semenova 1999

Upload: royalbluetn

Post on 13-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Semenova 1999

    1/31

    C S I R O P U B L I S H I N G

    Australian Journalof Chemistry

    Volume 52, 1999 CSIRO Australia 1999

    A journal for the publication of original research

    in all branches of chemistry and chemical technology

    www.pub l i s h . c s i r o . au / j ou rna l s / a j c

    All enquiries and manuscripts should be directed to

    The Managing Editor

    Australian Journal of ChemistryCSIRO PUBLISHING

    PO Box 1139 (150 Oxford St)

    Collingwood Telephone: 61 3 9662 7630

    Vic. 3066 Facsimile: 61 3 9662 7611

    Australia Email: [email protected]

    Published by CSIRO PUBLISHING

    for CSIRO Australia and

    the Australian Academy of Science

    http://www.publish.csiro.au/journals/ajchttp://www.publish.csiro.au/http://www.publish.csiro.au/http://www.publish.csiro.au/http://www.publish.csiro.au/journals/ajc
  • 7/23/2019 Semenova 1999

    2/31

    Aust. J. Chem., 1999, 52, 571600

    Structural Systematics of Rare Earth Complexes. XIX(Hydrated) 1 : 2 Mononuclear Adducts of Lanthanoid(III)Chlorides with 2,2-Bipyridine and 1,10-Phenanthroline

    Lioubov I. Semenova and Allan H. White

    Department of Chemistry, The University of Western Australia, Nedlands, W.A. 6907.

    Room-temperature single-crystal X-ray structure determinations are recorded for a number of adductsof hydrated lanthanoid(III) trichlorides with 2,2-bipyridine (bpy) and 1,10-phenanthroline (phen),crystallized from water, methanol or ethanol solutions, containing mononuclear arrays with 1 : 2Ln/bpy or phen stoichiometry. LaCl3/phen/H2O (1:3:9), [(phen)2La(OH2)5]Cl3.phen.4H2O, althoughof overall 1 : 3 LaCl

    3/phen stoichiometry, has a lattice phen; it is orthorhombic, Pnna, a 19 947(7), b

    16 457(5), c 12 213(2)A, Z= 4; conventional R on |F| was 0 030 for No 2567 observed (I >3(I))diffractometer reflections. LaCl3/phen/H2O/MeOH (1:2:6:1), [(phen)2La(OH2)5]Cl3.H2O.MeOH, istriclinic, P1, a 19 060(3), b 9 252(3), c 8 994(3)A, 69 33(3), 86 81(2), 89 66(2), Z = 2,R 0 037 for No 5452. LaCl3/bpy/H2O (1 : 2 : 6), [(bpy)2La(OH2)4Cl]Cl2.2H2O, is monoclinic, P21/c,a 19 389(3), b 9 071(1), c 16 873(2)A, 114 10(1), Z = 4, R 0 029 for No 4699. All three ofthese complexes have a nine-coordinate [(N,N-bidentate)2La(unidentate)5] coordination environmentwith quasi-2 symmetry; that of the remaining compounds following is eight-coordinate [(N,N-bidentate)2Ln(unidentate)4]. LuCl3/phen/H2O (1:2:6), [(phen)2Lu(OH2)4]Cl3.2H2O, is monoclinic,C2/c, a 11 045(7), b 17 660(6), c 14 474(9)A, 92 82(5), Z= 4, R 0 042 for No 1695, the Lulying on a crystallographic 2-axis. Crystals of LnCl3/phen/H2O (1: 2 : 4), [(phen)2Ln(OH2)3Cl]Cl2.H2O(Ln = Dy, Er, Y), are triclinic, P1, a 12 6, b 10 5, c 10 4A, 93 3, 109 3, 96 8,Z= 2,R 0 030, 0 040, 0 052 forNo4221, 5100, 2690 respectively. PrCl3/bpy/H2O/EtOH (1 : 2 : 1 : 0 5),

    [(bpy)2Pr(OH2)Cl3]. 12 EtOH, is triclinic, P1, a 13 331(3), b 10 734(2), c 9 758(2)A, 63 67(2), 78 99(2), 71 24(2), Z = 2, R 0 033 for No 4596, while [(bpy)2Pr(OH2)2Cl2]Cl is monoclinic,C2/c, a 15 921(15), b 11 314(8), c 14 114(8)A, 116 70(6), Z = 4, R 0 041 for No 2269.ErCl3/bpy/H2O (1 : 2 : 2 (also)), [(bpy)2Er(OH2)2Cl2]Cl, is cubic, I23, a 26 032(4)A, Z= 24, R 0 066for No 1644. Crystals of LnCl3/phen/H2O/MeOH (1:2:1:1), [(phen)2Ln(OH2)Cl3].MeOH (Ln = La,Pr, Nd, Eu), are monoclinic, P21/a, a 13 2, b 10 7, c 18 5A, 102 1

    , Z= 4, R 0 054,0 032, 0 040, 0 054 for No 2872, 4792, 3179, 2847 respectively. LnCl3/bpy/H2O/EtOH (1:2:1:1),[(bpy)2Ln(OH2)Cl3].EtOH (Ln = Nd, Eu), are triclinic, P1, a 11 3, b 10 9, c 10 4A, 75 5, 89 8, 78 0, Z = 2, R 0 044, 0 056 for No 4979, 3596 respectively. LaCl3/bpy/EtOH( 1 : 2 : 0 5) is binuclear [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2].EtOH, monoclinic, P21/c, a 9 6878(2), b17 5696(3), c 16 1341(2)A, 123 10(1), Z= 2, R 0 033 for No 4256. A totally unsolvated array isfound for YbCl3/bpy (1 : 2), [(bpy)2YbCl3], monoclinic, P21/c, a 15 065(8), b 8 598(4),c 16 92(1)A,

    112 46(5)

    , Z= 4, R 0 032 for No 3548, in which, alone, the metal atom is seven-coordinate.

    Introduction

    In the preceding paper,1 we have outlined at somelength the historical vicissitudes of the chemistryof adducts of the rare earth(III) chlorides with theN,N-bidentate ligands 2,2-bipyridine (bpy) and 1,10-phenanthroline (phen). We recorded single-crystalX-ray studies of LnCl3/bpy adducts, definitively char-

    acterizing a number of different types of array in whichthe metal atom was associated with one bpy ligand,

    these in the main being mononuclear and having eight-coordinate [(N,N-bpy)Ln(unidentate ligand (H2O or(-)Cl))6] metal environments. A few arrays wererecorded with LnCl3/bpy ratios greater than 1 : 1, butin those cases, the superfluous bpy was incorporatedin the crystal lattice uncoordinated to the metal, butwith a possibly significant role via its mode of packingin influencing more broadly the nature of the complex,

    particularly in respect of its competitiveness as a ligandin such a context.

    Part XVIII, Aust. J. Chem., 1999, 52, 551.

    Manuscript received 11 March 1998 CSIRO 1999 0004-9425/99/060571$10.0010.1071/CH98052

  • 7/23/2019 Semenova 1999

    3/31

    572 L. I. Semenova and A. H. White

    In an extension of the above work, we now turn torecord the structural characterization of LnCl3/N,N

    -bidentate (bpy or phen, L here) adducts in which eachmetal atom is associated with a pair ofN,N-bidentate

    ligands. For such compounds, the synthetic literatureis more expansive than for 1 : 1 adducts, with a pre-dominance of L = phen adducts, and with a greaternumber of synthetic surveys spanning greater sequencesof the Ln series, albeit with diverse degrees of solvationpostulated. In summary (as solid samples), the arrayLnCl3/L (1 : 2) has been extensively reported for thefollowing.

    (i) L = bpy, anhydrous: Ln = Eu, Gd, Ho, TmLu(ref. 3).

    (ii) L = bpy, variously hydrated: almost all Ln arerepresented, diversely hydrated (refs 2,46). Astructure determination on an array of thisstoichiometry (HoCl3/bpy/H2O(1:2:7))hasbeenrecorded in the preceding paper,1 showing onlyone of the bpy ligands to be coordinated (as isalso true in the series LnCl3/bpy/H2O (1: 1

    12

    : 8),Ln = Er()Lu, Y1).

    (iii) L = bpy, ethanol solvated: complexes LnCl3/bpy/EtOH (1 : 2 : 1) have been reported for Ln = Sm,Tb.2

    (iv) L = phen, anhydrous: Ln = La, Eu, Gd, Yb (by

    the drying of hydrated samples (ref. 7); Ln = Ce,Nd, DyTm, Lu.8

    (v) L = phen, variously hydrated: all members arerepresented, diversely hydrated;6,8,9 a structuredetermination is recorded for LaCl3/phen/H2O(1: 3 : 9) ([(phen)2La(OH2)5]Cl3.phen.4H2O),

    10 inparallel with present work.

    (vi) L = phen, otherwise solvated: ethanol mono-solvates are recorded for Ln = Sm, Gd, Tb,La.8 A structure determination is recorded forLnCl3/phen/H2O/MeOH (1 : 2 : 1 : 1) ([(phen)2-La(OH2)Cl3].MeOH),

    11 in parallel with present

    work.

    Although there is a record in ref. 8 that Treatmentof the lanthanide chlorides with even a large excess of1,10-phenanthroline in ethanol solution did not yield anytris-complex. Bis complexes were obtained instead andthese tended to be solvated, there is the well authen-ticated complex LaCl3/phen/H2O (1: 3: 9),

    11 in whichthe third phen is uncoordinated, occupying a latticesite ([(phen)2La(OH2)5)Cl3.phen.4H2O) (see below).There is also a record in ref. 8 of a complex of stoi-chiometry LaCl3/phen (2 : 5). The above are obtained,

    as documented in the earlier literature recorded inref. 1, by the crystallization of solutions of hydratedLnCl3 with the N,N

    -bidentate base (bpy or phen) in1 : 2 stoichiometry (or greater) from water, methanolor ethanol. As with the results of the study of the

    1 : 1 compounds, the results of the present work areso diverse, and elusive in respect of defining system-atically methods of achieving desired stoichiometries,stereochemistries, isomers, etc., that they should be

    regarded as the beginning, rather than the totality orend of any desired definitive study.

    Although the synthetic literature summarized in ref. 1records LnCl3/L (1 : 2) arrays for essentially comprehen-sive Ln series for both bpy and phen, previous structuralliterature in this field appears to consist only of arecord of the determination of LaCl3/phen/H2O/MeOH(1:2:1:1), [(phen)2La(OH2)Cl3].MeOH,

    10 the LaCl3/phen/H2O (1 : 3 : 9) adduct [(phen)2La(OH2)5]Cl3.-phen.4H2O,

    11 both recorded independently herein,and a pair of (derivative?) hydroxy-bridged di-mers,[(phen)2(H2O)2Ln(-OH)2Ln(OH2)2(phen)2]Cl4.-

    2phen/MeOH (Ln(OH)Cl2/phen/H2O/MeOH (1:3:2:0 5)) (Ln = Y,12 Yb13); the appearance of these (sofar) at the heavy end of the series is consistent withthe appearance of similar hydroxy-bridged arrays inLnBr3/tpy (1 : 1) arrays from aqueous solution, alsoat the heavier end of the series, recorded in anaccompanying paper.14

    Structure Determinations

    General procedures are described in an accompanyingpaper;15 specific details are as follows (see also Tables 118 and Figs 125), with comment concerning the mode ofcrystallization of the solution of hydrated LnCl3/bpy or phen

    (1 : 2) reaction mixture stoichiometry (unless otherwise speci-fied), classification being made at this point, initially, on thebasis of stoichiometric complexity, with L being regardless ofidentity as phen or bpy.

    (1) LaCl3/phen/H2O ( 1 : 3 : 9 )

    [(phen)2La(OH2)5]Cl3.phen.4H2O, C36H42Cl3LaN6O9, M948 1. Orthorhombic, space group Pnna (D62h, No. 52), a19 947(7),b 16 457(5),c12 213(2)A,V 4009A3. Dc(Z= 4)1 57 g cm3; F(000) 1920. Mo 13 3 cm

    1; specimen: tri-angular prism (half-cuboid), 0 50 mm, A

    min,max 1 27, 1 91.2max 55

    ; N 4247, No 2567; R 0 030, Rw 0 032.Comment. This array is the only structurally defined

    LnCl3/L (1 : 3) combination. As with all other compounds

    described in this paper, however, the Ln is coordinated bytwo N,N-bidentate ligands. This material was obtained fromethanol solution. The cell and coordinate setting adoptedcorresponds to that recorded in a parallel determination;11

    Fig. 1a is thus presented in inverse chirality for comparisonwith counterpart structures.

    (2) LaCl3/phen/S (H2O/MeOH) (1:2:7 (6:1 H2O/MeOH))

    [(phen)2La(OH2)5]Cl3.H2O.MeOH, C25H32Cl3LaN4O7, M745 9. Triclinic, space group P1 (C1i, No. 2), a 19 060(3), b9 252(3), c 8 994(3)A, 69 33(3), 86 81(2), 89 66(2),V 1481A3. Dc(Z = 2 ) 1 67 g cm

    3; F (000) 748. Mo17 6 cm1; specimen: 0 60 by 0 22 by 0 15 mm, Amin,max1 29, 1 41. 2max 55

    ; N 6238, No 5452; R 0 037, Rw 0 044.Comment. This material was obtained from methanol

    solution; the components of the difference map residues mod-elled as solvent methanol refine to a site occupancy of around0 8 (see Table 2); Cl(3) appears to be distributed over morethan one site (Table 2).

  • 7/23/2019 Semenova 1999

    4/31

    Structural Systematics of Rare Earth Complexes. XIX 573

    Table 1. Non-hydrogen atom coordinates and equivalent

    isotropic displacement parameters for LaCl3

    /phen/H2

    O ( 1 : 3 : 9 ) ,[(phen)2La(OH2)5]Cl3.phen.4H2O

    Atom x y z U eq/A2

    La 3/4 1/2 0 64261(3) 0 0271(2)Cl(1) 3/4 1/2 0 2466(2) 0 077(2)Cl(2) 0 6823(1) 0 2493(1) 0 5136(2) 0 096(1)O(1) 0 7892(2) 0 5750(2) 0 4751(3) 0 042(2)O(1) 0 7420(2) 0 6506(2) 0 6962(3) 0 040(2)O(3) 3/4 1/2 0 8491(4) 0 043(3)N(11) 0 6259(2) 0 4477(3) 0 7112(4) 0 036(3)C(12) 0 5683(2) 0 4871(3) 0 6785(4) 0 036(3)C(13) 0 5047(3) 0 4619(4) 0 7157(5) 0 043(4)C(14) 0 5011(3) 0 3949(4) 0 7850(5) 0 054(4)C(15) 0 5587(3) 0 3569(4) 0 8164(5) 0 055(4)C(16) 0 6202(3) 0 3854(4) 0 7767(5) 0 046(4)C(17) 0 4460(2) 0 5060(5) 0 6808(5) 0 052(3)N(11) 0 6354(2) 0 5767(2) 0 5682(4) 0 035(2)C(12) 0 5736(3) 0 5544(3) 0 6035(4) 0 034(3)C(13) 0 5144(3) 0 5942(3) 0 5711(5) 0 042(3)C(14) 0 5210(3) 0 6589(3) 0 4974(5) 0 050(4)C(15) 0 5826(3) 0 6808(3) 0 4609(5) 0 050(4)C(16) 0 6385(3) 0 6382(3) 0 4983(5) 0 045(3)C(17) 0 4514(3) 0 5679(4) 0 6119(5) 0 055(4)N(21) 0 6284(2) 0 6889(3) 0 8250(4) 0 046(3)C(22) 0 5688(3) 0 7184(3) 0 7902(4) 0 040(3)C(23) 0 5063(3) 0 6876(4) 0 8289(5) 0 047(4)C(24) 0 5082(4) 0 6258(4) 0 9066(6) 0 062(5)C(25) 0 5689(4) 0 5983(4) 0 9447(6) 0 067(5)C(26) 0 6272(3) 0 6319(4) 0 9019(6) 0 061(4)C(27) 0 4452(3) 0 7207(4) 0 7876(5) 0 056(4)O(4) 0 6747(2) 0 4379(3) 1 0218(4) 0 067(3)O(5) 0 6796(4) 0 6771(5) 1 1832(7) 0 191(8)

    Table 2. Non-hydrogen atom coordinates and equivalent iso-tropic displacement parameters for LaCl3/phen/H2O/MeOH

    (1:2:6:1), [(phen)2La(OH2)5]Cl3.H2O.MeOH

    Atom x y z U eq/A2

    La 0 24830(1) 0 0128 7(3) 0 28316(3) 0 03616(9)Cl(1) 0 24578(8 ) 0 1736(2) 0 7257(2) 0 0710(6)Cl(2) 0 1498(1) 0 5495(2) 0 2358(3 ) 0 114(1)Cl(3)A 0 3747(2) 0 4977(2) 0 0674(3) 0 112(1)O(1) 0 2017(2) 0 2166(3) 0 3882(4) 0 053(1)O(1) 0 2590(2) 0 0855(4) 0 5817(4) 0 062(1)O(2) 0 3069(2) 0 1950(4) 0 0304(3) 0 054(1)O(2) 0 2214(2) 0 0841(4) 0 0638(4) 0 065(1)O(3) 0 2419(2) 0 2793(3) 0 3917(4) 0 064(1)N(11) 0 3767(2) 0 0990(4) 0 2363(4 ) 0 048(1)C(12) 0 4368(2) 0 0305(5) 0 2 535(5) 0 045(2)C(13) 0 5035(2) 0 0830(6) 0 22 12(6) 0 057(2)C(14) 0 5065(3) 0 2070(7) 0 167 3(7) 0 072(2)C(15) 0 4466(3) 0 2735(6) 0 1460(7) 0 069(2)C(16) 0 3828(3) 0 2169(6) 0 1841(7) 0 063(2)C(17) 0 5653(3) 0 0080(7) 0 2432(7) 0 073(3)N(11) 0 3674(2) 0 1516(4) 0 3329(4) 0 045(1)C(12) 0 4319(2) 0 0992(5) 0 3049(5) 0 046(2)C(13) 0 4944(2) 0 1706(6) 0 3245(6) 0 057(2)C(14) 0 4890(3) 0 2959(7) 0 3743(6) 0 067(2)C(15) 0 4246(3) 0 3481(6) 0 4020(6) 0 065(2)C(16) 0 3652(2) 0 2727(6) 0 3778(6) 0 054(2)C(17) 0 5608(3) 0 1116(7) 0 2921(7) 0 072(2)N(21) 0 1124(2) 0 0786(4) 0 3705(4) 0 047(1)C(22) 0 0596(2) 0 0077(5) 0 2764(5 ) 0 045(2)C(23) 0 0100(2) 0 0663(6) 0 3084(6 ) 0 062(2)C(24) 0 0238(3) 0 1985(7) 0 4 425(8) 0 081(3)C(25) 0 0280(3) 0 2661(7) 0 53 76(7) 0 082(3)C(26) 0 0955(3) 0 2031(6) 0 497 5(6) 0 063(2)

    C(27) 0 0637(3) 0 0111(8) 0 2076 (8) 0 082(3)N(21) 0 1425(2) 0 1849(4) 0 1117(4) 0 041(1)C(22) 0 0752(2) 0 1301(5) 0 1423(5) 0 043(2)C(23) 0 0203(2) 0 2060(6) 0 0486(6) 0 057(2)C(24) 0 0359(3) 0 3441(7) 0 0780(7) 0 074(2)C(25) 0 1027(3) 0 3991(6) 0 1070(7) 0 073(2)

    Table 2 (Continued)

    Atom x y z U eq/A2

    C(26) 0 1543(2) 0 3163(5) 0 0087(6) 0 055(2)C(27) 0 0493(3) 0 1414(8) 0 0839(8) 0 080(3)O(4)B 0 2375(4) 0 3215(7) 0 103(1) 0 209(6)O(5)C 0 3198(4) 0 4866(8) 0 6096(8) 0 113(3)C(5)D 0 3105(5) 0 4200(9) 0 706(1) 0 087(4)

    A Population 0 809(5). B Population 0 94(2). C Population0 87(2). D Population 0 78(3).

    Table 3. Non-hydrogen atom coordinates and equivalentisotropic displacement parameters for LuCl3/phen/H2O ( 1 : 1 : 6 ) ,

    [(phen)2Lu(OH2)4]Cl3.2H2O

    Atom x y z U eq/A2

    Lu 1/2 0 67643(4) 1/4 0 0338(2)Cl(1) 1/2 0 4246(2) 1/4 0 054(1)Cl(2) 0 2511(2) 0 5933(1) 0 4649(2) 0 055(1)

    O(1) 0

    4673(5) 0

    5768(3) 0

    3484(4) 0

    048(2)O(1) 0 3630(5) 0 7208(3) 0 3522(4) 0 044(2)N(11) 0 3894(6) 0 7777(4) 0 1623(5) 0 039(3)C(12) 0 2708(8) 0 7641(5) 0 1361(6) 0 038(3)C(13) 0 1982(7) 0 8198(6) 0 0926(6) 0 040(3)C(14) 0 2493(9) 0 8914(5) 0 0771(7) 0 050(4)C(15) 0 369(1) 0 9031(5) 0 1039(7) 0 057(4)C(16) 0 4348(8) 0 8447(5) 0 1453(7) 0 048(4)C(17) 0 0744(9) 0 8031(5) 0 0681(7) 0 053(4)N(11) 0 2982(6) 0 6360(4) 0 1866(5) 0 042(3)C(12) 0 2215(7) 0 6901(5) 0 1498(6) 0 037(3)C(13) 0 1013(7) 0 6759(6) 0 1222(6) 0 044(3)C(14) 0 0590(8) 0 6015(7) 0 1347(8) 0 064(5)C(15) 0 1342(8) 0 5466(6) 0 1709(7) 0 058(4)C(16) 0 2535(8) 0 5665(5) 0 1943(7) 0 055(4)C(17) 0 0278(8) 0 7346(6) 0 0814(7) 0 059(4)O(2) 0 2462(6) 0 8515(3) 0 3337(4) 0 062(3)

    Table 4. Non-hydrogen atom coordinates and equivalentisotropic displacement parameters for LaCl3/bpy/H2O (1: 2: 6),

    [(bpy)2La(OH2)4Cl]Cl2.2H2O

    Atom x y z U eq/A2

    La 0 75593(1) 0 97639(2) 0 55330(1) 0 02848(7)Cl(1) 0 79792(7) 1 0070(1) 0 73591(7) 0 0583(5)Cl(2) 0 66703(7) 0 5116(1) 0 45433(8) 0 0580(5)Cl(3) 0 78440(6) 0 9324(1) 0 28562(7) 0 0533(4)O(1) 0 6955(2) 1 2191(3) 0 5570(2) 0 051(1)O(2) 0 7830(2) 1 1127(3) 0 4389(2) 0 045(1)O(2) 0 7350(2) 0 8017(3) 0 4264(2) 0 053(1)O(3) 0 7751(1) 0 7089(3) 0 6093(2) 0 043(1)N(11) 0 8952(2) 0 8828(4) 0 5722(2) 0 045(1)C(12) 0 9559(2) 0 9712(5) 0 5982(2) 0 043(1)

    C(13) 1 0240(2) 0 9201(6) 0 5999(3) 0 064(2)C(14) 1 0293(3) 0 7794(7) 0 5752(4) 0 076(3)C(15) 0 9683(3) 0 6892(5) 0 5495(4) 0 069(3)C(16) 0 9026(3) 0 7452(5) 0 5486(3) 0 061(2)N(11) 0 8799(2) 1 1600(4) 0 6227(2) 0 041(1)C(12) 0 9479(2) 1 1215(5) 0 6268(2) 0 041(2)C(13) 1 0080(2) 1 2201(5) 0 6572(3) 0 056(2)C(14) 0 9980(3) 1 3591(6) 0 6831(3) 0 064(2)C(15) 0 9287(3) 1 3981(5) 0 6787(3) 0 061(2)C(16) 0 8721(2) 1 2960(5) 0 6492(3) 0 053(2)N(21) 0 6284(2) 0 8681(4) 0 5673(2) 0 041(1)C(22) 0 5629(2) 0 8464(4) 0 4965(3) 0 042(2)C(23) 0 5076(2) 0 7516(6) 0 4992(4) 0 061(2)C(24) 0 5183(3) 0 6791(6) 0 5747(4) 0 075(3)C(25) 0 5846(3) 0 7025(6) 0 6480(4) 0 067(2)C(26) 0 6377(2) 0 7970(5) 0 6403(3) 0 053(2)N(21) 0 6132(2) 1 0022(4) 0 4180(2) 0 043(1)C(22) 0 5531(2) 0 9284(4) 0 4173(3) 0 041(2)

    C(23

    ) 0

    4844(2) 0

    9311(5) 0

    3448(3) 0

    061(2)C(24) 0 4774(3) 1 0079(6) 0 2716(3) 0 071(2)C(25) 0 5385(3) 1 0829(6) 0 2729(3) 0 063(2)C(26) 0 6046(2) 1 0782(6) 0 3468(3) 0 056(2)O(4) 0 6820(2) 1 2862(4) 0 7060(2) 0 070(2)O(5) 0 8106(2) 1 4043(4) 0 4256(2) 0 076(2)

  • 7/23/2019 Semenova 1999

    5/31

  • 7/23/2019 Semenova 1999

    6/31

    Structural Systematics of Rare Earth Complexes. XIX 575

    Table 6. Non-hydrogen atom coordinates and equivalent iso-tropic displacement parameters for PrCl3/bpy/H2O ( 1 : 2 : 2 ) ,

    [(bpy)2Pr(OH2)2Cl2]Cl

    Atom x y z U eq/A2

    Pr 1/2 0 57993(3) 1/4 0 0280(1)Cl(1) 1 0 6676(2) 1/4 0 073(1)Cl(1) 0 53043(9) 0 6562(1) 0 08240(9) 0 0432(5)O(1) 0 4975(3) 0 4014(3) 0 1486(3) 0 047(2)N(11) 0 6332(3) 0 7438(4) 0 3395(3) 0 037(1)C(12) 0 7228(3) 0 7205(5) 0 3586(3) 0 040(2)C(13) 0 7889(4) 0 8088(6) 0 3841(4) 0 053(2)C(14) 0 7644(5) 0 9245(6) 0 3908(5) 0 063(3)C(15) 0 6751(5) 0 9499(5) 0 3732(4) 0 059(3)C(16) 0 6124(4) 0 8561(5) 0 3484(4) 0 045(2)N(11) 0 6789(3) 0 5153(4) 0 3403(3) 0 042(2)C(12) 0 7486(3) 0 5940(5) 0 3603(3) 0 039(2)C(13) 0 8396(4) 0 5580(7) 0 3862(5) 0 060(3)C(14) 0 8610(5) 0 4396(7) 0 3992(6) 0 069(3)C(15) 0 7930(5) 0 3606(6) 0 3847(5) 0 066(3)C(16) 0 7025(4) 0 4002(5) 0 3529(5) 0 055(3)

    Table 7. Non-hydrogen atom coordinates and equivalentisotropic displacement parameters for ErCl3/bpy/H2O (1: 2: 2),

    [(bpy)2Er(OH2)2Cl2]Cl

    Atom x y z U eq/A2

    Er 0 72884(5) 0 83 584(5) 0 63173(5) 0 0388(5)Cl(1) 0 8274(3) 0 8076(3) 0 6384(3) 0 054(3)Cl(2) 0 6316(3) 0 8208(3) 0 6618(3) 0 061(3)Cl(3) 0 8101(3) x x 0 067(2)Cl(4) 0 6559(3) x x 0 075(3)Cl(5) 1/2 1 1/2 0 11(1)

    Table 7 (Continued)

    Atom x y z U eq/A2

    Cl(6)A 0 910(2) 0 990(2) 0 573(3) 0 02(2)O(1) 0 7271(7) 0 7440(6) 0 6309(7) 0 043(6)O(2) 0 7299(8) 0 8201(8) 0 7211(7) 0 059(8)N(11) 0 7710(9) 0 8723(9) 0 5487(8) 0 049(8)C(12) 0 749(1) 0 860(1) 0 502(1) 0 053(8)C(13) 0 778(2) 0 889(2) 0 462(2) 0 09(1)C(14) 0 808(1) 0 921(1) 0 467(1) 0 07(1)C(15) 0 830(1) 0 929(1) 0 508(1) 0 065(9)C(16) 0 810(1) 0 908(1) 0 554(1) 0 07(1)N(11) 0 692(1) 0 806(1) 0 5451(9) 0 050(9)C(12) 0 709(1) 0 820(1) 0 501(1) 0 064(9)C(13) 0 694(1) 0 796(1) 0 454(1) 0 08(1)C(14) 0 658(2) 0 768(2) 0 454(1) 0 09(1)C(15) 0 632(2) 0 753(1) 0 501(2) 0 09(1)C(16) 0 656(2) 0 770(2) 0 547(2) 0 09(1)N(21) 0 6843(9) 0 9188(9) 0 6068(9) 0 047(9)C(22) 0 706(1) 0 964(1) 0 622(1) 0 052(8)

    C(23) 0 684(1) 1 008(1) 0 600(1) 0 07(1)C(24) 0 643(1) 1 013(1) 0 574(1) 0 07(1)C(25) 0 626(1) 0 964(2) 0 560(2) 0 09(1)C(26) 0 646(1) 0 918(1) 0 575(1) 0 051(8)N(21) 0 767(1) 0 9148(8) 0 672(1) 0 055(9)C(22) 0 746(1) 0 962(1) 0 657(1) 0 051(8)C(23) 0 764(1) 1 011(1) 0 687(1) 0 08(1)C(24) 0 808(1) 1 000(2) 0 721(1) 0 08(1)C(25) 0 827(1) 0 955(1) 0 736(1) 0 057(8)C(26) 0 807(1) 0 912(1) 0 706(1) 0 058(9)

    A Site occupancy factor 0 083().

    Table 8. Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for LnCl3/phen/H2O/MeOH (1:2:1:1),[(phen)2Ln(OH2)Cl3].MeOH (Ln = La, Eu)

    Atom Ln = La Ln = Eux y z U eq/A

    2 x y z U eq/A2

    Ln 0 26080(5) 0 59659(6) 0 23114(3) 0 0341(3) 0 25581(5) 0 59944(6) 0 23199(3) 0 0298(3)Cl(1) 0 3314(3) 0 7929(3) 0 3300(2) 0 072(3) 0 3355(3) 0 7857(3) 0 3296(2) 0 057(3)Cl(1) 0 4176(2) 0 6573(3) 0 1545(2) 0 049(2) 0 4089(2) 0 6572(3) 0 1563(2) 0 042(2)Cl(2) 0 2025(3) 0 3461(3) 0 2312(2) 0 065(2) 0 1989(3) 0 3563(3) 0 2333(2) 0 056(2)O(2) 0 0765(6) 0 6376(8) 0 2344(5) 0 064(6) 0 0769(7) 0 6318(8) 0 2306(5) 0 056(7)N(11) 0 1880(6) 0 7936(9) 0 1408(5) 0 041(6) 0 1712(7) 0 5556(9) 0 0906(5) 0 035(6)C(12) 0 1539(8) 0 775(1) 0 0669(7) 0 042(8) 0 1451(9) 0 652(1) 0 0420(7) 0 035(8)C(13) 0 1253(8) 0 876(1) 0 0181(7) 0 049(8) 0 110(1) 0 634(1) 0 0342(7) 0 045(9)C(14) 0 135(1) 0 996(1) 0 0470(9) 0 06(1) 0 099(1) 0 512(2) -0 0628(8) 0 05(1)C(15) 0 1673(9) 1 014(1) 0 1191(9) 0 06(1) 0 125(1) 0 416(1) 0 0151(8) 0 05(1)C(16) 0 1939(8) 0 909(1) 0 1659(7) 0 056(8) 0 159(1) 0 442(1) 0 0611(8) 0 05(1)C(17) 0 090(1) 0 849(2) 0 0601(7) 0 07(1) 0 087(1) 0 737(2) 0 0820(8) 0 07(1)

    N(11

    ) 0 1723(6) 0 5560(9) 0 0868(5) 0 043(6) 0 1854(8) 0 795(1) 0 1480(5) 0 039(7)C(12) 0 1449(8) 0 648(1) 0 0378(6) 0 042(7) 0 1540(9) 0 777(1) 0 0719(7) 0 037(9)C(13) 0 1080(8) 0 631(1) 0 0375(6) 0 050(8) 0 1279(9) 0 878(1) 0 0229(8) 0 047(9)C(14) 0 0973(9) 0 510(1) 0 0634(7) 0 06(1) 0 135(1) 0 997(1) 0 0532(9) 0 06(1)C(15) 0 1230(8) 0 415(1) 0 0161(7) 0 059(9) 0 166(1) 1 013(1) 0 1272(9) 0 05(1)C(16) 0 1599(9) 0 439(1) 0 0592(7) 0 055(9) 0 192(1) 0 910(1) 0 1739(7) 0 046(9)C(17) 0 080(1) 0 735(1) 0 0854(7) 0 07(1) 0 092(1) 0 852(2) 0 0557(8) 0 06(1)N(21) 0 2511(8) 0 5284(9) 0 3705(6) 0 057(7) 0 4165(8) 0 481(1) 0 3145(6) 0 045(7)C(22) 0 327(1) 0 458(1) 0 4128(7) 0 057(9) 0 411(1) 0 440(1) 0 3820(8) 0 05(1)C(23) 0 321(2) 0 412(2) 0 4806(8) 0 09(1) 0 489(1) 0 368(1) 0 4277(9) 0 07(1)C(24) 0 232(2) 0 441(2) 0 5084(8) 0 11(2) 0 579(2) 0 346(2) 0 399(1) 0 10(2)C(25) 0 155(1) 0 513(2) 0 4679(9) 0 10(1) 0 589(1) 0 389(2) 0 332(1) 0 08(1)C(26) 0 171(1) 0 552(1) 0 3994(8) 0 07(1) 0 503(1) 0 458(1) 0 2897(8) 0 06(1)C(27) 0 408(2) 0 345(2) 0 527(1) 0 12(2) 0 477(2) 0 327(2) 0 499(1) 0 09(2)N(21) 0 4258(8) 0 4798(9) 0 3176(6) 0 054(7) 0 2405(9) 0 537(1) 0 3679(6) 0 044(7)C(22) 0 419(1) 0 434(1) 0 3850(7) 0 061(9) 0 317(1) 0 464(1) 0 4101(7) 0 05(1)C(23) 0 498(1) 0 364(1) 0 428(1) 0 09(1) 0 306(2) 0 424(1) 0 4815(8) 0 07(1)C(24) 0 585(2) 0 343(1) 0 402(1) 0 11(2) 0 214(2) 0 455(2) 0 5060(9) 0 09(2)C(25) 0 594(1) 0 388(1) 0 336(1) 0 09(1) 0 140(1) 0 528(2) 0 4641(9) 0 07(1)C(26) 0 509(1) 0 460(1) 0 2952(8) 0 07(1) 0 158(1) 0 563(1) 0 3953(7) 0 06(1)C(27) 0 486(2) 0 320(2) 0 498(1) 0 13(2) 0 391(2) 0 351(2) 0 525(1) 0 10(2)O(1) 0 060(1) 0 478(1) 0 2642(8) 0 15(1) 0 061(1) 0 472(2) 0 2619(7) 0 17(2)C(1) 0 079(1) 0 382(1) 0 302(1) 0 10(1) 0 088(1) 0 385(1) 0 303(1) 0 08(1)

  • 7/23/2019 Semenova 1999

    7/31

    576 L. I. Semenova and A. H. White

    Table 9. Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for LnCl3/bpy/H2O/EtOH (1: 2 :1 : 1),[(bpy)2Ln(OH2)Cl3].EtOH (Ln = Nd, Eu)

    Atom Ln = Nd Ln = Eux y z U eq/A

    2 x y z U eq/A2

    Ln 0 84943(3) 0 86274(3) 0 71578(3) 0 0291(1) 0 84911(5) 0 86146(5) 0 71494(6) 0 0284(2)Cl(1) 1 0775(1) 0 8973(2) 0 7734(1) 0 0472(5) 1 0752(3) 0 8967(3) 0 7713(3) 0 046(1)Cl(1) 0 9950(1) 0 7257(2) 0 5565(1) 0 0500(6) 0 9939(3) 0 7269(3) 0 5573(3) 0 049(1)Cl(2) 0 7701(1) 1 0854(1) 0 7952(2) 0 0474(5) 0 7706(3) 1 0829(3) 0 7923(3) 0 048(1)O(2) 0 8495(4) 1 0451(4) 0 5202(4) 0 049(2) 0 8521(7) 1 0399(7) 0 5226(8) 0 046(3)N(11) 0 8249(4) 0 6238(4) 0 8034(4) 0 038(2) 0 8258(8) 0 6243(8) 0 7996(9) 0 036(3)C(12) 0 8344(5) 0 5652(5) 0 9337(5) 0 039(2) 0 8330(9) 0 566(1) 0 929(1) 0 036(4)C(13) 0 8140(8) 0 4415(7) 0 9801(7) 0 059(3) 0 812(1) 0 443(1) 0 975(1) 0 054(5)C(14) 0 7847(8) 0 3775(7) 0 8910(8) 0 067(3) 0 783(1) 0 377(1) 0 886(1) 0 059(6)C(15) 0 7755(7) 0 4376(6) 0 7586(7) 0 056(3) 0 774(1) 0 436(1) 0 755(1) 0 049(5)C(16) 0 7954(6) 0 5595(6) 0 7205(6) 0 046(2) 0 796(1) 0 559(1) 0 716(1) 0 042(4)N(11) 0 8823(4) 0 7587(4) 0 9685(4) 0 037(2) 0 8829(8) 0 7595(8) 0 9630(9) 0 038(3)C(12) 0 8704(5) 0 6369(5) 1 0239(5) 0 039(2) 0 8695(9) 0 639(1) 1 020(1) 0 037(4)C(13) 0 8925(6) 0 5820(6) 1 1590(6) 0 049(2) 0 890(1) 0 586(1) 1 154(1) 0 046(5)C(14) 0 9273(7) 0 6545(7) 1 2368(6) 0 056(3) 0 924(1) 0 654(1) 1 236(1) 0 051(5)C(15) 0 9390(6) 0 7775(7) 1 1816(6) 0 049(2) 0 939(1) 0 776(1) 1 178(1) 0 048(5)

    C(16) 0 9157(6) 0 8258(6) 1 0477(5) 0 042(2) 0 917(1) 0 827(1) 1 043(1) 0 041(4)N(21) 0 6250(4) 0 8549(4) 0 7919(4) 0 037(2) 0 6265(8) 0 8562(8) 0 7894(9) 0 037(3)C(22) 0 5393(5) 0 8393(6) 0 7121(6) 0 040(2) 0 542(1) 0 837(1) 0 712(1) 0 039(4)C(23) 0 4237(6) 0 8306(7) 0 7536(7) 0 052(2) 0 427(1) 0 830(1) 0 755(1) 0 052(5)C(24) 0 3968(6) 0 8388(8) 0 8801(7) 0 062(3) 0 399(1) 0 837(1) 0 881(1) 0 058(6)C(25) 0 4819(7) 0 8539(7) 0 9606(6) 0 056(3) 0 484(1) 0 852(1) 0 963(1) 0 057(6)C(26) 0 5960(6) 0 8638(7) 0 9132(6) 0 048(2) 0 598(1) 0 861(1) 0 916(1) 0 045(5)N(21) 0 6851(4) 0 8502(5) 0 5434(4) 0 039(2) 0 6862(8) 0 8505(8) 0 5434(9) 0 035(3)C(22) 0 5719(5) 0 8376(5) 0 5755(5) 0 037(2) 0 5744(9) 0 8381(9) 0 576(1) 0 035(4)C(23) 0 4905(6) 0 8266(7) 0 4831(7) 0 051(2) 0 492(1) 0 825(1) 0 483(1) 0 050(5)C(24) 0 5256(7) 0 8260(7) 0 3572(6) 0 057(3) 0 528(1) 0 828(1) 0 357(1) 0 055(5)C(25) 0 6382(7) 0 8402(7) 0 3247(6) 0 054(3) 0 641(1) 0 841(1) 0 324(1) 0 052(5)C(26) 0 7160(6) 0 8529(7) 0 4193(6) 0 050(2) 0 716(1) 0 854(1) 0 418(1) 0 045(5)O(1) 0 272(1) 0 6452(9) 0 642(2) 0 206(8) 0 271(1) 0 648(1) 0 643(3) 0 24(2)C(1) 0 432(2) 0 491(2) 0 722(2) 0 22(1) 0 437(3) 0 492(2) 0 713(4) 0 20(2)C(2) 0 332(1) 0 539(2) 0 618(2) 0 138(8) 0 329(2) 0 541(3) 0 622(3) 0 13(1)

    Table 10. Non-hydrogen atom coordinates and equivalentisotropic displacement parameters for PrCl3/bpy/H2O/EtOH( 1 : 2 : 1 : 0 5), [(bpy)2Pr(OH2)2Cl3]Cl.

    1

    2EtOH

    Atom x y z U eq/A2

    Pr 0 80806(2) 0 87511(2) 0 65748(2) 0 02707(9)Cl(1) 0 78459(9) 1 1468(1) 0 4070(1) 0 0469(5)Cl(1) 0 71529(9) 1 0561(1) 0 8055(1) 0 0452(5)Cl(2) 0 96476(8) 0 7790(1) 0 4661(1) 0 0406(5)O(2) 0 9671(2) 0 9336(3) 0 6890(3) 0 041(1)N(11) 0 6268(3) 0 8069(4) 0 7815(4) 0 035(1)C(12) 0 5643(3) 0 7869(4) 0 7037(5) 0 034(2)C(13) 0 4805(4) 0 7266(6) 0 7771(6) 0 054(3)C(14) 0 4595(4) 0 6887(6) 0 9300(6) 0 063(3)C(15) 0 5207(4) 0 7121(6) 1 0101(5) 0 058(3)C(16) 0 6029(4) 0 7715(5) 0 9314(5) 0 044(2)N(11) 0 6825(3) 0 8700(4) 0 4832(3) 0 037(2)C(12) 0 5905(3) 0 8334(4) 0 5352(5) 0 035(2)

    C(13

    ) 0 5235(4) 0 8400(5) 0 4382(5) 0 044(2)C(14) 0 5526(4) 0 8816(5) 0 2850(5) 0 049(2)C(15) 0 6453(4) 0 9170(5) 0 2312(5) 0 050(2)C(16) 0 7094(4) 0 9121(5) 0 3323(5) 0 045(2)N(21) 0 8265(3) 0 5910(3) 0 7603(4) 0 036(2)C(22) 0 8330(3) 0 5037(4) 0 9110(4) 0 037(2)C(23) 0 8235(4) 0 3635(5) 0 9684(5) 0 052(2)C(24) 0 8098(4) 0 3111(5) 0 8694(6) 0 061(3)C(25) 0 8063(4) 0 3965(5) 0 7170(6) 0 053(3)C(26) 0 8161(4) 0 5348(5) 0 6668(5) 0 046(2)N(21) 0 8656(3) 0 6994(4) 0 9387(3) 0 037(2)C(22) 0 8555(3) 0 5629(4) 1 0094(4) 0 036(2)C(23) 0 8668(4) 0 4848(5) 1 1652(5) 0 056(2)C(24) 0 8931(4) 0 5437(5) 1 2484(5) 0 060(2)C(25) 0 9073(4) 0 6768(5) 1 1784(5) 0 051(2)C(26) 0 8923(4) 0 7536(5) 1 0229(5) 0 044(2)O(1)A 0 390(1) 0 542(1) 0 609(1) 0 132(4)C(1)A 0 444(2) 0 551(2) 0 446(2) 0 117(8)C(2)A 0 559(1) 0 477(2) 0 498(2) 0 059(3)

    A Site occupancy factor 0.5().

    Table 11. Non-hydrogen atom coordinates and equivalent iso-tropic displacement parameters for LaCl3/bpy/EtOH (1: 2 : 0 5),[(bpy)2Cl2La(-Cl)2LaCl2(bpy)2].EtOH

    Atom x y z U eq/A2

    La 0 31724(3) 0 07205(1) 0 35766(2) 0 0297(1)Cl(1) 0 3384(1) 0 04006(6) 0 49914(8) 0 0418(5)Cl(2) 0 4458(2) 0 10141(7) 0 24243(9) 0 0552(7)Cl(2) 0 0778(2) 0 17406(7) 0 22775(9) 0 0581(6)N(11) 0 0308(4) 0 0070(2) 0 2662(3) 0 042(2)C(12) 0 0287(5) 0 0824(2) 0 2497(3) 0 042(2)C(13) 0 1087(6) 0 1255(3) 0 2221(4) 0 060(3)C(14) 0 2442(7) 0 0919(4) 0 2106(5) 0 074(3)C(15) 0 2462(6) 0 0153(3) 0 2251(4) 0 066(3)C(16) 0 1049(6) 0 0248(3) 0 2529(4) 0 054(2)N(11) 0 3030(4) 0 0674(2) 0 2844(3) 0 039(2)C(12) 0 1782(5) 0 1151(2) 0 2593(3) 0 038(2)C(13) 0 1878(6) 0 1920(3) 0 2423(4) 0 054(3)

    C(14

    ) 0 3249(7) 0 2193(3) 0 2481(4) 0 064(3)C(15) 0 4530(6) 0 1706(3) 0 2724(4) 0 054(3)C(16) 0 4372(5) 0 0956(3) 0 2906(3) 0 047(2)N(21) 0 2154(4) 0 1416(2) 0 4654(3) 0 043(2)C(22) 0 2547(5) 0 2145(3) 0 4944(3) 0 047(2)C(23) 0 1754(6) 0 2541(3) 0 5315(4) 0 067(3)C(24) 0 0558(7) 0 2188(4) 0 5385(4) 0 079(3)C(25) 0 0172(7) 0 1452(4) 0 5095(4) 0 072(3)C(26) 0 1007(6) 0 1088(3) 0 4743(4) 0 056(3)N(21) 0 4510(4) 0 2059(2) 0 4474(3) 0 046(2)C(22) 0 3900(5) 0 2481(2) 0 4897(3) 0 046(2)C(23) 0 4566(7) 0 3193(3) 0 5300(4) 0 066(3)C(24) 0 5880(7) 0 3458(3) 0 5268(4) 0 077(3)C(25) 0 6477(6) 0 3035(3) 0 4829(4) 0 065(3)C(26) 0 5771(6) 0 2342(3) 0 4451(4) 0 056(3)C(1)A 0 068(2) 0 020(1) 0 002(1) 0 14(1)C(2)A 0 222(3) 0 001(1) 0 036(1) 0 18(2)O(1)A 0 017(5) 0 045(1) 0 003(3) 0 34(3)

    A Site occupancy factor 0 5().

  • 7/23/2019 Semenova 1999

    8/31

    Structural Systematics of Rare Earth Complexes. XIX 577

    Table 12. Non-hydrogen atom coordinates and equivalentisotropic displacement parameters for YbCl3/bpy (1:2),

    [(bpy)2YbCl3]

    Atom x y z U eq/A2

    Yb 0 72766(2) 0 73694(2) 0 52607(1) 0 02909(8)Cl(1) 0 8134(1) 0 8314(1) 0 42591(9) 0 0436(6)Cl(2) 0 5900(1) 0 6059(1) 0 40532(9) 0 0457(6)Cl(3) 0 6967(1) 0 5480(1) 0 6318(1) 0 0514(7)N(11) 0 6333(4) 0 9705(4) 0 4597(3) 0 038(2)C(12) 0 6119(4) 1 0804(4) 0 5058(3) 0 035(2)C(13) 0 5547(5) 1 2080(5) 0 4680(4) 0 042(2)C(14) 0 5184(5) 1 2225(5) 0 3817(4) 0 047(2)C(15) 0 5386(5) 1 1110(6) 0 3328(4) 0 048(2)C(16) 0 5975(5) 0 9876(5) 0 3744(4) 0 044(2)N(11) 0 7032(4) 0 9228(4) 0 6272(3) 0 033(2)C(12) 0 6516(4) 1 0548(4) 0 5992(3) 0 032(2)C(13) 0 6360(5) 1 1565(5) 0 6571(4) 0 045(3)C(14) 0 6687(5) 1 1207(6) 0 7416(4) 0 050(3)C(15) 0 7196(5) 0 9836(6) 0 7708(3) 0 042(2)C(16) 0 7354(5) 0 8900(5) 0 7106(3) 0 040(2)N(21) 0 8980(4) 0 7727(4) 0 6225(3) 0 038(2)C(22) 0 9632(5) 0 6657(5) 0 6231(4) 0 039(2)C(23) 1 0593(6) 0 6925(7) 0 6610(5) 0 058(3)

    C(24) 1 0950(6) 0 8348(8) 0 6999(5) 0 065(3)C(25) 1 0287(6) 0 9446(7) 0 6981(4) 0 056(3)C(26) 0 9322(5) 0 9106(6) 0 6609(4) 0 048(3)N(21) 0 8295(4) 0 5128(4) 0 5326(3) 0 038(2)C(22) 0 9232(4) 0 5161(5) 0 5777(4) 0 038(2)C(23) 0 9833(5) 0 3885(6) 0 5840(4) 0 052(3)C(24) 0 9404(7) 0 2537(5) 0 5419(5) 0 058(3)C(25) 0 8448(7) 0 2465(5) 0 4966(5) 0 056(3)C(26) 0 7906(5) 0 3777(5) 0 4930(4) 0 048(3)

    (3) LnCl3/L/H2O (1 : 2 : 6)

    (a) [(phen)2Lu(OH2)4]Cl3.2H2O

    C24H28Cl3LuN4O6, M 749 9. Monoclinic, space groupC2/c (C62h, No. 15), a 11 045(7), b 17 660(6), c14 474(9)A, 92 82(5), V 2820A3. Dc(Z = 4) 1 76 g cm

    3; F(000)

    1480. Mo 38.3 cm1; specimen: 0 325 by 0 075 by 0 05 mm;Amin,max 1 25, 1 36. 2max 55

    ; N 2525, No 1695; R 0 042,Rw 0 034.

    Comment. This material was obtained from ethanolsolution.

    (b) [(bpy)2La(OH2)4Cl]Cl2.2H2O

    C20H28Cl3LaN4O6, M 713 8. Monoclinic, space groupP21/c (C

    52h No. 14), a 19 389(3), b 9 071(1), c 16 873(2)A,

    114 10(1), V 2703A3. Dc(Z= 4) 1 63 g cm3; F(000)

    1328. Mo 18.9 cm1; specimen: 0 35 by 0 325 by 0 20 mm;

    Amin,max 1 39, 1 97. 2max 60; N 6225, No 4699; R 0 029,

    Rw 0 033.Comment. This material was obtained from aqueous

    solution.

    (4) LnCl3/phen/H2O ( 1 : 2 : 4 )

    [(phen)2Ln(OH2)3Cl]Cl2.H2O, C24H24Cl3LnN4O4. Tri-clinic, space group P1 (C1i, No. 2), Z = 2. (This arrayhas been defined for a (so far) small family, representedby Ln = Dy, Er, Y, including, by presumption, intermediatemembers (i.e. here, Ho) between these present extrema; thesematerials were crystallized from ethanol solution.)

    (a) Ln = Dy

    M 701 4. a 12 587(3), b 10 458(6), c 10 402(4)A, 93 25(4), 109 31(2), 96 76(3), V 1277A3. Dc 1 82 gcm3; F(000) 690. Mo 32 8 cm

    1; specimen: 0 50 by 0 40by 0 20 mm; Amin,max 1 78, 4 68. 2max 50

    ; N 4487, No

    4221; R 0 030, Rw 0 036.

    (b) Ln = Er

    M 706 1. a 12 595(2), b 10 475(2), c 10 408(5)A, 93 37(2), 109 32(3), 96 75(1), V 1280A3. Dc 1 83 g

    cm3; F(000) 694. Mo 36 3 cm1; specimen: 0 50 by 0 20

    by 0 10 mm; Amin,max 1 45, 2 67. 2max 55; N 5779, No

    5100; R 0 040, Rw 0 046.

    (c) Ln = Y

    M 627 8. a 12 579(3), b 10 468(4), c 10 403(5)A, 93 36(3), 109 33(3), 96 72(3), V 1277A3. Dc 1 63 gcm3; F(000) 636. Mo 26 4 cm

    1; specimen: 0 40 by 0 15by 0 05 mm; Amin,max 1 14, 1 50. 2max 50

    ; N 4479, No2690; R 0 052, Rw 0 050.

    (5) LnCl3/L/S (H2O(/ROH)) (1:2:2)

    [(bpy)2Ln(OH2)2Cl2]Cl, C20H20Cl3LnN4O2.

    (a) Ln = Pr, L = bpy, S= H2O

    M 595 7. Monoclinic, space group C2/c, a 15 921(15), b11 314(8),c14 114(8)A, 116 70(6),V2271A3. Dc(Z= 4)1 74 g cm3; F(000) 1176. Mo 25.2 cm

    1; specimen: 0 375by 0 16 by 0 138 mm; Amin,max 1 36, 1 62. 2max 55

    ; N

    2608, No 2269; R 0 041, Rw 0 042.Comment. This material was obtained from ethanol

    solution.

    (b) Ln = Er, L = bpy, S= H2O

    M 622 1. Cubic, space group I23 (T 3, No. 197), a26 032(5)A, V 17671A3. Dc(Z= 24) 1 41 g cm

    3; F(000)7272. Mo 31 5 cm

    1; specimen: 0 30 by 0 30 by 0 15 mm(no correction). 2max 50

    ; N 2766, No 1644; R 0 066, Rw0 071.

    Variata/comment. This cubic form, obtained from ethanolsolution, has also been observed for neighbouring Ln, the com-pounds proving elusive to characterize and deteriorating overthe period of data collection; the specimen used for datacollection recovered after a period of some months, with a cell

    dimension of marginally significant difference. Remeasurementof the data showed no clearly definable change in cell contents,any such change possibly being contained in reorganizationwithin the poorly defined soup of anion and solvent fragments.As modelled, the determination provides a useful description ofthe array but with some ambiguity in respect of the anion, whichappears as fragments dispersed over four sets of sites Cl(36);the occupancy of Cl(35), associated with special positions, is(1/3+1/3+1/4 = 0 917), the difference map residue assignedas Cl(6) being assigned a site occupancy of the balance (0 083),refining thus with a sensible thermal parameter (isotropic), butdistant 3 13(7)A from Cl(5), rather less than the commonlyaccepted van der Waals sum of 3.6A.

    (c) [(phen)2Ln(OH2)Cl3].MeOH

    C25H22Cl3LnN4O2. Monoclinic, space groupP21/c,Z= 4.(This array has been defined for a (so far) small family, rep-resented by Ln = La, Pr, Nd, Eu, and also by presumption,the other intermediates Ln = Ce, Sm between these extremes;these materials were obtained from methanol solution. Fulldata are recorded for the extremal Ln = La, Eu examples, thatfor Ln = Pr being deposited.) The lanthanum structure hasbeen the subject of a parallel study,10 of comparable precision,with the cell and coordinate setting of that determination beingadopted here.

    (i) Ln = La. M 655 8. a 13 222(3), b 10 745(3),c 18 490(3)A, 102 04(2), V 2569A3. Dc 1 70 g cm

    3;F (000) 1296. Mo 20 1 cm

    1; specimen: 0 45 by 0 125 by0 10 mm; Amin,max 1 20, 1 31. 2max 50

    ; N 4507, No 2872;R 0 054, Rw 0 057.

    (ii) Ln = Pr. M 657 8. a 13 137(3), b 10 756(3),c 18 417(3)A, 102 14(2), V 2544A3. Dc 1 72 g cm

    3;F (000) 1304. Mo 22 6 cm

    1; specimen: 0 45 by 0 20 by0 125 mm; Amin,max 1 29, 1 61. 2max55

    ; N 5520, No 4792;R 0 032, Rw 0 036.

  • 7/23/2019 Semenova 1999

    9/31

  • 7/23/2019 Semenova 1999

    10/31

  • 7/23/2019 Semenova 1999

    11/31

    580 L. I. Semenova and A. H. White

    Table 16. (Implicit) interspecies hydrogen bonds

    Atoms Distance/A Atoms Distance/A

    LaCl3/phen/H2O ( 1 : 3 : 9 )A

    Cl(1) O(1) 3 150(4) Cl(2) O(1i) 2 984(4)

    Cl(2)

    O(1

    i

    ) 3

    158(4) Cl(2)

    O(4

    ii

    ) 3

    114(5)O(1) N(21) 2 829(6) O(3) O(4i) 2 783(6)

    LaCl3/phen/H2O/MeOH (1: 2: 6 :1)B

    Cl(1) O(1) 3 083(4) Cl(1) O(1) 3 104(4)Cl(1) O(2i) 3 106(4) Cl(1) O(2i) 3 144(3)Cl(2) O(1) 3 078(4) Cl(2) O(3ii) 3 071(5)Cl(3) O(2) 2 909(4) Cl(3) O(5iii) 3 098(8)

    LuCl3/phen/H2O ( 1 : 2 : 6 )C

    Cl(1) O(1) 3 072(6) Cl(1) O(2i) 3 195(7)Cl(2) O(1) 3 004(7) Cl(2) O(1) 3 075(6)Cl(2) O(2ii) 3 076(8)

    LaCl3/bpy/H2O ( 1 : 2 : 6 )D

    Cl(2) O(1i) 3 093(3) Cl(2) O(2) 3 065(3)Cl(2) O(3) 3 156(3) Cl(3) O(2) 3 069(3)Cl(3) O(2) 3 134(4) Cl(3) O(3ii) 3 176(3)Cl(3) O(4iii) 3 176(4) O(2) O(3) 2 981(4)O(1) O(4) 2 701(5) O(2) O(5) 2 727(4)

    LnCl3/bpy/H2O ( 1 : 2 : 4 )E (Ln = Dy, Er, Y)

    Cl(1) O(1i) 3 100(4), 3 106(4), 3 096(5) Cl(1) O(1) 3 054(3), 3 070(6), 3 045(6)Cl(1) O(1i) 3 060(4), 3 054(5), 3 057(6) Cl(2) O(2) 3 057(4), 3 075(6), 3 039(7)Cl(2) O(3) 3 128(4), 3 138(5), 3 109(6) Cl(2) O(3ii) 3 167(4), 3 176(5), 3 145(6)O(1) O(3) 2 649(6), 2 663(8), 2 684(9)

    PrCl3/bpy/H2O ( 1 : 2 : 2 )F

    Cl(1) O(1i) 3 000(4)

    ErCl3/bpy/H2O ( 1 : 2 : 2 )

    Cl(3) O(2) 3 13(2) Cl(4) O(1) 3 02(2)

    LnCl3/phen/H2O/MeOH (1:2:1:1)G (Ln = La, Eu)

    O(1) O(2) 2 64(1), 2 64(1) Cl(1) O(2i) 3 169(8), 3 170(5)

    LnCl3/bpy/H2O/EtOH (1: 2: 1: 1)H (Ln = Nd, Eu)

    Cl(1) O(2i) 3 123(4), 3 117(9) Cl(1) O(1ii) 3 15(1), 3 13(2)

    PrCl3/bpy/H2O/EtOH (1:2:1: 12

    )I

    Cl(2) O(2i) 3 126(4)

    A Transformation of the asymmetric unit: i 12 x, 1y, z; ii x, 1 1

    2 y, 1

    2 z. B Transformations: i x, y, 1+z; ii x, 1+y, z; iii x, 1+y,

    z 1. C Transformations: i 12 x, y 1

    2, 12 z; ii 1

    2 x, 1 1

    2 y, 1 z. D Transformations: i x, y 1, z; ii x, 1 1

    2y, z 1

    2; iii x,

    2 12y, z 1

    2. E Transformations: i1 x, 1y, 1 z; ii x, y, 1 z. F Transformation: i 1

    2+x, 1

    2+y, z. G Transformation: i x,

    12y, 1

    2+z. H Transformations: i 2 x, 2y, 1 z; ii 1+x, y, z. I Transformation: i 2 x, 2 y, 1 z.

    Table 17. Phen/bpy hydrogen contacts: ortho-hydrogen intra-complex contacts

    Italicizedatoms are generated by the appropriate intra-complex symmetry operator ( 2 or 1 )

    Compound Atoms Distance/A Atoms Distance/A

    LaCl3/phen/H2O (1 : 3 : 9) H(16) O(1) 2 33 H(16

    ) O(1) 2 51LaCl3/phen/H2O/MeOH (1 : 2 : 6 : 1) H(16) O(3) 2 62 H(16

    ) O(1) 2 43H(26) O(3) 2 61 H(26

    ) O(2) 2 49LuCl3/phen/H2O (1 : 2 : 6) H(16) O(2) 2 55 H(16

    ) O(1),Cl(1) 2 66, 2 78LaCl3/bpy/H2O (1 : 2 : 6) H(16) O(2

    ),O(3) 2 52, 2 50 H(16) O(1) 2 50

    H(26) Cl(1) 2 67 H(26) O(2) 2 44

    Dy,Er,YCl3/phen/H2O (1 : 2 : 4) H(16) Cl(2) 2 66, 2 65, 2 64 H(16

    ) O(1) 2 53, 2 54, 2 55PrCl3/bpy/H2O (1 : 2 : 2) H(16

    ) O(1) 2 58ErCl3/bpy/H2O (1 : 2 : 2) H(16

    ) O(1) 2 52H(26) Cl(1) 2 64

    La,EuCl3/phen/H2O/MeOH (1 : 2 : 1 : 1) H(16) Cl(2) 2 51 2 50 H(16

    ) Cl(1) 2 68, 2 65H(26) Cl(1) 2 59, 2 56 H(26

    ) O(2) 2 46, 2 47Nd,EuCl3/bpy/H2O/EtOH (1 : 2 : 1 : 1) H(16

    ) Cl(2) 2 87, 2 83H(26) Cl(1) 2 76, 2 74

    PrCl3/bpy/H2O/EtOH (1 :2 :1 :0 5) H(26) O(2) 2 57

    LaCl3/bpy/EtOH (1 : 2 : 0 5) H(16) Cl(2) 2 70 H(16

    ) Cl(2) 3.0H(26) Cl(1) 2 80 H(26

    ) Cl(2) 2.9YbCl3/bpy (1 : 2) H(16) Cl(1,2) 2 89, 2 H(16

    ) Cl(3) 2 66H(26) Cl(2) 2 72

  • 7/23/2019 Semenova 1999

    12/31

    Structural Systematics of Rare Earth Complexes. XIX 581

    Table 18. Phen/bpy hydrogen contacts: other interspecies contacts

    Compound Atoms Transformations Distance/A

    LaCl3/phen/H2O (1 : 3 : 9) H(17) O(1) 1

    2+x, y, 1 z 2 59

    H(26) O(3) 2 65

    LaCl3/phen/H2O/MeOH (1 : 2 : 6 : 1) LuCl3/phen/H2O (1 : 2 : 6) H(14) Cl(2)

    12 x, 1

    2+y, 1

    2 z 2 90

    H(14) Cl(2) x, y, 12 z 2 69

    LaCl3/bpy/H2O (1 : 2 : 6)

    Dy,Er,YCl3/phen/H2O (1 : 2 : 4) H(17) Cl(2) x, 1+y, z 2 84, 2 85, 2 86

    H(27) O(1) 1 x, y, 1 z 2 68, 2 69, 2 66

    PrCl3/bpy/H2O (1 : 2 : 2) H(15) Cl(1) x 12

    , 12

    +y, z 2 81H(15) Cl(1) 1

    2 x, y 1

    2, 12 z 2 81

    ErCl3/bpy/H2O (1 : 2 : 2) H(23) Cl(1) 1 1

    2y, 1

    2+z, 1 1

    2 x 2 87

    La,EuCl3/phen/MeOH (1 : 2 : 1 : 1) H(15) Cl(1) 1

    2 x, y 1

    2, z 2 79, 2 86

    H(17) Cl(1) 12 x, 1

    2+y, z 2 79, 2 75

    H(27) Cl(1) 1 x, 1y, 1 z 2 89, 2 83H(24) Cl(1) 1

    2 x, y 1

    2, 1 z 2 67, 2 71

    Nd,EuCl3/bpy/H2O/EtOH (1 :2 : 1 :1) H(14) Cl(2) x, y 1, z 2 92,2 89

    H(23) O(1) 2 53, 2 51H(24) Cl(2) 1 x, 2 y, 1 z 2 79, 2 77

    2

    PrCl3/bpy/H2O/EtOH (1 :2 :1 :0 5) H(14) Cl(1) 1 x, 2 y, 1 z 2 87

    H(15) Cl(1) x, y, z1 2 81H(23) Cl(1) x, y 1, z+1 2 78H(24) Cl(2) 2 x, 1 y, 2 z 2 81H(25) Cl(2) x, y, 1+z 2 77

    LaCl3/bpy/EtOH (1 : 2 : 0 5) H(15) Cl(2) x 1, y, z 2 81H(13) Cl(2) x, y 1

    2, 12 z 2 81

    H(14) Cl(2) 1 x, y 12

    , 12 z 2 96

    H(23) Cl(2) x, 12y, 1

    2+z (311)

    H(24) Cl(2) x, 12y, 1

    2+z 2 71

    H(25) Cl(1) x, y, 1 z 2 88H(23) Cl(2) x, 1

    2y, 1

    2+z 2 90

    YbCl3/bpy (1:2) H(15) Cl(2) 1 x, 12

    +y, 12 z 2 79

    H(25) Cl(1) x, y 1, z 2 85

    (iii) Ln = Nd. M 661 1. a 13 104(5), b 10 756(1),c 18 390(4)A, 102 20(2), V 2533A3. Dc 1 73 g cm

    3;F (000) 1308. Mo 24 0 cm1; specimen: 0 30 by 0 30 by0 075 mm; Amin,max1 20, 2 04. 2max 50

    ;N 4448,No 3179;R 0 040, Rw 0 041.

    (iv) Ln = Eu. M 668 8. a 13 029(4), b 10 737(4),c 18 325(5)A, 102 40(2), V 2504A3. Dc 1 77 g cm

    3;F (000) 1320. Mo 28 6 cm

    1; specimen: 0 35 by 0 175 by0 10 mm; Amin,max 1 31, 1 65. 2max 52

    ; N 4893, No 2847;R 0 054, Rw 0 054.

    (d) [(bpy)2Ln(OH2)Cl3].EtOH

    C22H24Cl3LnN4O2. Triclinic, space group P1, Z = 2.(This array, obtained from ethanol solution, has been derivedso far for a small family represented by Ln = Nd, Eu (and,

    implicitly, elements in between).)(i) Ln = Nd. M 627 1. a 11 335(4), b 11 004(5), c10 467(4)A, 75 54(3), 89 74(3), 77 93(3), V 1235A3.Dc 1 69 g cm

    3; F (000) 622. Mo 24 5 cm1; specimen:

    0 60 by 0 35 by 0 06 mm; Amin,max 1 16, 2 30. 2max 55;

    N 5656, No 4979; R 0 044, Rw 0 052.(ii) Ln = Eu. M 634 8. a 11 27(1), b 10 942(6), c

    10 44(1)A, 75 45(8), 89 81(10), 78 00(7), V 1217A3.Dc(Z = 2 ) 1 7 3 g c m

    3; F (000) 628. Mo 29 3 cm1;

    specimen: 0 225 by 0 225 by 0 18 mm; Amin,max 1 49, 1 77.2max 50

    ; N 4284, No 3596; R 0 056, Rw 0 067.

    (6) PrCl3/bpy/H2O/EtOH (1: 2: 1: 05)

    [(bpy)2Pr(OH2)Cl3].12

    EtOH, C21H21Cl3N4O1 5Pr, M

    600 7. Triclinic, space group P1, a 13 331(3), b 10 734(2), c9 758(2)A, 63 67(2), 78 99(2), 71 24(2), V 1183A3.Dc(Z= 2) 1 69 g cm

    3; F(000) 594. Mo 24 3 cm1; speci-

    men: 0 50 by 0 20 by 0 10 mm; Amin,max 1 23, 1 80. 2max55; N 5406, No 4596; R 0 033, Rw 0 033.

    Comment. This material was obtained from ethanolsolution. The solvent was modelled as disordered about aninversion centre.

    (7) LaCl3/bpy/EtOH (1:2:0 5)

    [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2].EtOH, C42H38Cl6La2-N8O,M 1161 3. Monoclinic, space groupP21/c,a9 6878(2),b 17 5696(3), c 16 1341(2)A, 123 10(1), V 2300A3. Dc(Z= 2 dimers) 1 68 g cm3; F(000) 1140. Mo 22 2 cm

    1;specimen: 0 35 by 0 45 by 0 27 mm; Amin,max 1 76, 2 05.2max 55

    ; N 5264, No 4256; R 0 033, Rw 0 037.Comment. The material was obtained from ethanol

    solution.

    (8) YbCl3/bpy (1:2)

    [(bpy)2YbCl3], C20H16Cl3N4Yb, M 591 8. Monoclinic,

    space group P21/c, a 15 065(8), b 8 598(4), c 16 92(1)A, 112 46(5), V 2025A3. Dc(Z= 4) 1 94 g cm

    3; F(000)1140. Mo 50 cm

    1; specimen: 0 51 by 0 30 by 0 15 mm;Amin,max 1 9, 8 4. 2max 55

    ; N 4639, No 3548; R 0 032,Rw 0 035.

    Comment. This material was obtained from ethanolsolution.

    Discussion

    In the present studies, room-temperature single-crystal X-ray structure determinations have definedthe nature of a number of diverse crystalline productsobtained from the crystallization of hydrated trivalentlanthanoid chlorides with bpy or phen (as the mono-hydrate) in 1 : 2 stoichiometry from, variously, water,methanol or ethanol solutions. All except one areof 1:2 LnCl3/bpy or phen stoichiometry, all exceptone hydrated, with some variously solvated by the

  • 7/23/2019 Semenova 1999

    13/31

    582 L. I. Semenova and A. H. White

    Fig. 1. The three nine-coordinate, lanthanum-containing cations of: (a) LaCl3/phen/H2O ( 1 : 3 : 9 ); (b)LaCl3/phen/H2O/MeOH (1:2:6:1); (c) LaCl3/bpy/H2O (1 : 2 : 6); projected down their (putative)2-axes.

  • 7/23/2019 Semenova 1999

    14/31

    Fig. 2. The unit cell contents of LaCl3/phen/H2O (1: 3 : 9), projected down their c axis.

  • 7/23/2019 Semenova 1999

    15/31

    584 L. I. Semenova and A. H. White

    Fig. 3. The unit cell contents of LaCl3/phen/H2O/MeOH (1 : 2 : 6 : 1), projected down their c axis.

    Fig. 4. The unit cell contents of LaCl3/bpy/H2O (1: 2 : 6), projected down their b axis.

  • 7/23/2019 Semenova 1999

    16/31

    Structural Systematics of Rare Earth Complexes. XIX 585

    Fig. 5. (a), (b) A projection of the facial array of the phen components of LaCl3/phen/H2O ( 1 : 3 : 9 )showing the side-on disposition of the ligand stacking, with a dissection of the latter at x0 5.

  • 7/23/2019 Semenova 1999

    17/31

    586 L. I. Semenova and A. H. White

    Fig. 6. The eight-coordinate [(phen)2Lu(OH2)4]3+ cation of LuCl3/phen/H2O (1 : 2 : 6), projected down

    its (crystallographic) 2-axis.

    Fig. 7. The [(phen)2La(OH2)Cl3] molecule, projected down its quasi-2 axis.

    Fig. 8. The La environment of [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2], projected down its quasi-2 axis.

  • 7/23/2019 Semenova 1999

    18/31

    Structural Systematics of Rare Earth Complexes. XIX 587

    Fig. 9. The eight-coordinate [(phen)2Y(OH2)3Cl]2+ cation, projected down its quasi-2

    axis.

    Fig. 10. The eight-coordinate [(bpy)2Pr(OH2)2Cl2]2+ cation, projected down its(crystallographic) 2-axis.

    Fig. 11. The [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2] molecule, projected normalto the central LaCl2La plane.

  • 7/23/2019 Semenova 1999

    19/31

    588 L. I. Semenova and A. H. White

    Fig. 12. The eight-coordinate [(bpy)2Er(OH2)2Cl2]+ cation, projected down its quasi-2

    axis.

    Fig. 13. The eight-coordinate [(bpy)2Pr(OH2)Cl3] molecule, projected down its quasi-2axis.

    Fig. 14. The eight-coordinate [(bpy)2Eu(OH2)Cl3] molecule, projected down its quasi-2axis.

  • 7/23/2019 Semenova 1999

    20/31

    Structural Systematics of Rare Earth Complexes. XIX 589

    Fig. 15. The unit cell contents of LuCl3/phen/H2O (1 : 2 : 6), projected downb .

    Fig. 16. The unit cell contents of LaCl3/phen/H2O/MeOH (1: 2 : 1 : 1), projected down b.

  • 7/23/2019 Semenova 1999

    21/31

    590 L. I. Semenova and A. H. White

    Fig. 17. The unit cell contents of LaCl3/bpy/EtOH (1:2:0 5), projected down a.

    Fig. 18. The unit cell contents of YCl3/phen/H2O (1:2:4), projected down c.

  • 7/23/2019 Semenova 1999

    22/31

    Structural Systematics of Rare Earth Complexes. XIX 591

    Fig. 19. The unit cell contents of PrCl3/bpy/H2O (1:2:2), projected down b.

    Fig. 20. The unit cell contents of ErCl3/bpy/H2O (1:2:2), projected down a, comprising an overlay of the threeaggregates each of eight molecules. In Figs 2022, cell axes are right-handed in all cases with the direction of projectiontoward the reader. The array may be considered as made up of aggregates of eight molecules, disposed about ( 1

    2, 12

    ,0), (1

    2, 0, 1

    2), (0, 1

    2, 12

    ).

  • 7/23/2019 Semenova 1999

    23/31

    592 L. I. Semenova and A. H. White

    alcohol from which they are crystallized. In the lastcircumstances, on no occasion in the present array, or,for that matter, with one exception in those of theprevious paper, does the alcohol coordinate despite

    its wide use in solvent systems; it does appear in anumber of cases, however, to act as a dehydratingagent, reducing the water concentration in solutionand also, perhaps, halide solvation, so that chloridereplaces water to varying degrees in the coordinationsphere. With the 1 : 1 compounds of the previouspaper, it appeared that, other things, e.g. solvent,being comparable, there may be a greater tendencyfor chloride coordination vis-a-vis water in situationsinvolving the lighter rare earth elements; evidence inthe present paper is of dubious assistance to that ten-uous hypothesis. It is notable that as yet there are no

    structurally authenticated compounds of stoichiometryLnCl3/bpy or phen (1 : n) in which coordinated n risesabove 2; if n is greater than 2, then supernumeraryligands are found on lattice sites uncoordinated.

    LaCl3/phen/H2O (1 : 3 : 9), [(phen)2La(OH2)5]Cl3.-phen.4H2O, Pentaaquabis(1,10-phenanthroline)lanthan-um(III) Trichloride Phenanthroline Tetrahydrate

    This complex is the one compound not of 1 : 2LnCl3/N,N

    -bidentate stoichiometry in the presentarray and crystallizes in the orthorhombic space groupPnna, one-half of the formula unit making up the asym-metric unit of the structure. The structure comprisesa complex cation as shown, disposed with the metalatom and one of the coordinated water molecules on acrystallographic2-axis that also passes through one ofthe halide counter ions to which the coordinated watermolecule hydrogen-bonds. The remainder of the asym-metric unit comprises the other halide counter ion anda pair of water molecules, one with very high thermalmotion, all being devoid of crystallographic symme-

    try, and one-half of an uncoordinated phenanthrolinemolecule which is disposed about a crystallographic 2-axis also, the latter axis lying between those associatedwith the cations so that the uncoordinated phen

    Fig. 21. The unit cell contents of ErCl3/bpy/H2O (1 : 2 : 2), projected down the cell diagonal. Intercluster hydrogen bonds areshown dotted.

  • 7/23/2019 Semenova 1999

    24/31

    Structural Systematics of Rare Earth Complexes. XIX 593

    Fig. 22. (a)(c) Each projection of ErCl3/bpy/H2O (1 : 2 : 2) comprises a single aggregate, that about (12

    , 0(1), 12

    ) inclusive of

    the asymmetric unit, viewed in projection down a, b, c respectively, (a) being an overlay of pairs of those components, withthose down b overlapping in projection; (d) a projection down the cell diagonal (cf. Fig. 21).

  • 7/23/2019 Semenova 1999

    25/31

    594 L. I. Semenova and A. H. White

    Fig. 23. The unit cell contents of PrCl3/bpy/H2O/EtOH (1: 2: 1: 0 5),projected down c.

    Fig. 24. The unit cell contents of EuCl3/bpy/H2O/EtOH (1: 2 : 1 : 1), projected down c.

  • 7/23/2019 Semenova 1999

    26/31

    Structural Systematics of Rare Earth Complexes. XIX 595

    Fig. 25. (a) The seven-coordinate [(bpy)2YbCl3] molecule; (b) the unit cell contents of YbCl3/bpy(1 : 2), projected down b.

  • 7/23/2019 Semenova 1999

    27/31

    596 L. I. Semenova and A. H. White

    interleaves coordinated cation phen ligands to eitherside forming stacks up the bcface of the cell (Figs 5a,b)and about x = 0 5. The two phen moieties have aninterplanar dihedral angle of 6 63 (9), albeit quite

    steeply inclined to b andc, a situation permitting theirparallel stacking (Figs 2,5a,b). One of the nitrogenatoms of the uncoordinated phen lies close to one ofthe coordinated water molecules, N(21) O(1) ( 12 x,1 y, z) 2 829(6)A (N H (est.) 2.1A), presumablyas an incipient proton acceptor of delocalized chargefrom the highly charged cation. The non-axial anionslie disposed in tunnels, parallel to c, bounded by coor-dinated and lattice water molecules with only limitedevidence for any strong hydrogen bonding (Table 16).There are many similarities between the present arrayand that of HoCl3/bpy/H2O (1 : 2 : 7) described in the

    preceding paper.1

    As in all metal-containing entities ofthe present paper, excepting that of the final unsolvatedseven-coordinate ytterbium structure, the metal atomenvironment has real (as here) or approximate twofoldsymmetry, the metal atom coordination environmentsbeing nine (as in three out of the four lanthanum-containing entities) or eight (in the remainder). In thepresent and the other nine-coordinate entities, one ofthe coordinated water molecules lies on the (putative)2-axis; it is convenient to regard this as lost onpassing to the eight-coordinate species, and to describeall eight- and nine-coordinate environments in termsof a common numbering system which exposes anyrelationships and allows for comparative tabulation.This compound has been the subject of an independentstudy of comparable precision,11 with which it is insubstantial agreement.

    LaCl3/phen/H2O/MeOH (1 : 2 : 6 : 1),[(phen)2La(OH2)5]Cl3.H2O.MeOH, Pentaaquabis-(1,10-phenanthroline)lanthanum(III) TrichlorideMonohydrate Monomethanol Solvate

    This compound, crystallizing with one formula unitcomprising the asymmetric unit of the structure, is alsoionic, with a cation the same as in the previous com-

    pound, with a similar stereochemistry, having quasi-2symmetry relating the pairs of phen ligands and twopairs of water molecules, the fifth water molecule beingdisposed on the cation axis with the metal. Thetwo phen ligands have an interplanar dihedral angleof 72 63(6); one ligand, and its translation/inversionimages, are disposed to form a series of overlappingplanes parallel to theacplane, the ligands quasi-normalto b, while the other, with similarly related images,stacks in a parallel sheet at the centre of the cell but withthe phen planes quasi-normal to b (Fig. 3). The anionand solvent molecules again lie in channels throughthe structure, located midway between the sheets, ata 1/4, 3/4, thermal motion on the uncoordinatedneutral species being high. Coordinated water anion hydrogen bonding is a significant feature of thestructure (Table 16; Fig. 3).

    LaCl3/bpy/H2O ( 1 : 2 : 6),[(bpy)2La(OH2)4Cl]Cl2.2H2O, Tetraaquabis(2,2

    -bipyridine)chlorolanthanum(III) Dichloride Dihydrate

    This compound, also crystallizing with one formulaunit making up the asymmetric unit of the structure,is also ionic. Despite crystallization of the complexfrom aqueous solution, and with bpy instead of phen asthe N,N-bidentate ligand, a chloride ion has enteredthe coordination sphere, otherwise similar to that ofthe preceding two cations, displacing one of the watermolecule ligands from one of the equatorial sites.Despite these changes, the stereochemistry about thenine-coordinate metal atom is essentially unchanged(Tables 13 and 14). The factors controlling the crystalpacking appear very similar to those expressed inthe previous compound: a substantial quasi-normal

    dihedral angle between the planes of the two biden-tate ligands about the metal permits the overlap ofeach with translation-/inversion-related counterpartsin neighbouring molecules, forming sheets of stacksarranged in planes separated by half a cell and nor-mal to that axis, in this case a, with the coordinatedwater molecules and anions, lying (very) approximatelycoplanar about the metal between the two ligands ata 1/4. Their uncoordinated counterparts are con-tained in channels between the molecules by hydrogenbonding (Table 16; Fig. 4).

    Two lines of development arising out of the form

    of the three preceding Ln = La complexes may bedefined. The first is that, perhaps remarkably, two ofthe three complexes comprise two of the three examplesof species of the form [Ln(N,N-bidentate)2(OH2)x]

    3+,in which the unidentate array within the cation ismade up completely of water molecules; in one ofthese species, in LaCl3/phen/H2O (1:3:9), the fullpotential2-symmetry is realized. The third such arrayis found at the other extreme of the rare earth series,for Ln = Lu, with four rather than five water moleculesin the array (see below).

    LuCl3/phen/H2O (1:2:6),

    [(phen)2Lu(OH2)4]Cl3.2H2O, Tetraaquabis(1,10-phenanthroline)lutetium(III) Trichloride Dihydrate

    This compound crystallizes in space group C2/c,with one-half of the formula unit comprising the asym-metric unit of the structure. It also is ionic; the cationis disposed on a crystallographic 2-axis, as also is one ofthe chloride counter ions, and hydrogen-bonds to waterligands; in this respect there is a close similarity betweenthis array and that of LaCl3/phen/H2O (1 : 3 : 9). A fur-ther resemblance is found in the form of the cation; theLa complexes are the only nine-coordinate arrays foundamong the present aggregate of compounds, and the

    passage from the symmetrical [(phen)2La(OH2)5]3+

    nine-coordinate cation to the similarly symmetrical[(phen)2Lu(OH2)4]

    3+ eight-coordinate cation of thepresent array is achieved simply by the loss of theaxial water molecule, the disposition of the remaining

  • 7/23/2019 Semenova 1999

    28/31

    Structural Systematics of Rare Earth Complexes. XIX 597

    ligands being very similar (Fig. 15; Tables 13 and 14).The present cation form is archetypical of many tofollow, having quasi-2 symmetry, relating the pair ofbpy/phen ligands and the two pairs of water molecules,

    the latter (which may in other compounds be displacedby chlorine) in projection down the (putative) 2-axislying between the pair of N,N-bidentate ligands. Inthe present compound the two independent LuOdistances are remarkably similar; so too are the twoindependent LuN. With the unit cell, we find themolecules disposed so that the ab plane is confrontedby translation-/inversion-generated ligands of the samepitch; their twofold images create a similar pair ofsuch sheets of ligands in confrontation either side ofthe plane at a 0 5. The overall structure, however,is best regarded as a sheet normal to b, with strong

    hydrogen bonding again found between coordinatedwater molecules and counter ions (Table 16).The other strand of consequence which may be traced

    from the nine-coordinate Ln = La complexes arises ina pair of types which may be thought of as arising outof the LaCl3/bpy/H2O (1 : 2 : 6) array in which a chlo-ride ion has extended the coordination sphere. Whilehydrated LaCl3/phen (1 : 2) combinations crystallizedfrom water and ethanol yield nine-coordinate arraysin which the only unidentate ligand is water, this isnot so with methanol as solvent, nor with bpy, withethanol as the solvent, maximally chlorinated neutralmolecules being obtained under these circumstances,

    but with eight-coordinate lanthanoid stereochemistriessimilar to that of [(phen)2Lu(OH2)4]

    3+.

    LnCl3/phen/H2O/MeOH (1 : 2 : 1 : 1),[(phen)2Ln(OH2)Cl3].MeOH, Aquatrichlorobis(1,10-phenanthroline)lanthanoid(III) Monomethanol Solvate

    This has been obtained for Ln = La, Pr, Nd, Eu,all structurally characterized, the family presumablyexisting through at least the domain Ln = La()Eu.The chloride ligands occupy all except one of the axialunidentate sites. One independent molecule comprisesthe asymmetric unit of the structure with features of

    crystal packing very similar to those delineated above(Fig. 16), the quasi-orthogonal pair of aromatic ligandsgenerating by inversion/translation sheets stacked upthe axial planes about 0, 12 on the axis normal to thoseplanes, (a here) with the ligand planes quasi-parallelto the pairs of axes defining the sheet (b,c here). Thethermal motion on the methanol is high; nevertheless,such hydrogen bonding as can exist in this array of lim-ited hydroxylic content appears to take place betweenone end of the methanol, refined as the oxygen, andthe coordinated water (O(1) O(2), 2 64(2)A; withO(1) H(2a) (est.), 1.8A; and H(2b)(est.) Cl(1

    )(x, 1

    2 y, z 1

    2), 2.6A). The pitch of the ligand planes

    to the quasi-2axis is less steep in these compounds thanin similar species, but interligand overlap continues tobe found in apparently uninhibited abundance. Thiscompound has been the subject of a parallel study of

    comparable precision10 with which it is in substantialagreement.

    LaCl3/bpy/EtOH (1:2:05 (2, 2: 4 : 1)),

    [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2].EtOH,Di--chlorobis(bis(2,2-bipyridine)dichloro-lanthanum(III)) Monoethanol Solvate

    This is the remaining lanthanum compound, alsoa neutral molecule with eight-coordinate lanthanum,fully chlorinated, this time to the exclusion of allwater by the formation of a dimer. One half of thiscentrosymmetric dimer makes up the asymmetric unitof the structure, which is solvated by ethanol. Itis curious and noteworthy that both methanol andethanol, solvating a number of compounds in thepresent aggregate, do not in any of them enter the

    coordination sphere of the metal. The pitch of thefull C10N2 planes of the two ligands vis-a-vis theputative 2-axis is steeper than in the previous array,the interplanar dihedral angle being only 2512(9),so that within the dimer, all planes are quasi-parallel,and parallel to their translation/inversion generatedimages (Fig. 17). There is no apparent significanthydrogen bonding of the solvent molecule. Beyondlanthanum, further arrays of complexes have beendefined, all with various degrees of replacement ofaqua by chloro ligands in the eight-coordinate [(N,N-bidentate)2Ln(unidentate)4] array. In relation to theprevious eight-coordinate arrays, two families of stereo-

    chemistries are found. The first follows the dispositionrecorded for all previous eight-coordinate species andis represented by the (so far) small family discussednext.

    LnCl3/phen/H2O (1:2:4),[(phen)2Ln(OH2)3Cl]Cl2.H2O, Triaquachlorobis(1,10-phenanthroline)lanthanoid(III)Dichloride Monohydrate

    One formula unit comprises the asymmetric unit ofthe structures, defined for Ln = Dy, Er, Y (and, bypresumption, Ln = Ho). Within the cation, the chlo-ride, as in the nine-coordinate [(bpy)2La(OH2)4Cl]

    2+

    aggregate, occupies one of the pair of equatorialunidentate ligand sites. Although the interplanar dihe-dral angle between the two bidentate ligand planesis relatively small, we find, nevertheless, in a fairlyoblique triclinic cell, the familiar and important overlapsbetween inversion-/translation-related ligands of bothtypes, here with one of the ligands generating a one-dimensional stack up a, while the other is constrainedto pairwise interactions (Fig. 18). Extensive hydrogenbonding is found between the water molecules, bothcoordinated and uncoordinated, and the anions, bothcoordinated and uncoordinated (Table 16).

    In the remaining compounds, all involving bpy asthe bidentate ligand, we find the rare earth complexspecies to have two or three of the water molecules ofthe eight-coordinate [(bpy)2Ln(OH2)4]

    3+ array replacedby chloro ligands, and in all cases we find a new

  • 7/23/2019 Semenova 1999

    29/31

    598 L. I. Semenova and A. H. White

    stereochemical form adopted. One such new form isfound in the next complex discussed.

    PrCl3/bpy/H2O (1:2:2),

    [(bpy)2Pr(OH2)2Cl2]Cl, Diaquabis(2,2

    -bipyridine)dichloropraseodymium(III) Chloride

    In space group C2/c, we find half of the formulaunit comprising the asymmetric unit of the struc-ture: both cation and counter ion are disposed onthe same set of crystallographic 2-axes, the chloridebeing hydrogen-bonded to the pair of water moleculeswhich confront it, being in the pair of axial uniden-tate sites, while the chloro ligands now occupy bothequatorial sites. Although derivative of the previ-ous eight-coordinate stereochemical type, the presentdiverges rather markedly, the pitch of the bidentate

    ligands being almost parallel to the 2-axis now, sothat they approach coplanarity, as do the four uniden-tate ligands; this suggests an approach of the ligandsof this compound towards the pair of trapezoidalplanes demanded by dodecahedral stereochemistry,Fig. 10. As might be expected, such an array shouldbe appropriately favourable for the stacking of theligand planes, and such is the case (Fig.19). Theextent to which packing forces dictate or affect thestereochemistry about the metal atom is unclear; inthe present case (and others) they presumably areassociated with rather substantial deviations of themetal atom from the ligand plane(s) (e.g., from the

    total C10N2 plane here, Pr is 0 666(6)A), but theease of interchange of putative ligand types, bothuni- and bi-dentate throughout this and the precedingpaper, provokes a reluctance to consider any of themetalligand interactions as outstandingly strong,while for high-coordination numbers, the potentialminima associated with different stereochemical typesare not pronounced. A further factor influencing thedisposition of the bidentate ligand vis-a-vis the metaland the other ligands may be contacts between theortho-hydrogen atoms of the bidentate ligands and theother (unidentate) ligands. These are tabulated in

    Table 17 and appear to be significant for almost allcompounds; large deviations of the metal atom fromthe bidentate planes are found for almost all othercompounds. Hydrogen bonding in the present case islimited (Table 16). Although isostoichiometric withthe previous, even to the extent of the cation/anionbreakdown, a new stereochemistry, persisting throughthe remainder of the complex eight-coordinate speciesto be discussed, is found in the next section.

    ErCl3/bpy/H2O (1:2:2), [(bpy)2Er(OH2)2Cl2]Cl,Diaquabis(2,2-bipyridine)dichloroerbium(III) Chloride

    Remarkably, this complex crystallizes in a cubiccrystal lattice; one formula unit comprises the asym-metric unit of the structure, with the cation fullyindependent. The anion is dispersed, in the presentmodel, over a number of sites, most components being

    associated with special positions and a small residueon a general position. The stereochemistry of thecation is of a new form; still with putative2-symmetry,the pairs of water molecules are rotated about the

    2-axis, so as to now lie over, rather than between,the pair of bidentate ligands. The disposition of thearrays in the crystal is entertaining, aggregates of eightcations grouping in a cluster, with limited hydrogenbonding between clusters (Fig. 20; Table 16). Asdepicted in Fig. 20, the coordinated water and halidegroups project into channels between the aggregates;one component of the hydrogen bonding is disposedabout the threefold axes/cube diagonals of the cell, asdepicted in Fig. 21. Each cluster may be viewed asan aggregate of eight molecules grouped about a siteof 222 symmetry at ( 1

    2 , 0, 1

    2 ) (etc.) and shown in

    projection down the three axes and (111) in Figs 21,22,the resulting micelles displaying interaction betweenadjacent cations by way of interleaving bpy componentsand waterhalide hydrogen bonding; the latter, shownin Fig. 21, are at long distances: Cl(1) O(2) (x, y,z), 3 28(2); Cl(2) O(1), 3 24(2)A.

    PrCl3/bpy/H2O/EtOH (1 : 2: 1: 05),[(bpy)2Pr(OH2)Cl3].

    12

    EtOH, Aquabis(2,2-bipyridine)-trichloropraseodymium(III)Hemiethanol Solvate

    One formula unit, the complex as a neutral molecule,comprises the asymmetric unit of the structure, withthe form of the isomer the same as for the follow-

    ing europium compound. In an oblique triclinic cell,inversion-/translation-generated images of both ligandsoverlap in adjacent molecules (Fig. 23), constitutingin the aggregate an extensive network with hydrogenbonding a limited influence between pairs of inversion-related molecules (Table 16). In keeping with aconsistent pattern established in the other compounds,we find the remaining water molecule occupying one ofthe axial pair of sites: successive substitution of waterby chlorine in these eight- and nine-coordinate arraysindicates occupancy of the chlorine first, successivelyof the equatorial sites, followed by the axial.

    LnCl3/bpy/H2O/EtOH (1 : 2 : 1 : 1),[(bpy)2Ln(OH2)Cl3].EtOH, Aquabis(2,2

    -bipyridine)-trichlorolanthanoid(III) Monoethanol Solvate

    This array, defined for the present extrema Ln = Nd,Eu, and, presumably, elements in between, crystallizeswith one formula unit comprising the asymmetric unitof the structure, the complex species being a neutralmolecule with the water molecule in an axial site,consistent with above precedents, and of a similarstereochemical form to the preceding pair of com-pounds, all of different crystalline forms. Yet again, inan oblique triclinic cell, translation-/inversion-relatedneighbouring molecules overlap their pairs of both typesof ligand in a manner leading to a network of suchinteractions (Fig. 24). Hydrogen-bonding interactionsare found between the coordinated water molecule and

  • 7/23/2019 Semenova 1999

    30/31

    Structural Systematics of Rare Earth Complexes. XIX 599

    a symmetry-related chlorine, and the lattice ethanoloxygen and coordinated chloride (Table 16).

    YbCl3/bpy (1 : 2), [(bpy)2YbCl3],

    Bis(2,2

    -bipyridine)trichloroytterbium(III)This complex is the only completely unsolvated

    compound among the present array, and only the sec-ond in which, curiously, the metal atom is unsolvated(LaCl3/bpy/EtOH (1 : 2 : 0 5) being the other) despitethe metal being seven-coordinate in a mononuclear array.Other neutral molecules, of the form [L2Ln(OH2)Cl3](L = N,N-bidentate) are found, in which, presumably,relative to diminished coordinating capacity of theethanol in the present environment and/or the smallerlanthanoid metal, eight- rather than seven-coordinationis achieved. Eight-coordination is also achieved in the

    other unsolvated LaCl3/bpy(/EtOH) (1 : 2(: 0 5)) arrayby formation of a binuclear species with bridging chlo-rines, [(bpy)2Cl2La(-Cl)2LaCl2(bpy)2], also from anethanolic environment, but in the context of a largerlanthanoid. In the present complex, one moleculeof compound comprises the asymmetric unit of thestructure, with, as usual, packing within the crystalseemingly dictated by parallel stacking of the bpyligands (Fig. 25b). In the present context, it is ofinterest to note a record of the synthesis of unsol-vated [(bpy)2YCl3] under anhydrous conditions,

    3 cf.the present.

    ConclusionsHere again, as in the preceding paper, some attempt

    to sensibly summarize and update the state of knowl-edge in the light of much new structural work at thisobviously preliminary point appears desirable albeitdifficult.

    With bpy as ligand, studies described in the pre-ceding paper1 have defined, for a 1 : 1 LnCl3/bpyratio, complexes in which the one bpy ligand iscoordinated to the metal, occupying two coordinationsites; a number of complexes crystallized with a 1 : nratio (n > 1) of LnCl3/bpy were also described, the

    supernumerary ligands occupying lattice sites. Withphen as ligand, previous and present studies of singleLnCl3/phen(/solvent) adducts structurally character-ized show that, for all such complexes in which n = 2 inLnCl3/phen (1 : n) arrays, both phen ligands coordinateas bidentates, occupying four sites in the coordinationsphere; for the one adduct structurally characterizedhere in which n > 2, LnCl3/phen/H2O (1:3:9), thesupernumerary ligand again occupies a lattice site. Then= 2 complexes are thus of the form LnCl3/phen(/S)(1:2(: x)), with S variously water, methanol or ethanol;a companion array of bpy complexes is also described.Unlike the array of 1 : 1 LnCl3/bpy adducts describedin the preceding paper, wherein all metal atom envi-ronments were eight-coordinate, the present arrayis more varied, some nine-coordinate species beingobserved at the lighter/larger end of the series, with

    one seven-coordinate example at the heavy/smallerend. Eight-coordination is predominant, however, andprolific in isomeric possibilities, evidenced herein. Thepresent work describes structural characterization of 10

    phen adducts (two the subject of parallel studies else-where) and eight bpy adducts of LnCl3/L(/S) (1 : 2(: x))stoichiometry, a number of isomorphisms being noted;in all species defined here the only coordinated solventspecies is water, despite crystallization in many casesfrom ethanol or methanol solution.

    While there are more suggestions of familial affinitiesin the present aggregate than that of the precedingpaper concerning the 1 : 1 LnCl3/L adducts (there areof course, more compounds), the extent of the isomor-phous arrays at present is more limited and lackingin extended continuity; hints at relationships between

    arrays are both tantalizingly suggestive and confusingin their natures, and demanding of a more extensivestudy. The following points, local to the present workand, generally, lanthanoid-containing species of theform [(phen)2Ln(unidentate)n]

    x+, are noted below.

    (i) Nine-coordinate species are exclusive to three ofthe four mononuclear Ln = La arrays, unidentateligand arrays being predominantly aqueous, withthe overall aggregate having (quasi)- 2 symme-try. Examples of arrays with the (unidentate)narray homoleptic in water are presently confinedto two of these three arrays and also and, so

    far, uniquely, an example incorporating the otherextreme of the series, Lu, with four rather thanfive such ligands; the symmetry of the array ispreserved on passing from the (OH2)5 aggregateto that of the (OH2)4, the ligand lost being axial.The solvation of the ionic aggregate is diverse,inclusive in all cases of water, but including insome cases lattice methanol or phen as well.

    (ii) Neutral, unsolvated coordination spheres are con-fined to bpy complexes, also found at both thebeginning and end of the series, eight-coordinatebinuclear in LaCl3/bpy(/EtOH) (2 : 4 : 1) and

    seven-coordinate mononuclear in YbCl3/bpy(1:2).In all species not encompassed by (i) and (ii)(and some within), the metal is eight-coordinate.

    (iii) Structurally, the most systematic sequences of com-plexes are (unsolvated or solvated with methanolor ethanol) those of the form of neutral molecules[L2Ln(OH2)Cl3], an isomorphous array spanningLn = La()Eu for L = phen, and a shorter spanNd()Eu for L = bpy. The isomeric forms ofthe phen and bpy series are (thus far) different,despite encompassing parallel arrays of Ln.

    (iv) Cationic forms [L2Ln(OH2)4 nCln](3n)+ are

    found with phen for n = 1 and bpy for n = 2;dispositions of the light atoms correspond to 2-symmetry overall in each of two different isomericforms, both exemplified in the Ln = bpy species.

  • 7/23/2019 Semenova 1999

    31/31

    600 L. I. Semenova and A. H. White

    (v) Any suggestion from the array of 1 : 1 complexes1

    that coordination by chloride cf. water is preferredat either end of the Ln series is not suppportedby the present array of rather random results.

    In relation to earlier studies, as summarized in theIntroduction, some minor suggestions are to be foundas to the nature of unsolvated LnCl3/bpy (1 : 2) species,as obtained from ethanolic media, the Ln = La adductbeing binuclear with eight-coordinate [(N2)2LnCl2(-Cl)2] arrays, and the Ln = Yb adduct seven-coordinatemononuclear [(N2)2LnCl3]. A very considerable gapin our knowledge exists in between these two elementswhich lie at, or close to, the extremes of the series.No unsolvated example has been studied for L = phen,and it is not clear how closely, if at all, the L = bpyarrays provide credible models for any L = phen coun-

    terparts. Ethanol- and methanol-solvated complexesalso are described, but in no case is the alcohol found inthe coordination sphere (the same being true for phen)where coordinated water may be found, presumablypreferentially. As hypothesized earlier, it would appearthat there is a strong but not ubiquitous tendency inalcohol solutions, for the alcohol to provide a vehiclefavouring dehydration, without resolvation by itself.In respect of hydrated species, the literature postulatesa diversity of levels of hydration across the serieswhich it appears unfruitful to pursue. Structural dataavailable at present are restricted to material derivative

    of starting materials inclusive of hydrated lanthanoidchloride.

    Where does that all leave us? In the present work,as in the earlier literature, opportunistic control ofreaction conditions, directed here towards the end ofobtaining usefully crystalline material, is incompatiblewith the apparently tight degree of control required forthe achievement of purity and reproducibility of com-plex form: across the present and historical literature,examples can be cited to show similar procedures

    producing a diversity of adducts, and diverse proce-dures producing similar adducts. A beginning has beenmade here in placing the field on a firm structuralfoundation but it is no more than that, a significant

    effort in respect of skilful synthesis under controlledconditions being required to tightly define existenceparameters among, possibly, an extensive platform ofisomeric and stoichiometric possibilities.

    References1 Semenova, L. I., Skelton, B. W., and White, A. H., Aust.

    J. Chem., 1999, 52, 551 (Part XVIII).2 Hart, F. A., and Laming, F. P., J. Inorg. Nucl. Chem.,

    1965, 27, 1825.3 Herzog, S., and Gustav, K., Z. Anorg. Allg. Chem., 1966,

    346, 150.4 Lobanov, N. I., and Smirnova, V. A., Zh. Neorg. Khim.,

    1967, 12, 473 (Eng. transl., p. 243).5 Sinha, S.,J. Inorg. Nucl. Chem., 1965,27, 115;Spectrochim.Acta, 1964, 20, 879.

    6 Ferraro, J. R., Basile, L. J., and Kovacic, D. L., Inorg.Chem., 1966, 5, 391.

    7 Bansal, B. M., Damien, D., and Koehly, G., Inorg. Nucl.Chem. Lett., 1969, 5, 509.

    8 Hart, F. A., and Laming, F. P., J. Inorg. Nucl. Chem.,1964, 26, 579.

    9 Lobanov, N. I., and Smirnova, V. A., Zh. Neorg. Khim.,1965, 10, 1593 (Eng. transl., p. 868).

    10 Zhen-Ping Ji, and Rogers, R. D., J. Chem. Crystallogr.,1994, 24, 797.

    11 Jiang-Gao Mao, Zhong-Sheng Jin, and Jin-Zuan Ni, JiegouHuaxue, 1994, 13, 377 (Cambridge Crystallographic Data

    Base; this work does not appear to be abstracted by Chem.Abstr.).12 Grillone, M. D., Benetollo, F., and Bombieri, G., Polyhedron,

    1991, 10, 217113 Benetollo, F., Bombieri, G., and Grillone, M. D., Acta

    Crystallogr., Sect. C, 1993, 49, 1463.14 Semenova, L. I., and White, A. H., Aust. J. Chem., 1999,

    52, 539 (Part XVII).15 Junk, P. C., Kepert, C. J., Lu Wei-Min, Skelton, B. W.,

    and White, A. H., Aust. J. Chem., 1999, 52, 437 (Part X).16 Melby, L. R., Rose, N. J., Abramson, E., and Caris, J. C.,

    J. Am. Chem. Soc., 1964, 86, 5117.