sequences definition - a function whose domain is the set of all positive integers. finite sequence...

14
Sequences Definition - A function whose domain is the set of all positive integers. Finite Sequence - finite number of values or elements Infinite Sequence - infinite number of values or elements Notation - Section 10.1 - Sequences 2 7 1, ,6, 2,4,6,8,10 3 8 4,7,8,13, 1,3,5,7,9 n n a or b

Upload: silvester-tucker

Post on 31-Dec-2015

309 views

Category:

Documents


2 download

TRANSCRIPT

Sequences

Definition - A function whose domain is the set of all positive integers.

Finite Sequence - finite number of values or elements

2 71, ,6, 2,4,6,8,103 8

Infinite Sequence - infinite number of values or elements

4,7,8,13, 1,3,5,7,9

Notation - n na or b

Section 10.1 - Sequences

Definition - A function whose domain is the set of all positive integers.

Section 10.1 - Sequences

Section 10.1 - Sequences

Three Types of Sequences

Specified – enough information is given to find a pattern 1,4,7,10,13, 2,5,11,23,47,

Explicit Formula

Recursion Formula

π‘Žπ‘›=3π‘›βˆ’2 ,𝑛β‰₯1

𝑏𝑛=π‘π‘›βˆ’1+3 ,𝑛β‰₯2 ,𝑏1=1

Section 10.1 - Sequences

Definitions

If a sequence has a limit that exists, then it is convergent and it converges to the limit value.

If a sequence has a limit that does not exist, then it is divergent.

Theorems Given then implies

If the then

Given then implies

If the then

Section 10.1 - Sequences

Section 10.1 - Sequences

Section 10.1 - Sequences

Section 10.1 - Sequences

Section 10.2 – Infinite Series

Section 10.2 – Infinite Series

Geometric Series

βˆ‘π’=𝟏

∞

π’‚π’“π’βˆ’πŸ=𝒂+𝒂𝒓 +π’‚π’“πŸ+π’‚π’“πŸ‘+β‹―π’‚π’“π’βˆ’πŸ+𝒂𝒓 𝒏

A Geometric Series will converge to provided that

If then the series will diverge.

βˆ‘π’=𝟏

∞

(πŸπŸ• )𝒏

=ΒΏ 𝒓=πŸπŸ•

<πŸπ’‚=πŸπŸ• 𝒄𝒐𝒏𝒗 .𝟏

πŸ•+πŸπŸ•βˆ™πŸπŸ•

+πŸπŸ• (πŸπŸ• )

𝟐

+πŸπŸ• (πŸπŸ• )

πŸ‘

+β‹―

Section 10.2 – Infinite Series

βˆ‘π‘›=1

∞

𝑛2 limπ‘›β†’βˆž

(𝑛 )2=∞ The limit does not exist, therefore it diverges.

βˆ‘π‘›=1

∞ 𝑛+1𝑛

limπ‘›β†’βˆž

𝑛+1𝑛

=1 The limit does not equal 0, therefore it diverges.

βˆ‘π‘›=1

∞1𝑛

limπ‘›β†’βˆž

1𝑛

=0 The limit equals 0, therefore the nth – Term Test for Divergence cannot be used.

Section 10.2 – Infinite Series

Section 10.2 – Infinite Series

Telescoping Series (collapsing series)

βˆ‘π’=𝟏

∞

π’‚π’βˆ’π’‚π’+𝟏

A Telescoping Series will converge

βˆ‘π’=𝟐

∞

(πŸπ’βˆ’ πŸπ’βˆ’πŸ )=¿𝟏

πŸβˆ’πŸπŸ

+πŸπŸ‘βˆ’πŸπŸ

+πŸπŸ’βˆ’πŸπŸ‘

+β‹―ΒΏβˆ’πŸ