sergey g. kurdyukov a , yuri b. lebedev a , irena i. artamonova a , tatyana n. gorodentseva a ,

16
Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodent seva a , Anastasia V. Batrak a , Ilgar Z. Mamedov a , Tatyana L. Azhikina a , Svetlana P. Legchi lina b , Irina G. Efimenko b , Katheleen Gardiner c and Eugene D. Sverdlov a , b a Shemyakin-Ovchinnikov Inst. of Bioorganic Chemistry, Russian Academy of Scienc e, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia. b Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia c Eleanor Roosevelt Institute, Denver, CO, USA GENE 273 (2001) 51-61 Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history 발발발발 : 2002 발 1 발 14 발 발 발 발 : 발 발 발

Upload: sakina

Post on 19-Mar-2016

46 views

Category:

Documents


1 download

DESCRIPTION

GENE 273 (2001) 51-61 Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history. Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a , - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Sergey G. Kurdyukova, Yuri B. Lebedeva, Irena I. Artamonovaa, Tatyana N. Gorodentsevaa, Anastasia V. Batraka, Ilgar Z. Mamedova, Tatyana L. Azhikinaa, Svetlana P. Legchilinab,

Irina G. Efimenkob, Katheleen Gardinerc and Eugene D. Sverdlova, b

a Shemyakin-Ovchinnikov Inst. of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia.

b Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russiac Eleanor Roosevelt Institute, Denver, CO, USA

GENE 273 (2001) 51-61

Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21:

map locations and evolutionary history

발표일시 : 2002년 1월 14일발 표 자 : 김 명 숙

Page 2: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

One of the evolutionary mechanisms for acquisition of novel functional sequences can be domestication of exogenous retroviruses that have been integrated into the germ line. The whole genome mapping of such elements in various species could reveal differences in positions of the retroviral integration and suggest possible roles of these differences in speciation. Here, we describe the number, locations and sequence features of the human endogenous retrovirus HERV-K (HML-2) long terminal repeat (LTR) sequences on human chromosome 21. We show that their distribution along the chromosome is not only non-random but also roughly correlated with the gene density. Amplification of orthologous LTR sites from a number of primate genomes produced patterns of presence and absence for each LTR sequence and allowed determination of the phylogenetic ages and evolutionary order of appearance of individual LTRs. The identity level and phylogenetic age of the LTRs did not correlate with their map locations. Thus, despite the non-random distribution of LTRs, they have apparently been inserted randomly into the chromosome relative to each other. As evidenced in previous studies of chromosomes 19 and 22, this is a characteristic of HERV-K integration.

ABSTRACT

Page 3: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Retrovirus

+LTR element

Page 4: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

1. INTRODUCTION

• Transposons have played an important role in the evolution.• LTRs make important features of the genome.• HERV-K LTR sequences contain putative hormone response elements, enhancers, promoters, polyadenylation signals and transcription factor binding sites.• To understand the role of the LTRs in the primate evolution to perform a whole genome comparison of the LTR positions in various primates.

Page 5: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

• Three criteria to choose these LTRs

(i) the LTRs should be full-sized

to comprise all regulatory elements

(ii) they should belong to a most

biologically active HERV-K

(iii) they should be located outside

of the clusters of interspersed repeats

Page 6: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Sequenced human chromosome 21

Mapping of some LTRs

Performed phylogenetic analysis

Determined the time of their appearance

in the primate genomes

Identified human-specific LTRs

OBJECT

Page 7: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

2. MATERIALS AND METHODS

2.1. Oligonucleotide primers2.2. Cosmid and YAC libraries screening2.3. Amplification of LTR sequences2.4. Cosmid analysis Fluorescent in situ hybridization (FISH)2.5. Isolation of LTR-flanking regions2.6. Sequence analysis Blast N RepeatMasker 2 ClustalW PHYLIP Tree View 1.6

Table 1. Primers for genomic PCR

Page 8: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

3. RESULTS

3.1. Isolation and mapping of LTR sequences

3.2. Distribution of the LTRs along Chr21

3.3. LTR sequence diversity

3.4. Non-random LTR distribution along chromosome

versus random alternation of various LTRs

3.5. Individual LTR evolutionary ages and maintenance

in primates

Page 9: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Fig. 1. A HERV-K LTR nearest neighbor dendrogram (A) and an ideogram of human chromosome 21 (B) with LTR locations and (C) genes density.

Page 10: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,
Page 11: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Table 2. Human genes in the vicinity of the LTRs

Page 12: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Table 3. Phylogenetic assessment of the integration times for individual HERV-K LTRs in the primate genomes

Page 13: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Fig. 2. The results of three individual LTR-containing loci PCR amplifications in the human and other primate genomes.

Page 14: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

4. DISCUSSION

4.1. The distribution of the HERV-K LTRs along chr21

is roughly correlates with the gene distribution

4.2. LTR-gene relations

4.3. The intra- and interchromosomal distribution

of the LTRs

4.4. LTRs of different ages are present on chr21,

but relatively young LTRs are more abundant

Page 15: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Fig. 3. Integration times of individual HERV-K elements mapped on Chr21.

Page 16: Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodentseva a ,

Fig. 6. Phylogenetic tree for the putative integration times of endogenous retrovirus/retroposon in primates branching times of the phylogeny should be considered as approximate.