seminar in advanced machine learning rong jin. course description introduction to the...

34
Seminar in Advanced Machine Learning Rong Jin

Post on 22-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Seminar in Advanced Machine LearningRong Jin

Course Description Introduction to the state-of-the-art techniques

in machine learning Focus of this semester

Convex optimization Semi-supervised learning

Course Description

Course Organization Each group has 1 to 3 students Each group covers one or two topics

Usually each topic will take two lectures Please send me the information about each

group and interesting topics to cover by the end of this week

May take 1~2 credits as enrolling in independent study (CSE890)

Course Organization Course website:

http://www.cse.msu.edu/~rongjin/adv_ml The best way to learn is discussion,

discussion and discussion Never hesitate to raise questions Never ignore any details

Let’s have fun!

Convex Programming and Classification Problems

Rong Jin

Outline Connection between classification and linear

programming (LP), convex quadratic programming (QP) has a long history

Recent progresses in convex optimization: conic and semi-definite programming; robust optimization

The purpose of this lecture is to outline some connections between convex optimization and classification problems

Support Vector Machine (SVM)

Training examples

Can be solved efficiently by quadratic programming

D = f(x1;y1);(x2;y2);: : : ;(xn ;yn)g

wherexi 2 Rd; yi 2 f¡ 1;+1g

min kwk22

s. t. yi (w>xi ¡ b) ¸ 1; i = 1;2;: : : ;n

SVM: Robust Optimization

SVMs are a way to handle noise in data points assume each data point is unknown-but-bounded in a

sphere of radius and center xi

find the largest such that separation is still possible between the two classes of perturbed points

½

SVM: Robust Optimization

How to solve it?

max ½

s. t. 8i = 1;2;::: ;n

jx ¡ xi j2 · ½! yi (w>x ¡ b) ¸ 1

SVM: Robust Optimizationjx ¡ xi j2 · ½! yi (w>x ¡ b) ¸ 1

yi (w>xi ¡ b) ¡ ½kwk2 ¸ 1

max ½

s. t. 8i = 1;2;:: : ;n

yi (w>xi ¡ b) ¡ ½kwk2 ¸ 1

Robust Optimization Linear programming (LP)

Assume ai's are unknown-but-bounded in ellipsoids

Robust LP

minc>x; : a>i x · bi ; i = 1;2;: : : ;n

minc>x; : 8ai 2 Ei ; a>i x · bi ; i = 1;2;: : : ;n

Ei = fai j(ai ¡ ai )>§ ¡ 1i (ai ¡ ai ) · 1g

Minimax Probability Machine (MPM)

How to decide the decision boundary ?

x>a · b

Negative class: x¡ » N (¹x¡ ;§ ¡ )

x>a ¸ bNegative Class

Positive Class

Positiveclass: x+ » N (¹x+;§ +)

x>a = b

Minimax Probability Machine (MPM)

wherex¡ » N (¹x¡ ;§ ¡ ) and x+ » N (¹x+;§ +)

x>a· b

x>a¸ bNegative Class

Positive Class

min max(²+;²¡ )

s. t. Pr(x>+a · b) = 1¡ ²+

Pr(x>¡ a ¸ b) = 1¡ ²¡

Minimax Probability Machine (MPM)

wherex¡ » N (¹x¡ ;§ ¡ ) and x+ » N (¹x+;§ +)

x>a· b

x>a¸ bNegative Class

Positive Class

min ²

s. t. Pr(x>+a · b) ¸ 1¡ ²

Pr(x>¡ a ¸ b) ¸ 1¡ ²

Minimax Probability Machine (MPM)

Assume x follows the Gaussian distribution N (¹x;§ )

Pr(x>a · b) · 1¡ ²

¹x>a + · k§ ak2 · bwhere · = ©¡ 1(1¡ ²) x>a · b

x>a ¸ bNegative Class

Positive Class

Minimax Probability Machine (MPM)max ·

s. t. x>+a + · k§ +ak2

2 · b

x>¡ a ¡ · k§ ¡ ak2 ¸ b

Second order cone constraints

min ®+ ¯

s. t. a>(x¡ ¡ x+) = 1

®¸ k§ +ak22; ¯ ¸ k§ ¡ ak2

2

Second Order Cone Programming (SOCP)

xo ¸p

x21 +x2

2

®¸ k§ ¡ ak2

y = § ¡ a

® ¸ kyk2

z 2 Q Ã ! z º Q 0

Cone: Q = fzjz0 ¸ k¹zk2g

Second Order Cone Programming (SOCP)

SOCP LP

Generalize the inequality definition

Minimax Probability Machine (MPM)min ²

s. t. Pr(x>+a · b) ¸ 1¡ ²

Pr(x>¡ a ¸ b) ¸ 1¡ ²

wherex¡ » N (¹x¡ ;§ ¡ ) and x+ » N (¹x+;§ +)

min ²

s. t. infx+ » (¹x+ ;§ + )

Pr(x>+a · b) ¸ 1¡ ²

infx ¡ » (¹x¡ ;§ ¡ )

Pr(x>¡ a ¸ b) ¸ 1¡ ²

MPM Chebychev inequality

infx» (¹x;§ )

Pr(x>a · b) =(b¡ ¹x>a)2

+

(b¡ ¹x>a)2+ +a>§ a

where [x]+ outputs 0 when x < 0 and x when x ¸ 0.

min ®+¯

s. t. a>(x¡ ¡ x+) = 1

®¸ k§ +ak22; ¯ ¸ k§ ¡ ak2

2

Pattern Invariance In Images

Translation

Rotation

Shear

Learning from Invariance Trans.

Á1

Á2

Incorporating Invariance Trans. Invariance transformation

SVM incorporating invariance trans.Infinite number of examples

T (x;µ= 0) = xx(µ) = T (x;µ) : Rd £ R ! Rd

min kwk22

s. t. 8 µ2 R; i = 1;2;: : : ;n

yi (w>xi (µ) ¡ b) ¸ 1

Taylor Approximation of Invariance

Taylor Expansion about 0=0 gives

Polynomial Approximation

What is the necessary and sufficient condition for a polynomial to always be non-negative?

8µ2 R : yw>x(µ) ¡ 1¸ 0

Non-Negative Polynomials (I) Theorem (Nesterov,2000): If r=2l , the necessary

and sufficient condition for polynomial p(µ) to be non-negative everywhere is

Example:

9P º 0; s. t. p(µ) = µ>P µ

Semidefinite Programming Machines

Aj:=

g1,j

gi,j

gm,j

B:= 1

1

1

1

G1,j

Gi,j

Gm,j

1 0

0 0

1 0

0 0

1 0

0 0

Semi-definite programming

Semidefinite Programming (SDP)LPSDP

Generalize the inequality definition

Beyond Convex Programming In most cases, problems are non-convex

optimization Approximation

Linear programming approximation LMI relaxation (drop rank constraints) Submodular function approximation Difference of two convex functions (DC)

Example: MAXCUT Problem

Exponential # of points = NP-hard problem !

min x>Qx

s. t. xi 2 f ¡ 1;+1g

min x>Qx

s. t. x2i = 1

LMI Relaxation

x2i = 1 X = xx>

X i ;i = 1

min x>Qx

s. t. xi 2 f ¡ 1;+1gmin

X

i ;j

Qi ;j X i ;j

s. t. X i ;i = 1

X º 0; rank(X ) = 1min

X

i ;j

Qi ;j X i ;j

s. t. X i ;i = 1; X º 0

How Good is the Approximation? Nesterov prove recently

d¤ = min x>Qx

s. t. xi 2 f ¡ 1;+1g

g¤ = minX

i ;j

Qi ;j X i ;j

s. t. X i ;i = 1; X º 0

1¸g¤

d¤¸

2¼= 0:6366

What you should learn ? Basic concepts of convex sets and functions Basic theory of convex optimization How to formulate a problem into the standard

convex optimization? How to efficiently approximate the solution given

large datasets? (optional) How to approximate the non-convex

programming problems into a convex one?