sensor and actuators

Upload: fireblack37

Post on 05-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Sensor and Actuators

    1/8

  • 8/16/2019 Sensor and Actuators

    2/8

    202   F.Arduini et al. / Sensors and Actuators B 179 (2013) 201–208

    (N-cyclohexy-N-(2-morpholinoethyl)carbodiimide)methyl-p-

    toluenesulphonate by Pedrosa et al. [21,22]. An AChE biosensor

    was also constructed by means of gold nanoparticles and cys-

    teamine assembledon glassy carbonpaste [23] or by singlewalled

    carbon nanotubes wrapped by thiol terminated single strand

    oligonucleotide (ssDNA) on gold [24].

    In all these cases, however, keeping in mind that the

    organophosphorus insecticides are able to irreversibly inhibit

    the AChE, after each measurement the biosensor need to be

    re-preparedorreactivated.TheAChE biosensor, in fact, canbe reac-

    tivated putting in contact the biosensor, after the measurement,

    for several minutes with 2-PAM (pyridine-2-aldoxime methylio-

    dide) solution [25] or, for example, obidoxime solution [26]. The

    reactivation should be performed immediately after the mea-

    surement, in order to avoid the enzyme phenomenon called

    “ageing” that renders the inhibited enzyme more resistant to the

    reactivationbecomingpermanentlyinhibited[27]. Inordertoavoid

    these steps with drawbacks in term of time of analysis, the use of 

    screenprinted electrodes (SPEs) canbe a successfully alternative.

    ThegoldSPEs have theadvantagesto beminiaturized,mass pro-

    duced, and cost-effective, thus suitable for a single measurement,

    properties very useful in the case of irreversible inhibition based

    biosensors. In the present work we report the development of a

    novelamperometricmono-enzymatic AChEbiosensor inwhichthe

    enzyme is immobilized via glutaraldehyde on a preformed SAM

    of cysteamine onto Au-SPE. In order to have a mono-enzymatic

    biosensor, the acetylthiocholine was used as substrate. The enzy-

    matic product thiocholine was detected by using ferricyanide in

    solution as electrochemicalmediator.

    2. Materials and methods

     2.1. Apparatus

    Amperometric measurements were carried out using a VA

    641amperometric detector (Metrohm,Herisau, Switzerland), con-

    nected to an X-t recorder (L250E, Linseis, Selb, Germany).Cyclic voltammetry (CV) was performed using an Autolab

    electrochemical system (Eco Chemie, Utrecht, The Netherlands)

    equippedwith PGSTAT-12andGPESsoftware (EcoChemie,Utrecht,

    The Netherlands). Electrochemical impedance spectroscopy (EIS)

    measurements were carried out in the same cell with a PC-

    controlled Autolab. A sinusoidal voltage perturbation of 10mV

    amplitude was applied over the frequency range of 100kHz to

    0.1Hzwith 10measurement points per frequency decade. For the

    fitting of thedataobtainedbyEIS, Z-views software (ScribnerAsso-

    ciates, Inc.) was used.

     2.2. Electrodes

    Au-SPEs were bought from Ecobioservice (Florence, Italy). Thediameterof theworkingelectrodewas0.3cmresultingin anappar-

    ent geometric area of 0.07cm2. Before thiol measurements, the

    referenceelectrodewas chlorinatedbyapplyinga potentialof 0.6V

    between the silver and an external Ag/AgCl electrode for 20s in a

    phosphate buffer solution in the presence of 0.1M KCl [28].

     2.3. Reagents

    Allchemicals fromcommercial sourceswereof analyticalgrade.

    Potassium ferricyanide from Carlo Erba (Milano, Italy), acetyl-

    cholinesterase (AChE) fromelectric eel, acetylthiocholine chloride,

    cysteamine, glutaraldehyde and paraoxon were purchased from

    Sigma Chemical Company (St. Louis, USA).

     2.4. Thiocholinemeasurements

    Thiocholine was produced enzymatically by AChE using

    acetylthiocholine as substrate(because thiocholineisnot commer-

    cially available). For this purpose, 1mL of 1M acetylthiocholine

    solution was prepared in phosphate buffer 0.1M (pH= 8), and

    100 units of AChE were added to this solution. After 1h, the

    concentration of thiocholine produced by AChE was estimated

    spectrophotometrically by Ellman’s method. For this purpose,

    900L of phosphate buffer solution (0.1M, pH= 8), 100L of 

    0.1MDTNB, and 5L thiocholine solution (diluted 1:100 inwater)

    were put in a spectrophotometric cells. The absorbance was mea-

    sured, and the real concentration was evaluated by using the

    Lambert–Beer law with the known molar extinction coefficient

    of TNB (ε=13,600M−1 cm−1) [29]. After 1h, the acetylthiocholine

    hydrolysis is completed, and 1mL solution of 1M thiocholine is

    obtained. The solution is stable for 1 day at 4 ◦C.

    Thiocholinemeasurementswere carried out usingamperomet-

    ric batch analysis at Au-SPE in a stirred 0.05M phosphate buffer

    solution+ 0.1MKCl,pH7.4 (10mL)containing1 mMof ferricyanide

    ions at an applied potential of +400mV vs. Ag/AgCl. After around

    7min, time required for baseline stabilization, the thiocholinewas

    added and the responsewas recorded.

     2.5. AChE biosensor 

    The Au-SPE, as received by Ecobioservice, was immersed in

    100mM cysteamine aqueous solution for 15h at room temper-

    ature in darkness to form cysteamine monolayer. Then, it was

    thoroughlywashedwithdoubledistilledwater toremovethephys-

    icallyadsorbedcysteamine.Afterthat,the sensorwas coveredwith

    an aqueous solution of glutaraldehyde 5% (v/v) for 30min, then,

    it was thoroughly washed with double distilled water to remove

    the unreacted glutaraldehyde. Finally the resulting electrode was

    incubated with AChE solution (10U/mL) for 15h; after that, the

    biosensor waswashed and maintained in phosphate buffer at 4 ◦C

    (Scheme 1).

     2.6. Acetylthiocholine measurement 

    The acetylthiocholine was measured using AChE biosensor at

    an applied potential of +400mVvs. Ag/AgCl in stirred 0.05M phos-

    phate buffer solution+ 0.1M KCl, pH 7.4 (10mL) containing 1mM

    of ferricyanide ions. When a stable baseline current was reached,

    the acetylthiocholine was added and the analyte response at the

    steady statewas recorded.

     2.7. Inhibitionmeasurement using AChE biosensors

    Paraoxon in aqueous solutionswasused as standard insecticidefor the AChE inhibition measurements. The enzymatic activity of 

    the biosensor was measured before (i0) and after (ii) its exposure

    to paraoxon for a certain time (incubation time) at 3mM sub-

    strate (acetylthiocholine) concentration.After the incubationtime,

    the biosensor was rinsed three times with distilled water and the

    response towards the substratewasmeasured as described above.

    The degree of inhibition was calculated as a relative decay of the

    biosensor response.

    I % =i0 − iii0

    × 100 (1)

    where i0  and ii represent the biosensor response before and after

    the incubation procedure, respectively.

    https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/20394016_Tacrine_slows_the_rate_of_aging_of_sarin-inhibited_acetylcholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223045037_Glutathione_amperometric_detection_based_on_a_thiol-disulfide_exchange_reaction?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/287226153_Tissue_sulfhydryl_groups?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/287226153_Tissue_sulfhydryl_groups?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229479937_Acetylcholinesterase_Immobilization_on_3-Mercaptopropionic_Acid_Self_Assembled_Monolayer_for_Determination_of_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223045037_Glutathione_amperometric_detection_based_on_a_thiol-disulfide_exchange_reaction?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/20394016_Tacrine_slows_the_rate_of_aging_of_sarin-inhibited_acetylcholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==

  • 8/16/2019 Sensor and Actuators

    3/8

    F.Arduini et al. / Sensors and Actuators B 179 (2013) 201–208 203

    Scheme 1. The schemeof theassemblingof theAChE biosensor.

     2.8. Sample collection

    Thedrinkingwater samplewascollectedat TorVergata Univer-

    sity Laboratory, the Sacco river water sample was collected near

    Ceccano;realsampleswere diluted1:2with0.1Mphosphatebuffersolution+ 0.2M KCl, pH 7.4 and directly analysed.

    3. Results and discussion

     3.1. Amperometric thiocholine detection at Au-SPE by means of 

     ferricyanide

    Themono-enzymaticAChEbiosensoruses theacetylthiocholine

    as substrate, thus the first goal was the development of a highly

    sensitive enzymatic product thiocholine (RSH) sensor. The major

    drawback relative to the electrochemical detection of thiocholine

    is the high overpotential required at most conventional electrode

    surfaces (gold, platinum and carbon paste) and the fouling of theworking electrode surface. To overcome these problems, the elec-

    trochemical detection of thiocholine could be performed using

    nanostructured materials or redox mediators [30–35]. In the last

    case, the electrochemical mediator can be adsorbed on the work-

    ingelectrode surface such as in thecaseofPrussianBlue [33], cobalt

    hexacyanoferrate [34] or itcanbedirectly mixed tothe ink usedto

    print the working electrode, such as in the case of cobalt phthalo-

    cyanine (CoPc) [35]. In the case of Au-SPEs modified with SAM,

    our choice was to use the electrochemical mediator ferricyanide

    in solution because it is able to electrocatalyse the oxidation of 

    thiocholine [36].

    The electrochemical behaviour of ferricyanide towards thio-

    choline oxidationwasfirstlyinvestigatedusinga CV techniqueand

    a Au-SPE. Before the thiocholine measurement, the Au-SPE wasconditioned by means of 30 CVs using ferricyanide 10mM pre-

    pared in0.05M phosphate bufferplus0.1MKCl, pH7.4 atscanrate

    of 50mV/s. This condition stepwas necessary in order to decrease

    thepeak topeak separation from314mV to93mVafter30 scans as

    wecansee inFig. 1, thisbehaviourcanbeascribed to theenhanced

    kinetic rate after electrochemical pretreatment as reported in lit-

    erature using carbon SPE [37]. Next, we have investigated the

    response of the so conditioned Au-SPE towards ferricyanide by CV

    over a scan rangeof0.010–0.200V/s. Thecurrentofboth anodicand

    cathodic peaks increases linearly with the square root of the scan

    rate (data not shown), indicating a semi-infinite linear diffusion-

    controlled current. After that, the Au-SPE was studied to evaluate

    the electrocatalytic effect of ferricyanide towards the thiocholine

    oxidation.

    Fig. 1. CVsof Au-SPE in 10mM ferricyanide in 0.05M phosphate buffer+ 0.1M KCl,

    pH=7.4,scanrate50mV/s (continuousline= first scan,longdashed line =10thscan,short dashed line= 20th scan anddotted line =30th scan).

    Fig. 2 shows a typical response of  ik   (kinetically controlled

    current) obtained in presence of thiocholine and id (diffusion con-

    trolled current) obtained in absence of thiocholine. The generic

    reaction can be describedby the following equations:

    ferricyanide+ RSH→ ferrocyanide+ RSSR (2)

    Fig. 2. CVs of ferricyanide 4mM in 0.05M phosphate buffer+ 0.1M KCl, pH=7.4,

    scanrate20mV/sin absence(continuousline)and inpresenceof thiocholine10mM

    (dashed line) or 20mM (dotted line).

    https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229201301_Hg_detection_by_measuring_thiol_groups_with_a_highly_sensitive_screen-printed_electrode_modified_with_a_nanostructure_carbon_black_film?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223433636_Sensitive_electrochemical_detection_of_enzymatically_generated_thiocholine_at_carbon_nanotube_modified_glassy_carbon_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==

  • 8/16/2019 Sensor and Actuators

    4/8

    204   F.Arduini et al. / Sensors and Actuators B 179 (2013) 201–208

    ferrocyanideelectrode←→ ferricyanide (3)

    According to the above equations, the addition of thiocholine

    causesan increase inconcentration of theferrocyanide, resultingin

    anincreaseofthe anodicpeakcurrent.On thecontrary,the cathodic

    peak current is proportional to the amount of ferricyanide that

    decreases after the addition of RSH (thiocholine). Moreover, the

    increase of thiocholine concentration leads to a further increase

    of the anodic peak current and a decrease of the cathodic peak,confirming theproperty of ferricyanide as electrocatalyst for thio-

    choline oxidation.

    In order to calculate the second-order homogeneous rate con-

    stant ks for the reaction between ferricyanide and thiocholine, the

    theory of stationary electrode voltammetry developed by Nichol-

    son and Shain [38] was used. Calculation of ks has been performed

    by varying scan rates in the range of 5–100mV/s and thiocholine

    concentration in the range of 10–20mM, fixing the concentration

    of ferricyanide at 4mM. The reaction scheme can be described as:

    ferrocyanide− e−→ ferricyanide (4)

    thiocholine+ ferricyanide  kf ←→ferrocyanide (5)

    where kf  is the pseudo-first order rate constant. Using the experi-mental values of ik/id  a value of (kf RT /nFv) can be obtained from

    the working curve reported in Nicholson and Shain paper [38].

    Plotting (kf RT /nFv) vs. 1/v  at each concentration of thiocholine, it

    is possible to calculate kf . Then, a plot of  kf  vs. thiocholine con-

    centration was carried out obtaining a linear behaviour whose

    slope was equal to the second-order homogenous rate constant

    ks  for reaction between ferricyanide and thiocholine. It was found

    equal to (5.26±0.65)×104M−1 s−1, demonstrating the good elec-

    tron transfer between thiocholine as thiol and ferricyanide [39].

    This value is,for example,higherthantheone found fortheelectro-

    catalyticreductionofnitriteusingferricyanide(2.75×103M−1 s−1)

    [40].

     3.2. Amperometric thiocholine detection at Au-SPEmodified bymeans of ferricyanide

     3.2.1. Choice of applied potentialA plot of current/applied potential using a thiocholine and fer-

    ricyanide concentration of 3×10−4M and 1mMrespectively [36],

    wasconstructed in therange of theapplied potential0–800mV vs.

    Ag/AgCl (datanot shown). As expected,the amperometricresponse

    followed the behaviour of the oxidation current in the CV. The oxi-

    dation current increased from0 to +100mV vs. Ag/AgCl reaching a

    plateau at around+200mVvs. Ag/AgCl. However, we observed the

    highest ratio signal/noise at +400mVvs. Ag/AgCl, thus this applied

    potential was selected for the rest of work.

     3.2.2. Analytical features of thiocholinemeasurement The good electroanalytical performances of the developed sys-

    tem were then confirmed by performing amperometric batch

    measurements. In fact, ourpurpose was thedevelopment of a sen-

    sor for thiocholine detection as a platform for an amperometric

    biosensor for insecticide detection.

    Using the previous selected applied potential (+400mV vs.

    Ag/AgCl) and a ferricyanide concentration equal to 1mM [36],

    calibration curves were carried out obtaining a detection limit

    (S/N = 3) of 3×10−6M together with a linear range up to

    1×10−3M (R2 =0.9964). The sensor showed also a sensitivity

    equal to 113mAM−1 cm−2, which is higher than the one shown

    by the SPE modified with CoPc (24mAM−1 cm−2) and compara-

    ble with that obtained in the case of SPE modified with Prussian

    Blue (143mAM−1

    cm−2

    ) [13]. Moreover, the reproducibility was

    Fig. 3. CVs of ferricyanide 4mM in 0.05M phosphate buffer+ KCl 0.1M, pH=7.4,

    scan rate20mV/susinga baregoldSPE(continuousline) anda cysteaminemodified

    gold SPE (dashed line).

    evaluated by studying the response of 5×10−5M thiocholine,

    founding a RSD% equal to 5% (n=4).

     3.3. Ferricyanide behaviour at Au-SPEmodifiedwith a SAM of 

    cysteamine

    Ourgoalwasthedevelopmentofbiosensorfor insecticidedetec-

    tion immobilizing the AChE by SAM. In this case, cysteamine was

    selected as alkanethiol taking in consideration thatglutaraldehyde

    will be used to link the AChE to cysteamine. Firstly, the effect

    of cysteamine coverage of Au-SPE on ferricyanide response was

    investigated, because the electron transfer for redox reactions of 

    different molecules at SAM can be controlled by electrostatic and

    hydrophobic effects [41].

    ACVstudywasperformedusing ferricyanideat bareAu-SPEand

    Au-SPE modified with a SAM of cysteamine, prepared by dipping

    the Au-SPE in a 100mM cysteamine solution overnight (Cyst–Au-

    SPE).Weobserved that in the caseof bareAu-SPE, the peak topeak

    separation was 314mV; in the case of cysteamine modified Au-

    SPE, instead, it was 89mV (Fig. 3); it seems that the presence of 

    cysteamine on thesurface of theworking electrodecan improve its

    electrochemicalperformance. Thisbehaviour shouldbe ascribed to

    the electrostatic interaction between cysteamine and ferricyanide.

    The pK a of the cysteamine immobilized on the gold electrode was

    estimated by Shervedani et al. to be equal to 7.6, thus in the pH

    region lower than 7.6, the Au surface is positively charged [42].

    Inour case, weworkedat pH= 7.4, thus the surface of goldelec-

    trode modified by SAM of cysteamine should be characterized by

    positive charge, reason for that probably the CV of ferricyanide,which is negatively charged, is characterized by a peak to peak

    separation lower than at the bare Au-SPE.

    In conclusion, in our case the cysteaminewill be used to immo-

    bilize the AChE by cross-linking with glutaraldehyde, butwe have

    also demonstratedthat a SAMof cysteamine canfacilitate theelec-

    trontransferof ferricyanideatworkingelectrodesurfaceofAu-SPE.

     3.4. AChE biosensor 

     3.4.1. Optimization of bioactive layer 

    Inorder todevelop a sensitiveAChE biosensor, theAChEandthe

    cysteamine concentrations and the deposition time of cysteamine

    on the gold electrode surface were investigated andoptimized.

    https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==

  • 8/16/2019 Sensor and Actuators

    5/8

    F.Arduini et al. / Sensors and Actuators B 179 (2013) 201–208 205

     3.4.2. Effect of AChE concentration

    The effect of AChE concentration on the biosensor response

    was investigated. The AChE concentration was varied in a range

    comprised between 0.1 and 10U/mL using a SAM prepared with

    cysteamine 0.1mMand a deposition timeof 15h, and a glutaralde-

    hyde solutionat5%(v/v). Theresponseof thebiosensorswastested

    using acetylthiocholine 3×10−4M. We found that in the case of 

    AChE 0.1U/mL, 1U/mL and 10U/mL, a current equal to 0, 116 and

    209nA was observed, respectively. The results showed that the

    responseof thebiosensorincreasedwiththeincreaseof theenzyme

    amount as expected, but also the working stability (successively

    measured) increased with the increase of the enzyme amount.

    Keeping inmind that: (i) theAChE inhibition byorganophosphorus

    insecticides is a irreversible, the lower possible amount of enzyme

    should be used [6] and (ii) an enzyme loading lower than 10U/mL 

    does not allow a satisfactory working stability, thus an enzyme

    amount of 10U/mL was finally selected for further work.

     3.4.3. Effect of cysteamine concentration and deposition time on

     gold electrode surface

    The density of hydrocarbon chains on gold electrode surface

    wasdueto theconcentration of alkanethiolsused andtheduration

    of SAM deposition. For the investigation of SAM time deposition,

    Au-SPE was immersed for 1 and 15h in cysteamine solution at

    concentration of 0.1mM, using AChE at concentration of 10U/mL 

    and glutaraldehyde at 5% (v/v). The response of the biosensors

    was tested usingacetylthiocholine 3×10−4M.Wehave observed a

    response towards the substrate only in the case of biosensor prea-

    pared with 15h as deposition time, thus this time was selected

    for further experiments. In order to evaluate the effect of cys-

    teamine concentration, the Au-SPE was immersed in cysteamine

    solution at different concentrations: 0.1, 1, 10 and 100mM, using

    AChE at concentration of 10U/mL and glutaraldehyde at 5% (v/v).

    The response of the biosensors was tested using acetylthiocholine

    3×10−4M.Thebiosensorspreparedusing cysteamine100mMhad

    thehighestresponse (around 200nA) andthehighest working sta-

    bility. Forelectrodes immersed in cysteamine 0.1, 1 and10mM the

    biosensors allowed results characterized by lowworking stability.Looking at these results, we selected asmost suitable biosensor in

    terms of working stability, reproducibility and sensitivity towards

    acetythiocholine, theonedevelopedusing SAMpreparedwith cys-

    teamine 100mM, a deposition time of 15h, AChE at 10U/mL and

    glutaraldehyde at 5% (v/v). This biosensor was characterized by a

    reproducibility (RSD%) intra- and inter-electrode of 2.3% and 16%,

    respectively. The high value of RSD% in the case of inter-electrode

    reproducibility does not affect the accuracy of insecticide mea-

    surements because they were carried outmeasuring the response

    before and after the exposure to the organophosphate, thus mea-

    suringtherelativedecayofenzymaticactivityof a singlebiosensor.

     3.5. Electrochemical impedance spectroscopymeasurements

    Electrochemical impedance spectroscopy can provide useful

    information on the impedance changes of the electrode surface

    during the fabrication process of biosensors, giving information

    about how the interfacial region of the gold electrode surface in

    presence of SAM of cysteamine changes before and after the AChE

    immobilization,measuringthevalueof electrontransfer resistance

    (Rct). The Rct, estimatedaccording to thediameter of thesemicircle

    present at the high frequency region, represents, in fact, the diffi-

    cultyof electrontransferof ferro/ferricyanideredoxprobebetween

    the solution and the electrode. Fig. 4 shows the typical Nyquist

    plot obtained for cysteamine modified Au-SPE (Cyst–Au-SPE),

    glutaraldehyde–Cyst–Au-SPE and AChE–glutaraldehyde–Cyst–Au-

    SPE (biosensor). In this figure the Nyquist plot of the bare gold

    SPE was omitted because characterized by a much higher Rct

    Fig.4. Complexplane impedanceplotsat opencircuitpotentialfor Cyst–Au-SPE(a),

    glutaraldehyde–Cyst–Au-SPE (b) and AChE-glutaraldehyde–Cyst–Au-SPE (biosen-

    sor) (c) using 5mM ferro/ferricyanide in 0.1M KCl. Inset: Randles circuit.

    (72,187±315) than the one obtained in the case of Cyst–Au-SPE(407±9), confirming the data obtained using the CV technique

    that showed a better electron transfer of ferro/ferricyanide at

    Cyst–Au-SPE than the at bare Au-SPE.

    The fabrication process of biosensors was followed mea-

    suring the Rct   values, observing that the Rct   increases in

    the following order: Rct   AChE–glutaraldehyde–Cyst–Au-SPE

    (2431±30) >glutaraldehyde–Cyst–Au-SPE (681±9) >RctCyst–Au-SPE (407±9), confirming also the deposition of a

    glutaraldehyde layer andof theAChE enzymeon theCyst–Au-SPE.

     3.6. AChE biosensor for insecticide detection

    The optimized biosensor was challenged with the enzy-

    matic substrate acetylthiocholine. Fig. 5 shows the calibration

    curve obtained for different substrate concentrations described

    by Michaelis Menten equation. It was possible to calculate the

    apparent Michaelis Menten constant (K Mapp), found equal to

    1.1±0.2mM. A substrate concentration of 3.0mMwas chosen for

    the inhibitionmeasurements.

    Fig. 5. Calibration plot of acetylthiocholine chloride using the AChE biosensor.

    Applied potential: +400mV vs. Ag/AgCl. 0.05M phosphate buffer+ 0.1M KCl, pH

    7.4+ 1mM ferricyanide.

    https://www.researchgate.net/publication/225630189_Biosensors_based_on_cholinesterase_inhibition_for_insecticides_nerve_agents_and_aflatoxin_B1_detection_review_Microchim_Acta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/225630189_Biosensors_based_on_cholinesterase_inhibition_for_insecticides_nerve_agents_and_aflatoxin_B1_detection_review_Microchim_Acta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==

  • 8/16/2019 Sensor and Actuators

    6/8

  • 8/16/2019 Sensor and Actuators

    7/8

    https://www.researchgate.net/publication/287226153_Tissue_sulfhydryl_groups?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/287226153_Tissue_sulfhydryl_groups?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/50288541_A_novel_sensitive_reusable_and_low_potential_acetylcholinesterase_biosensor_for_chlorpyrifos_based_on_1-butyl-3-methylimidazolium_tetrafluoroboratemultiwalled_carbon_nanotubes_gel_Biosens_Bioelectron_?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/23765171_Mercaptobenzothiazole-on-gold_organic_phase_biosensor_systems_1_Enhanced_organosphosphate_pesticide_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/23765171_Mercaptobenzothiazole-on-gold_organic_phase_biosensor_systems_1_Enhanced_organosphosphate_pesticide_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/23765171_Mercaptobenzothiazole-on-gold_organic_phase_biosensor_systems_1_Enhanced_organosphosphate_pesticide_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/23765171_Mercaptobenzothiazole-on-gold_organic_phase_biosensor_systems_1_Enhanced_organosphosphate_pesticide_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/225630189_Biosensors_based_on_cholinesterase_inhibition_for_insecticides_nerve_agents_and_aflatoxin_B1_detection_review_Microchim_Acta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/225630189_Biosensors_based_on_cholinesterase_inhibition_for_insecticides_nerve_agents_and_aflatoxin_B1_detection_review_Microchim_Acta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/225630189_Biosensors_based_on_cholinesterase_inhibition_for_insecticides_nerve_agents_and_aflatoxin_B1_detection_review_Microchim_Acta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/245083892_Determination_of_dopamine_in_the_presence_of_high_concentration_of_ascorbic_acid_by_using_gold_cysteamine_self-assembled_monolayers_as_a_nanosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/230527447_The_Oxidation_of_Cysteine_by_Aqueous_Ferricyanide_A_Kinetic_Study_Using_Boron_Doped_Diamond_Electrode_Voltammetry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239165874_Electrocatalytic_reduction_of_nitrite_using_ferricyanide_Application_for_its_simple_and_selective_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239165874_Electrocatalytic_reduction_of_nitrite_using_ferricyanide_Application_for_its_simple_and_selective_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239165874_Electrocatalytic_reduction_of_nitrite_using_ferricyanide_Application_for_its_simple_and_selective_determination?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223616688_Comparative_electrochemical_study_of_self-assembled_monolayers_of_2-mercaptobenzoxazole_2-mercaptobenzothiazole_and_2-mercaptobenzimidazole_formed_on_polycrystalline_gold_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223616688_Comparative_electrochemical_study_of_self-assembled_monolayers_of_2-mercaptobenzoxazole_2-mercaptobenzothiazole_and_2-mercaptobenzimidazole_formed_on_polycrystalline_gold_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223616688_Comparative_electrochemical_study_of_self-assembled_monolayers_of_2-mercaptobenzoxazole_2-mercaptobenzothiazole_and_2-mercaptobenzimidazole_formed_on_polycrystalline_gold_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223616688_Comparative_electrochemical_study_of_self-assembled_monolayers_of_2-mercaptobenzoxazole_2-mercaptobenzothiazole_and_2-mercaptobenzimidazole_formed_on_polycrystalline_gold_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251470807_The_Molecular_Toxicology_of_Chemical_Warfare_Nerve_Agents?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251470807_The_Molecular_Toxicology_of_Chemical_Warfare_Nerve_Agents?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223470548_Immobilisation_of_AChE_on_screen-printed_electrodes_comparative_study_between_three_immobilisation_methods_applications_to_the_detection_of_organophosphorus_insecticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223470548_Immobilisation_of_AChE_on_screen-printed_electrodes_comparative_study_between_three_immobilisation_methods_applications_to_the_detection_of_organophosphorus_insecticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223470548_Immobilisation_of_AChE_on_screen-printed_electrodes_comparative_study_between_three_immobilisation_methods_applications_to_the_detection_of_organophosphorus_insecticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223470548_Immobilisation_of_AChE_on_screen-printed_electrodes_comparative_study_between_three_immobilisation_methods_applications_to_the_detection_of_organophosphorus_insecticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51894740_The_analysis_of_organophosphorus_pesticide_samples_by_high-performance_liquid_chromatographymass_spectrometry_and_high-performance_liquid_chromatographymass_spectrometrymass_spectrometry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51894740_The_analysis_of_organophosphorus_pesticide_samples_by_high-performance_liquid_chromatographymass_spectrometry_and_high-performance_liquid_chromatographymass_spectrometrymass_spectrometry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51894740_The_analysis_of_organophosphorus_pesticide_samples_by_high-performance_liquid_chromatographymass_spectrometry_and_high-performance_liquid_chromatographymass_spectrometrymass_spectrometry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51894740_The_analysis_of_organophosphorus_pesticide_samples_by_high-performance_liquid_chromatographymass_spectrometry_and_high-performance_liquid_chromatographymass_spectrometrymass_spectrometry?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12325904_Occupational_exposure_limits_for_30_organophosphate_pesticides_based_on_inhibition_of_red_cell_acetyl_cholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12325904_Occupational_exposure_limits_for_30_organophosphate_pesticides_based_on_inhibition_of_red_cell_acetyl_cholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12325904_Occupational_exposure_limits_for_30_organophosphate_pesticides_based_on_inhibition_of_red_cell_acetyl_cholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/24423310_Acetylcholinesterase_Biosensor_Based_on_Gold_Nanoparticles_and_Cysteamine_Self_Assembled_Monolayer_for_Determination_of_Monocrotophos?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/26548005_Determination_of_Parathion_and_Carbaryl_Pesticides_in_Water_and_Food_Samples_Using_a_Self_Assembled_Monolayer_Acetylcholinesterase_Electrochemical_Biosensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229479937_Acetylcholinesterase_Immobilization_on_3-Mercaptopropionic_Acid_Self_Assembled_Monolayer_for_Determination_of_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229479937_Acetylcholinesterase_Immobilization_on_3-Mercaptopropionic_Acid_Self_Assembled_Monolayer_for_Determination_of_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229479937_Acetylcholinesterase_Immobilization_on_3-Mercaptopropionic_Acid_Self_Assembled_Monolayer_for_Determination_of_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229479937_Acetylcholinesterase_Immobilization_on_3-Mercaptopropionic_Acid_Self_Assembled_Monolayer_for_Determination_of_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/41621477_Detection_of_coumaphos_in_honey_using_a_screening_method_based_on_an_electrochemical_acetylcholinesterase_bioassay?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/41621477_Detection_of_coumaphos_in_honey_using_a_screening_method_based_on_an_electrochemical_acetylcholinesterase_bioassay?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/41621477_Detection_of_coumaphos_in_honey_using_a_screening_method_based_on_an_electrochemical_acetylcholinesterase_bioassay?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229169780_Studies_on_the_electrochemical_behavior_of_a_cystine_self-assembled_monolayer_modified_electrode_using_ferrocyanide_as_a_probe?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/227689072_A_Disposable_Biosensor_for_Organophosphorus_Nerve_Agents_Based_on_Carbon_Nanotubes_Modified_Thick_Film_Strip_Electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/8197206_Development_of_acetylcholinesterase_silica_sol-gel_immobilized_biosensor_An_application_towards_oxydemeton_methyl_detection?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/8197206_Development_of_acetylcholinesterase_silica_sol-gel_immobilized_biosensor_An_application_towards_oxydemeton_methyl_detection?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/8197206_Development_of_acetylcholinesterase_silica_sol-gel_immobilized_biosensor_An_application_towards_oxydemeton_methyl_detection?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/8197206_Development_of_acetylcholinesterase_silica_sol-gel_immobilized_biosensor_An_application_towards_oxydemeton_methyl_detection?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222924858_Electrochemical_Biosensor_for_Pesticides_Based_on_Acetylcholinesterase_Immobilized_on_Polyaniline_Deposited_on_Vertically_Assembled_Carbon_Nanotubes_Wrapped_with_ssDNA?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/252134743_Voltammetric_and_amperometric_studies_of_thiocholine_at_a_screen-printed_carbon_electrode_chemically_modified_with_cobalt_phthalocyanine_Studies_towards_a_pesticide_sensor?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7331111_Twenty_years_research_in_cholinesterase_biosensors_from_basic_research_to_practical_applications_Biomol_Eng?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7331111_Twenty_years_research_in_cholinesterase_biosensors_from_basic_research_to_practical_applications_Biomol_Eng?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7331111_Twenty_years_research_in_cholinesterase_biosensors_from_basic_research_to_practical_applications_Biomol_Eng?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223681776_Sensitive_detection_of_pesticides_using_amperometric_sensors_based_on_cobalt_phthalocyanine-modified_composite_electrodes_and_immobilized_cholinesterases?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223681776_Sensitive_detection_of_pesticides_using_amperometric_sensors_based_on_cobalt_phthalocyanine-modified_composite_electrodes_and_immobilized_cholinesterases?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223681776_Sensitive_detection_of_pesticides_using_amperometric_sensors_based_on_cobalt_phthalocyanine-modified_composite_electrodes_and_immobilized_cholinesterases?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223681776_Sensitive_detection_of_pesticides_using_amperometric_sensors_based_on_cobalt_phthalocyanine-modified_composite_electrodes_and_immobilized_cholinesterases?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223839912_Hibbert_DB_The_application_of_alkanethiol_self-assembled_monolayers_to_enzyme_electrodes_TrAC_Trends_Anal_Chem_188_525-533?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223839912_Hibbert_DB_The_application_of_alkanethiol_self-assembled_monolayers_to_enzyme_electrodes_TrAC_Trends_Anal_Chem_188_525-533?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/5531473_Electron_Permeable_Self-Assembled_Monolayers_of_Dithiolated_Aromatic_Scaffolds_on_Gold_for_Biosensor_Applications?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/5531473_Electron_Permeable_Self-Assembled_Monolayers_of_Dithiolated_Aromatic_Scaffolds_on_Gold_for_Biosensor_Applications?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/5531473_Electron_Permeable_Self-Assembled_Monolayers_of_Dithiolated_Aromatic_Scaffolds_on_Gold_for_Biosensor_Applications?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/277548424_Theory_of_Stationary_Electrode_Polarography_Single_Scan_and_Cyclic_Methods_Applied_to_Reversible_Irreversible_and_Kinetic_Systems?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/251697388_Electrochemically_pretreated_screen-printed_carbon_electrodes_for_the_simultaneous_determination_of_aminophenol_isomers?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/12111125_A_micro_flow_injection_electrochemical_biosensor_for_organophosphorous_pesticides_Biosen_Bioelectron?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/239149629_Electrocatalytic_oxidation_of_thiocholine_at_chemically_modified_cobalt_hexacyanoferrate_screen-printed_electrodes_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223819315_Characterisation_of_Prussian_blue_modified_screen-printed_electrodes_for_thiol_detection_J_Electroanal_Chem?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229201301_Hg_detection_by_measuring_thiol_groups_with_a_highly_sensitive_screen-printed_electrode_modified_with_a_nanostructure_carbon_black_film?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229201301_Hg_detection_by_measuring_thiol_groups_with_a_highly_sensitive_screen-printed_electrode_modified_with_a_nanostructure_carbon_black_film?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229201301_Hg_detection_by_measuring_thiol_groups_with_a_highly_sensitive_screen-printed_electrode_modified_with_a_nanostructure_carbon_black_film?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/229201301_Hg_detection_by_measuring_thiol_groups_with_a_highly_sensitive_screen-printed_electrode_modified_with_a_nanostructure_carbon_black_film?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223433636_Sensitive_electrochemical_detection_of_enzymatically_generated_thiocholine_at_carbon_nanotube_modified_glassy_carbon_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223433636_Sensitive_electrochemical_detection_of_enzymatically_generated_thiocholine_at_carbon_nanotube_modified_glassy_carbon_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223433636_Sensitive_electrochemical_detection_of_enzymatically_generated_thiocholine_at_carbon_nanotube_modified_glassy_carbon_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223433636_Sensitive_electrochemical_detection_of_enzymatically_generated_thiocholine_at_carbon_nanotube_modified_glassy_carbon_electrode?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223045037_Glutathione_amperometric_detection_based_on_a_thiol-disulfide_exchange_reaction?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223045037_Glutathione_amperometric_detection_based_on_a_thiol-disulfide_exchange_reaction?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/223045037_Glutathione_amperometric_detection_based_on_a_thiol-disulfide_exchange_reaction?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/20394016_Tacrine_slows_the_rate_of_aging_of_sarin-inhibited_acetylcholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/20394016_Tacrine_slows_the_rate_of_aging_of_sarin-inhibited_acetylcholinesterase?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/51195872_Acetylcholinesterase_biosensor_based_on_single-walled_carbon_nanotubes-Co_phtalocyanine_for_organophosphorus_pesticides_detection_Talanta?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/228675168_Polyaniline-Mercaptobenzothiazole_Biosensor_for_Organophosphate_and_Carbamate_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/228675168_Polyaniline-Mercaptobenzothiazole_Biosensor_for_Organophosphate_and_Carbamate_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/228675168_Polyaniline-Mercaptobenzothiazole_Biosensor_for_Organophosphate_and_Carbamate_Pesticides?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/14041864_Self-assembled_monolayers_for_biosensors_Analyst_12243R-50R?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/14041864_Self-assembled_monolayers_for_biosensors_Analyst_12243R-50R?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222036662_Adsorption_An_easy_and_efficient_immobilisation_of_acetylcholinesterase_on_screen-printed_electrodes?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222036662_Adsorption_An_easy_and_efficient_immobilisation_of_acetylcholinesterase_on_screen-printed_electrodes?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/222036662_Adsorption_An_easy_and_efficient_immobilisation_of_acetylcholinesterase_on_screen-printed_electrodes?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7478220_Organophosphorus_pollutants_OPP_in_aquatic_environment_at_Damietta_Governorate_Egypt_Implications_for_monitoring_and_biomarker_responses?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7478220_Organophosphorus_pollutants_OPP_in_aquatic_environment_at_Damietta_Governorate_Egypt_Implications_for_monitoring_and_biomarker_responses?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7478220_Organophosphorus_pollutants_OPP_in_aquatic_environment_at_Damietta_Governorate_Egypt_Implications_for_monitoring_and_biomarker_responses?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==https://www.researchgate.net/publication/7478220_Organophosphorus_pollutants_OPP_in_aquatic_environment_at_Damietta_Governorate_Egypt_Implications_for_monitoring_and_biomarker_responses?el=1_x_8&enrichId=rgreq-2813ba8b-9c38-424f-abd5-a616bef312e4&enrichSource=Y292ZXJQYWdlOzI1NzM1NDY5ODtBUzoxNjQ5ODg4ODI3OTI0NDhAMTQxNjM0NzgyMzM1Mw==http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8141b.pdf

  • 8/16/2019 Sensor and Actuators

    8/8

    208   F.Arduini et al. / Sensors and Actuators B 179 (2013) 201–208

    [45] D. Martorell, F. Cespedes, E. Martinez-fabregas, S. Alegret, Determination of organophosphorus abd carbamate pesticides using a biosensor based on apolishable 7,7,8,8, tetracyanoquinodimethane-modified graphite-epoxy bio-composite, AnalyticaChimica Acta 337 (1997) 305–313.

    [46] M. Pohanka, D. Jun, K. Kuca, Amperometric biosensors for real time assays of organophosphates, Sensors 8 (2008) 5303–5312.

    Biographies

    FabianaArduini isa researcherin analytical chemistryat theChemical andTechnol-ogyDepartmentof theUniversityof Rome“TorVergata”. Shegraduated“cumlaude”in chemistry (2004) andobtained her Ph.D. degreein chemical science (2007). Herresearch interests include the development of electrochemical sensors andbiosen-sors and their application in thefield of clinical,food and environmental analyticalchemistry. Shewas involvedin severalNational andEuropeanprojects. Sheis authorof more than 30 papers in international andnational scientific journals and booksand of more than 50 poster and oral presentations at National and InternationalCongresses.

    Simone Guidone is graduated in chemistry at University of Rome “Tor Vergata” in2010with the Thesis: development of biosensors for pesticidedetection.

     AzizAmine is a professor ofbiochemistry in theFacultyof Sciences and Techniquesof the University of HassanII-Mohammedia (Morocco). He received Ph.D. degree

    from the Free University of Brussels in 1993. Professor Amine’s research over thelast20 years hasfocusedon sensorsand biosensorsandtheirusein analytical chem-istry. He is author of more than 100 papers and scientific contributions and hasserved ascoordinator of severalnationaland international researchprojects. He is areviewerfor several scientificinternational journals. Hewasco-ordinatorof variousco-operationprojects.

    Giuseppe Palleschi, full professor of analytical chemistry, hasbeenthe Head of theDepartment of Chemical Science and Technology of the University of Rome “TorVergata” for 1995–2007. In 2000 he obtained the “Laurea Honoris Causa” from theUniversity of Bucharest. Prof. Palleschi’s research over the last 30 years has been

    focusedon thedevelopmentof chemicalsensorsas wellas bio-and immunosensorsforuse inthe areas ofbiomedicine,foodandenvironmentalanalysis.Heis theauthorof more than 200papers in international scientific journals andan invited speakerin many International Congresses.

    Danila Moscone is full professor in analytical chemistry at the Chemical andTechnology Department of the University of Rome “Tor Vergata”. She has beeninvolved in the field of biosensors for about 30 years, and is an expert in elec-trochemical biosensor and immunosensors assembling, their analytical evaluationand application for solving analytical problems. She is actually involved in Euro-pean projects and is responsible for National projects. Her scientific activity issummarized inmore than 150 papers on international andnationalscientific jour-nals and books, and in more than 300 oral and poster presentations at scientificmeetings.

    All i f d li d i bl li k d bli i R hG l i d d h i di l