sensorized future - sensing of temperature and … sensorized future - sensing of temperature and...

6
Sensorized Future - Sensing of temperature and pressure in harsh environments Common report of the Cornet project “SensoFut” D. Weise 1 , K. Silbermannl 1 , S. Meinel 1 , C. Scheffler 1 , P. Scholz 1 J. Duflou 2 , H. Vanhove 2 , A. Mohammadi 2 W. Auwers 3 , S. De Troy 3 1 Fraunhofer Institute for Machine Tools and Forming Technology 2 Katholieke Universiteit Leuven Research and Development 3 Sirris – The Collective Center of the Belgian Technological Industry 15.11.2015

Upload: buinhi

Post on 17-Apr-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

SENSOFUT

Sensorized Future - Sensing of temperature

and pressure in harsh environments

Common report of the Cornet project “SensoFut”

D. Weise1, K. Silbermannl1, S. Meinel1, C. Scheffler1, P. Scholz1

J. Duflou2, H. Vanhove2, A. Mohammadi2

W. Auwers3, S. De Troy 3

1 Fraunhofer Institute for Machine Tools and Forming Technology 2 Katholieke Universiteit Leuven Research and Development

3 Sirris – The Collective Center of the Belgian Technological Industry

15.11.2015

SENSOFUT

Sensorized Future - Sensing of temperature and pressure

in harsh environments

Common report of the Cornet project “SensoFut”

D. Landgrebe1, D. Weise1, P. Scholz1

S. Biehl2, C. Rumposch2,

P. Cosemans3, I. Truijen3,

C. Emmerechts4

1 Fraunhofer Institute for Machine Tools and Forming Technology 2 Fraunhofer Institute for Surface Engineering and Thin Films

3,4 Sirris – The Collective Center of the Belgian Technological Industry

15.11.2015

Content

1. Projektzusammenfassung ................................................................................................................................................... 3

2. Project summary .................................................................................................................................................................. 4

3. Administrative data of the project ...................................................................................................................................... 5

3.1. Title of the project ....................................................................................................................................................... 5

3.2. Coordinator and partners ........................................................................................................................................... 5

Coordinating association: European Society of Thin Films (EFDS) ...................................................................... 5 3.2.1.

Research partner: Fraunhofer Institute of Machine Tools and Forming Technology (IWU) .................................. 5 3.2.2.

Research partner: Fraunhofer Institute for Surface Engineering and Thin Films (IST) ......................................... 5 3.2.3.

Research partner: Sirris – The Collective Center of the Belgian Technological Industry ...................................... 5 3.2.4.

Research partner: Sirris – The Collective Center of the Belgian Technological Industry ...................................... 5 3.2.5.

4. State of the Art ..................................................................................................................................................................... 6

4.1. Brief introduction in deep drawing ............................................................................................................................ 6

Process classification for deep drawing ................................................................................................................ 6 4.1.1.

Deep drawing with a fixed tool .............................................................................................................................. 7 4.1.2.

Process limits for deep drawing ............................................................................................................................ 8 4.1.3.

Extension of the forming limits for deep drawing .................................................................................................. 8 4.1.4.

Sensor concepts and process control ................................................................................................................. 10 4.1.5.

4.2. Brief introduction in injection moulding ................................................................................................................. 13

The Benefits of Cavity Pressure Measurement Systems .................................................................................... 13 4.2.1.

Cavity Pressure Measurement Systems as “fingerprint” of the injection moulding conditions ............................ 14 4.2.2.

The Fundamentals of Mould Cavity Pressure Measurement .............................................................................. 15 4.2.3.

The Pressure Profile and its Interpretation ......................................................................................................... 16 4.2.4.

Direct, indirect and contact-free pressure measurement .................................................................................... 17 4.2.5.

4.3. Brief introduction in thin film temperature and pressure sensors ....................................................................... 18

Pressure sensors ................................................................................................................................................ 18 4.3.1.

5. Objectives of the SensoFut project .................................................................................................................................. 27

6. Introduction to the work program ..................................................................................................................................... 28

6.1. Project execution ...................................................................................................................................................... 28

6.2. Project organisation .................................................................................................................................................. 30

Project leader and project management team: ................................................................................................... 30 6.2.1.

User committee .................................................................................................................................................. 30 6.2.2.

Reporting ............................................................................................................................................................ 31 6.2.3.

Contacts & meetings .......................................................................................................................................... 31 6.2.4.

7. Derivation of specifications .............................................................................................................................................. 31

7.1. Process requirements ............................................................................................................................................... 31

Requirements of the deep drawing process ....................................................................................................... 31 7.1.1.

Requirements of the injection molding process .................................................................................................. 35 7.1.2.

8. Development of thin film sensors ..................................................................................................................................... 40

8.1. Sensor development – low temperature / high pressure (Fraunhofer IST) .......................................................... 40

Sensor modules for the sheet-bending process ................................................................................................. 41 8.1.1.

Sensor modules for the deep drawing process ................................................................................................... 51 8.1.2.

Sensor modules for polymer injection molding ................................................................................................... 62 8.1.3.

8.2. Sensor development for high temperature / high pressure (Sirris) ...................................................................... 69

SiC coating development .................................................................................................................................... 71 8.2.1.

SiCN coating development ................................................................................................................................. 82 8.2.2.

Electrically isolating wear resistant coating......................................................................................................... 93 8.2.3.

The temperature sensor ..................................................................................................................................... 98 8.2.4.

Electrode development and thin film structuring ................................................................................................. 98 8.2.5.

Development of the injection moulding inserts ................................................................................................. 103 8.2.6.

9. Sensor application in injection moulding and moulding tests .................................................................................... 107

9.1. Design of an injection mold tooling for sensor testing ....................................................................................... 107

9.2. Integration of the sensors from Fraunhofer IST ................................................................................................... 109

9.3. First injection tests ................................................................................................................................................. 110

9.4. Second injection tests ............................................................................................................................................ 112

Pressure and temperature measurements ....................................................................................................... 113 9.4.1.

10. Sensor application in deep drawing and drawing tests ........................................................................................... 117

10.1. 0-level tests: Strip drawing ..................................................................................................................................... 117

0 level tests with sensor module for sheet bending process ............................................................................. 122 10.1.1.

10.2. 1st

-level tests: Deep drawing .................................................................................................................................. 127

1st-level tests with sensor module for deep drawing processes ........................................................................ 130 10.2.1.

11. Project results and Summary ..................................................................................................................................... 136

12. Use of the grant, detailed presentation of the results with comparison to the objectives and description of the main items in the numerical evidence such as personnel, equipment and third party services ....................................... 138

13. Explanation of the appropriateness and necessity of the work done ..................................................................... 139

14. Presentation of scientific-technical and economic benefits of the results obtained in particular for SMEs and their innovative contribution and industrial applications ..................................................................................................... 139

15. Transfer of results: Plan for transfer of results with appointments carried out in the project and after end of the project planned transfer measures ......................................................................................................................................... 140

16. Compilation of all published work related to the project ......................................................................................... 143

17. Assessment of the feasibility of the proposed and updated transfer concept ...................................................... 144

18. APPENDIX .................................................................................................................................................................... 144

19. Bibliography ................................................................................................................................................................. 145

3 SensoFut: Sensing of temperature and pressure in harsh environments

1. Projektzusammenfassung

Um in Europa dem Trend der sehr anspruchsvollen industriellen Fertigung in Hinblick auf Qualität, langer Lebensdauer aber auch steigender Komplexität und Flexibilität zu genügen, werden neue Verfahren benötigt, die dies ermöglichen. In Hinblick auf den globalen Wettbewerb sind steigende Fertigungskosten nicht die Lösung, um diese oben genannten Anforderungen zu erfüllen. Innovationen, die eine wachsende Prozesskontrolle ermöglichen, sind daher eher der Schlüssel um die Tür zu diesen Anforderungen zu öffnen.

Produzenten die als Fertigungsverfahren den Kunststoffspritzguss und das Blechtiefziehen anwenden, haben erkannt, dass die Prozesskontrolle verbessert werden muss, um mit den Fertigungstechnologien am Markt bestehen zu können. Doch sie fanden keine kommerziell erwerblichen Kontrollsysteme, die reale Prozesskenndaten in direktem Kontakt mit dem Werkstück erfassen. An diesem Punkt startete das Projekt »SensoFut«. Während des Fertigungsprozesses in situ die Kenndaten aus den Hauptbelastungszonen von Werkzeugen zu erhalten, bieten die Sensorentwicklungen in »SensoFut« völlig neue Möglichkeiten in Hinblick auf die Prozess-steuerung, z.B. ein schnelles Reagieren auf Veränderungen in der Fertigung um den Ausschuss zu minimieren. Diese Daten können dazu herangezogen werden um Simulationen zu optimieren. Sie ermöglichen ein tieferes Prozessverständnis mit der Konsequenz, dass die Effizienz gesteigert werden kann, z.B. in Hinblick, dass die Werkzeuge eine längere Lebensdauer aufweisen oder die Wartungsintervalle optimiert werden können. In den meisten Fertigungsverfahren stellen Temperatur und Druck die beiden wichtigsten und zugleich am kritischsten zu erfassenden Messgrößen dar. Besonders bei Hochtemperatur und/oder Hochdruckverfahren war es bisher unmöglich bzw. nur sehr erschwert und unzureichend möglich diese Daten in den Hauptlast-bereichen von Produktionsanlagen zu erfassen.

Tribologische Beschichtungen die zur Erhöhung der Reibungs- und Verschleißbeständigkeit von Werkzeugoberflächen dienen, sind bereits entwickelt worden und befinden sich in der Produktion im Einsatz. Diese Beschichtungen werden in Plasmaprozessen, wie der physikalischen Gasphasenabscheidung (PVD) oder auch der plasmaunterstützten chemischen Gasphasen-abscheidung (PACVD) hergestellt. In diesem Projekt »SensoFut« wurde der Ansatz verfolgt diese tribologisch beständigen Schichten in Hinblick auf ihre sensorischen Eigenschaften weiter zu entwickeln und mit unterschiedlichen Verfahren auch zu strukturieren um dadurch multifunktionale Schichtsysteme zu erzeugen, die sowohl lokal zur Temperatur- wie auch zur Kraft-/Druckmessung dienen.

Die vorrangigen Zielgruppen die mit diesen Projektentwicklungen angesprochen werden sollen, sind Firmen die Hochdruckumformprozesse betreiben, wie z.B. die Automobilindustrie, Luft- und Raumfahrt, Metallbearbeitungsfirmen und Gießereien. Die zweite Zielgruppe besteht aus Firmen die innerhalb der Sensorik die Fertigung übernehmen und die Systeme vermarkten können, wie z.B. kommerzielle Beschichter und Messtechnikfirmen.

»SensoFut« verfolgte die folgenden Projektziele:

Entwicklung von verschleißbeständigen Schichtsystemen, welche thermoresistive und piezoresistive Dünnschichtsensorik gemeinsam integriert haben.

Abscheidung dieser multisensorischen Schichtsysteme auf Bauteile bzw. Werkzeug-einsätze, so dass eine sehr komplexe dreidimensionale Strukturierung der Dünnschicht-sensorik erforderlich ist um ortsaufgelöst in den relevanten Bereichen Temperaturen und Drücke zu messen.

Aufbau von Prototypen die in Umformanlagen die Prozessverläufe anhand von Druck- und Temperaturmessungen wiedergeben.

Demonstration der Funktionstüchtigkeit in ausgewählten industriellen Einsatzgebieten, die von hoher Relevanz für die oben genannten Zielgruppen sind.

Mit dem Erreichen dieser Projektziele ist es möglich Endanwendern in Deutschland wie auch in Belgien Monitoringsysteme zur Verfügung zu stellen, die ihre Wettbewerbsfähigkeit stärken.

2. Project summary

Several trends in end components (longer life time, higher accuracy, higher complexity...) are challenging for the European manufacturing industry. Due to the global competition, increasing production costs is not an option. Innovation by increased process control meets this challenge.

Manufacturers using metal or plastic transformation processes (e.g. deep drawing and injection moulding) recognized this challenge, but there is a lack of proven technological solutions to control production processes. Measurements of relevant process data were missing. Here, SensoFut started. The necessary in-situ and real-time capture of process data offers tremendous possibilities for many industrial processes and applications. Process data can be used to get a deeper understanding of the many manufacturing processes with the consequence of an increased performance and lifetime of the manufacturing devices plus the opportunity of even further optimization. Important and even critical process parameters for many processes are temperature and pressure. However, for complex processes at high temperatures and / or pressures as well as for positions in components that are difficult to reach, it was complicated or sometimes impossible to obtain in-situ data with the current sensors at the specific desired locations.

In many processes or for components in heavily polluted environments, the use of hard durable (lifetime extension) and self-lubricating coatings is already well established. The coatings are made by the use of PVD, CVD or hybrid deposition techniques. In this way it was possible to combine the tribological and sensory function in a multifunctional coating with new properties. Thus, in addition to a protective function, these coatings continuously provided information on temperature and pressure and / or forces.

The primary target groups were companies, which manufacture components or work with processes under heavy load (thermal load and / or pressure). Typical industries were aerospace, machining, foundry, metal processing, automotive industry and mechatronics. A second target group consisted of companies across the entire value chain of such sensors. The job coaters can offer such sensor functionality.

SensoFut had the following objectives:

Sensor coatings for temperature and pressure, implemented by material combinations,

which are pressure and temperature resistant in harsh industrial environments.

Integration of the sensor coating in a process or product in location, which were previously

inaccessible or difficult to measure.

A prototype measurement system (and connections to the sensor) that continuously

monitors the product / process.

Demonstration of the feasibility in well selected industrial applications that are relevant to

the challenges of the target group.

By achieving the desired objectives, end users and component developers in Germany and Flanders increased the added value of their products. For example, they are now able to use it up to the limit or integrate new features and services. This had an impact on their competitiveness, production costs and product quality. First applications of members of the user committee also created an initial market for technology developers.