘‡). 2) Velocities ๐‘Œ๐‘˜(๐œ‡) = ๐‘ฆ(๐‘ก๐‘˜(๐œ‡) โˆ’ 0) are such that ๐‘Œ๐‘˜ ๐œ‡ โ‰  0 for all ๐œ‡ โ‰  0, ๐‘Œ0(0) = 0, ๐‘Œ๐‘˜ 0 โ‰  0 for ๐‘˜ = 1, โ€ฆ ,๐‘. 3) Instants ๐‘ก๐‘˜(๐œ‡) and impact velocities ๐‘Œ๐‘˜(๐œ‡) continuously depend on the parameter ๐œ‡ โˆˆ ๐ฝ.

, ,

.

.

Condition 1.

Page 14: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Fig. 4. Curve ะ“. Homoclinic points arizing due to bent of unstable (ะฐ) or stable (b) manifold. Here we consider case 1 โ€“ presence of periodic motions with a

low impact velocity.

(a) (b)

Page 15: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Period shift map ๐‘†๐œ‡,๐œƒ(๐‘ง0) = ๐‘ง(๐‘‡ โˆ’ ๐œƒ,โˆ’๐œƒ, ๐‘ง0, ๐œ‡) Here ฮธ > 0 is a small parameter, ๐‘ง๐œ‡,๐œƒ = ๐œ‘(โˆ’๐œƒ, ๐œ‡) be the fixed point. Let

๐ด = lim๐œ‡,๐œƒโ†’ 0

๐œ•๐‘ง๐œ•๐‘ง0

๐‘‡ โˆ’ ๐œƒ,๐œƒ, ๐‘ง0,๐œ‡ =๐‘Ž11 ๐‘Ž12๐‘Ž21 ๐‘Ž22

be the matrix, corresponding for motion out of grazing Condition 2. ๐‘Ž12 > 0 , Tr ๐ด < โˆ’1.

๐ต๐œ‡,๐œƒ =๐œ•๐‘ง๐œ•๐‘ง0

๐œƒ,โˆ’๐œƒ, ๐‘ง0, ๐œ‡

=โˆ’๐‘Ÿ 0

โˆ’๐‘Ÿ + 1 ๐‘“ 0,0,0

๐‘Œ0 ๐œ‡โˆ’๐‘Ÿ (๐ธ + ๐‘‚(ยต+ฮธ))

.

Page 16: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

๐ท๐‘†๐œ‡,๐œƒ ๐‘ง๐œ‡,๐œƒ = ๐ด๐ต๐œ‡,๐œƒ(๐ธ + 0(๐œ‡ +\theta)) Trace is big if ๐‘Ž12 โ‰  0, determinant is bounded. Eigenvalues ๐œ†+ โ†’ โˆž as ๐œ‡ โ†’ 0 and ๐œ† โˆ’ โ†’ 0 as ๐œ‡ โ†’ 0. Corresponding eigenvectors:

๐‘ข+ =๐‘Ž21๐‘Ž22 + O(๐œ‡ + ๐œƒ),

๐‘ขโˆ’ = 01 + O(๐œ‡ + ๐œƒ).

Page 17: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Theorem 2. Let Conditions 1 and 2 be satisfied. Then there exist values ๐œ‡0,๐œƒ0 such that for all ๐œ‡ โˆˆ 0, ๐œ‡0 ,๐œƒ โˆˆ (0,๐œƒ0) there exist a natural number m and a compact set ๐พ๐œ‡,๐œƒ, invariant with respect to ๐‘†๐œ‡,๐œƒ and such that the following statements are true. 1) There exists a neighborhood ๐‘ˆ๐œ‡,๐œƒ of the set ๐พ๐œ‡,๐œƒ such that the reduction ๐‘†๐œ‡,๐œƒ|๐‘ˆ๐œ‡,๐œƒ is a local diffeomorphism. The invariant set ๐พ๐œ‡,๐œƒ is hyperbolic 2) The invariant set ๐พ๐œ‡,๐œƒ of the diffeomorphism ๐‘†๐œ‡,๐œƒ|๐‘ˆ๐œ‡,๐œƒ is chaotic in Devaney sense, i.e. it is infinite, hyperbolic, topologically transitive (contains a dense orbit) and periodic points are dense there.

Page 18: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Fig .11. Description of the experiment and bifurcation diagrams, demonstrating presence of chaos in a

neighborhood of grazing

Molenaar et al. 2000

Page 19: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Ing et al., 2008; Wiercigroch & Sin, 1998 (see also Fig. 2)

Fig. 12. Bifurcation diagrams and chaotic dynamics on the set of central leaves in a neighborhood of a periodic point.

Page 20: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Akhmet, M. U. (2009). Li-Yorke chaos in systems with impacts. Journal of Mathematical Analysis & Applications, 351(2), 804-810.

di Bernardo, M., Budd C. J., Champneys A. R. & Kowalczyk P. (2007) Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Theory and Applications. New York, Springer.

Babitsky, V. I. (1998) Theory of Vibro-Impact Systems and Applications, Berlin, Germany, Springer.

Banerjee, S., Yorke, J. A. & Grebogi, C. (1998) Robust chaos. Physical Review Letters, 80(14), 3049-3052.

Budd, C. (1995) Grazing in impact oscillators. In: Branner B. & Hjorth P. (Ed.) Real and Complex Dynamical Systems (pp. 47-64). Kluwer Academic Publishers.

Bunimovich L.A., Pesin Ya. G., Sinai Ya. G. & Jacobson M. V. (1985) Ergodic theory of smooth dynamical systems. Modern problems of mathematics. Fundamental trends, 2, 113-231.

Chernov N., Markarian R. (2001) Introduction to the ergodic theory of chaotic billiards. IMCA, Lima.

Chillingworth, D.R.J. (2010) Dynamics of an impact oscillator near a degenerate graze. Nonlinearity, 23, 2723-2748.

Page 21: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Chin W., Ott E., Nusse, H. E. & Grebogi, C. (1995) Universal behavior of impact oscillators near grazing incidence. Physics Letters A 201(2), 197-204.

Devaney, R. L. (1987) An Introduction to Chaotic Dynamical Systems. Redwood City, CA: Addison-Wesley.

Fredriksson, M. H. & Nordmark, A. B. (1997) Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators. Proceedings of the Royal Society, London. Ser. A. 453, 1261-1276.

ะ“ะพั€ะฑะธะบะพะฒ ะก. ะŸ. & ะœะตะฝัŒัˆะตะฝะธะฝะฐ ะ.ะ’. (2005) ะ‘ะธั„ัƒั€ะบะฐั†ะธั, ะฟั€ะธะฒะพะดัั‰ะฐั ะบ ั…ะฐะพั‚ะธั‡ะตัะบะธะผ ะดะฒะธะถะตะฝะธัะผ ะฒ ะดะธะฝะฐะผะธั‡ะตัะบะธั… ัะธัั‚ะตะผะฐั… ั ัƒะดะฐั€ะฝั‹ะผะธ ะฒะทะฐะธะผะพะดะตะนัั‚ะฒะธัะผะธ. ะ”ะธั„ั„ะตั€ะตะฝั†. ัƒั€ะฐะฒะฝะตะฝะธั, 41(8), 1046-1052.

Holmes, P. J. (1982) The dynamics of repeated impacts with a sinusoidally vibrating table. Journal of Sound and Vibration 84(2), 173-189.

Ing, J., Pavlovskaia E., Wiercigroch M, Banerjee S. (2008) Experimental study of an impact oscillator with a one-side elastic constraint near grazing. Physica D 239, 312-321.

Ivanov, A. P. (1996) Bifurcations in impact systems. Chaos, Solitons & Fractals 7(10), 1615-1634.

ะšะพะทะปะพะฒ ะ’.ะ’., ะขั€ะตั‰ะตะฒ ะ”.ะ’. (1991) ะ‘ะธะปะปะธะฐั€ะดั‹. ะ“ะตะฝะตั‚ะธั‡ะตัะบะพะต ะฒะฒะตะดะตะฝะธะต ะฒ ะดะธะฝะฐะผะธะบัƒ ัะธัั‚ะตะผ ั ัƒะดะฐั€ะฐะผะธ. ะœ.: ะ˜ะทะด-ะฒะพ ะœะ“ะฃ. 1991. 168 c.

Page 22: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the

Molenaar J, van de Water W. & de Wegerand J. (2000) Grazing impact oscillations. Physical Review E, 62(2), 2030-2041.

Nordmark, A. B. (1991) Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound & Vibration, 145(2), 279-297.

Palis, J., di Melo, W. (1982) Geometric Theory of Dynamical Systems. Springer-Verlag, 1982.

Pavlovskaia, E. ,Wiercigroch, M. (2004) Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes. Chaos, Solitons & Fractals 19(1), 151-161.

Smale, S. (1965) Diffeomorfisms with many periodic points. Differential & Combinatorial. Topology. Princeton: University Press, 63-81.

Thomson, J. M. T., Ghaffari, R. (1983) Chaotic dynamics of an impact oscillator. Physical Review A, 27(3), 1741-1743.

Wiercigroch, M., Sin, V.W.T. (1998) Experimental study of a symmetrical piecewise base-excited oscillator, J. Appl. Mech.65, 657-663.

Whiston, G. S. (1987) Global dynamics of a vibro-impacting linear oscillator. Journal of Sound & Vibration, 118(3), 395-429.

Page 23: Sergey Kryzhevich - BCAMโ‚ฌยฆย ยท This is a space ๐‘‹, consisting of ๐ถ1smooth pairs ๐‘“, ๐‘Ÿ. The topology is minimal one there for any pair (๐‘“0, ๐‘Ÿ0) and any ๐‘…> 0 the