self-attraction and loading in mpas-ocean

16
Los Alamos National Laboratory Self-Attraction and Loading in MPAS-Ocean Kristin Barton LA-UR-20-25989 Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA 6 Aug 2020 Mentors: Mark Petersen, Steven Brus, Brian Arbic

Upload: others

Post on 23-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Los Alamos National Laboratory

Self-Attraction and Loading in MPAS-Ocean

Kristin Barton

LA-UR-20-25989

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

6 Aug 2020

Mentors: Mark Petersen, Steven Brus, Brian Arbic

Los Alamos National Laboratory

2

MPAS-Ocean (Model for Prediction Across Scales)

• Ocean simulation model • Unstructured mesh • Allows for variable resolution • Time scales from months to millennia • Spatial scales from < 1 km to global • Functions as ocean component in

climate system models

“MPAS Overview” https://mpas-dev.github.io, Accessed: 26 Jun 2020Petersen, Mark Roger Asay-Davis, Xylar Storm Jacobsen, Douglas William Maltrud, Mathew Einar Ringler, Todd Darwin Van Roekel, Luke Veneziani,

Carmela Wolfram, Phillip Justin Jr. MPAS-Ocean Model User's Guide Version 6.0. Report (2018)Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232. doi:10.1016/

j.ocemod.2013.04.010

Los Alamos National Laboratory

3

• Tectonics • Water depth • Shoreline position • Seabed roughness • Extent of sea ice coverage • More!

Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., et al. (2020). The tides they are a-changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics, 57, e2018RG000636. https://doi.org/10.1029/2018RG000636

Müller, M., Arbic, B. K., and Mitrovica, J. X. (2011), Secular trends in ocean tides: Observations and model results, J. Geophys. Res., 116, C05013, doi:10.1029/2010JC006387.

Tides themselves are not constant, they can be influenced by things like:

Importance of Tides in a global ocean model

Los Alamos National Laboratory

4

Tides account for…

Arbic, Brian & Alford, Matthew & Ansong, Joseph & Buijsman, Maarten & Ciotti, Robert & Farrar, J. & Hallberg, Robert & Henze, Christopher & Hill, Christopher & Luecke, Conrad & Menemenlis, Dimitris & Metzger, E. & Müeller, Malte & Nelson, Arin & Nelson, Bron & Ngodock, Hans & Ponte, Rui & Richman, James & Savage, Anna & Zhao, Zhongxiang. (2018). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. 10.17125/gov2018.ch13

Astronomical forcing (sun and moon) Self-Attraction and Loading

Damping• SAL includes effects from:

• Tides deforming the earth • Self-gravitation of earth • Self-gravitation of water

Moon

Earth

Los Alamos National Laboratory

5

Importance of SAL• Can be approximated by a

constant or iterative methods

• Not including SAL can affect:

• tidal amplitudes by 10%

• tidal phases by 30deg • Better to calculate using

full spherical harmonic decomposition

Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018), Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609. doi: https://doi.org/10.1029/2018JC013959.

Einšpigel, D., Martinec, Z. (2017), Time-domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67, 165–189. doi: 10.1007/s10236-016-1016-1.

Los Alamos National Laboratory

6

How self-attraction and loading calculation works with spherical harmonic transform

• SHTns = fast spherical harmonic transform package

• Uses OpenMP to perform transform on a single node

• Each coefficient is multiplied by a load love number

Schaeffer, N. (2013), Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophys. Geosyst., 14, 751– 758, doi:10.1002/ggge.20071.

Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018), Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609. doi: https://doi.org/10.1029/2018JC013959.

spatial data

spatial data

spherical harmonic transform

coeff(i) = coeff(i) * scale(i)

Los Alamos National Laboratory

7

Simple model: Debot

• Twice-daily lunar tidal amplitudes in meters

• Comparison with a benchmark tidal model TPXO

• Root mean square error: • 3cm for >1000m depths • 14cm for <1000m depths

• This model does not require interpolation

• Provides basis for adding routine to MPAS

Einšpigel, D., Martinec, Z. (2017), Time-domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67, 165–189. doi: 10.1007/s10236-016-1016-1.

Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018), Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609. doi: https://doi.org/10.1029/2018JC013959.

Los Alamos National Laboratory

8

Interpolation

“Gaussian Grids” European Centre for Medium-Range Weather Forecasts. https://confluence.ecmwf.int/display/FCST/Gaussian+grids. Accessed 15 July 2020.

MPAS unstructured mesh Gaussian grid

• Gaussian grid: position of latitudes based on zeros of Legendre polynomials • Useful for doing fast spherical harmonic transforms

Los Alamos National Laboratory

9

Interpolation Process

MPAS mesh

Gaussian grid

Interpolation weight matrix

Los Alamos National Laboratory

10

ESMF (Earth System Modeling Framework)

• Used for coupling models together • Has functions for interpolation • Massive library, so we don’t want to use the whole thing

V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein, Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew Rothstein, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector, Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky. Earth System Modeling Framework: ESMF User Guide Version 8.0.0. 13 Oct. 2019.

ESMF superstructure

ESMF infrastructure

User code

ocean

atmosphere land

ESMF coupler

Los Alamos National Laboratory

11

ESMF (Earth System Modeling Framework) — Options

V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein, Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew Rothstein, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector, Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky. Earth System Modeling Framework: ESMF User Guide Version 8.0.0. 13 Oct. 2019.

Regrid Options

ESMF_RegridWeightGen ESMF_FieldRegrid

• Command line tool • Only outputs weight file • Easy to use

• Can perform entire interpolation

• Requires more restructuring of code

Los Alamos National Laboratory

Pre-generate weight matrices

Interpolate with matrix

multiplication

Do spherical harmonic transform

Perform SAL calculation

Interpolate back to original mesh

Current Progress — Individual pieces are all working!

Interpolate back to original mesh

Los Alamos National Laboratory

Current Challenge — Getting all the pieces working together inside MPAS-O

Master node

local cell ID

local cell ID

local cell ID

local cell ID

global cell ID

MPI gather

• Data in MPAS is spread among many nodes

• Spherical Harmonic routine must be run on single node

Los Alamos National Laboratory

Current Challenge — Getting all the pieces working together inside MPAS-O

Master node

local cell ID

local cell ID

local cell ID

local cell ID

global cell ID

MPI scatter

• Data in MPAS is spread among many nodes

• Spherical Harmonic routine must be run on single node

• After SAL calculation, data must be sent out to original nodes

Los Alamos National Laboratory

15

Thank you!

Los Alamos National Laboratory

16

References:Arbic, Brian & Alford, Matthew & Ansong, Joseph & Buijsman, Maarten & Ciotti, Robert & Farrar, J. & Hallberg, Robert & Henze, Christopher & Hill, Christopher & Luecke,

Conrad & Menemenlis, Dimitris & Metzger, E. & Müeller, Malte & Nelson, Arin & Nelson, Bron & Ngodock, Hans & Ponte, Rui & Richman, James & Savage, Anna & Zhao, Zhongxiang. (2018). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. 10.17125/gov2018.ch13

Brian K Arbic, Richard H. Karsten, Chris Garrett. On Tidal Resonance in the Open Ocean and the Back-Effect of Coastal Tides upon Open-Ocean Tides. ATMOSPHERE-OCEAN 47 (4) 2009, 239–266 doi:10.3137/OC311.2009

Einšpigel, D., Martinec, Z. (2017), Time-domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67, 165–189. doi: 10.1007/s10236-016-1016-1.

“Gaussian Grids” European Centre for Medium-Range Weather Forecasts. https://confluence.ecmwf.int/display/FCST/Gaussian+grids. Accessed 15 July 2020.

Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., et al. (2020). The tides they are a-changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics, 57, e2018RG000636. https://doi.org/10.1029/2018RG000636

“MPAS Overview” https://mpas-dev.github.io, Accessed: 26 Jun 2020

Müller, M., Arbic, B. K., and Mitrovica, J. X. (2011), Secular trends in ocean tides: Observations and model results, J. Geophys. Res., 116, C05013, doi:10.1029/2010JC006387.

Petersen, Mark Roger Asay-Davis, Xylar Storm Jacobsen, Douglas William Maltrud, Mathew Einar Ringler, Todd Darwin Van Roekel, Luke Veneziani, Carmela Wolfram, Phillip Justin Jr. MPAS-Ocean Model User's Guide Version 6.0. Report (2018)

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232. doi:10.1016/j.ocemod.2013.04.010

Schaeffer, N. (2013), Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophys. Geosyst., 14, 751– 758, doi:10.1002/ggge.20071.

Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018), Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609. doi: https://doi.org/10.1029/2018JC013959.

V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein, Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew Rothstein, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector, Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky. Earth System Modeling Framework: ESMF User Guide Version 8.0.0. 13 Oct. 2019.